Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Third-harmonic Mie scattering from semiconductor nanohelices

Abstract

Chiroptical spectroscopies provide structural analyses of molecules and nanoparticles but they require sample volumes that are incompatible with generating large chemical libraries. New optical tools are needed to characterize chirality for the ultrasmall (<1 µl) volumes required in the high-throughput synthetic and analytical stations for chiral compounds. Here we show experimentally a novel photonic effect that enables such capabilities—third-harmonic Mie scattering optical activity—observed from suspensions of CdTe nanostructured helices in volumes <<1 µl. Third-harmonic Mie scattering was recorded on illuminating CdTe helices with 1,065, 1,095 and 1,125 nm laser beams and the intensity was around ten-times higher in the forward direction than sideways. The third-harmonic ellipticity was as high as 3° and we attribute this effect to the interference of chiral and achiral effective nonlinear susceptibility tensor components. Third-harmonic Mie scattering on semiconductor helices opens a path for rapid high-throughput chiroptical characterization of sample volumes as small as 10−5 µl.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CdTe nanohelices for third-harmonic Mie scattering optical activity.
Fig. 2: Demonstration of THMS optical activity.
Fig. 3: Confirmation of THMS optical activity.
Fig. 4: Applications of THMS for characterizing chiral nanostructures in ultrasmall volumes.

Similar content being viewed by others

Data availability

All data supporting this study are openly available from the University of Bath Research Data Archive at https://doi.org/10.15125/BATH-01005 (ref. 58).

References

  1. Himanen, L., Geurts, A., Foster, A. S. & Rinke, P. Data-driven materials science: status, challenges, and perspectives. Adv. Sci. 6, 1900808 (2019).

    Article  Google Scholar 

  2. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    Article  ADS  Google Scholar 

  3. Coley, C. W., Eyke, N. S. & Jensen, K. F. Autonomous discovery in the chemical sciences part I: progress. Angew. Chemie Int. Ed. 59, 22858–22893 (2020).

    Article  Google Scholar 

  4. Eyke, N. S., Koscher, B. A. & Jensen, K. F. Toward machine learning-enhanced high-throughput experimentation. Trends Chem. 3, 120–132 (2021).

    Article  Google Scholar 

  5. Cernak, T. Synthesis in the chemical space age. Chem 1, 6–9 (2016).

    Article  Google Scholar 

  6. Kutchukian, P. S. et al. Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016).

    Article  Google Scholar 

  7. Shen, Y. et al. Automation and computer-assisted planning for chemical synthesis. Nat. Rev. Methods Prim. 1, 23 (2021).

    Article  Google Scholar 

  8. Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

    Article  ADS  Google Scholar 

  9. Lee, H.-E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    Article  ADS  Google Scholar 

  10. Ben-Moshe, A. et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5, 4302 (2014).

    Article  ADS  Google Scholar 

  11. Valev, V. K., Baumberg, J. J., Sibilia, C. & Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25, 2517–2534 (2013).

    Article  Google Scholar 

  12. Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

    Article  Google Scholar 

  13. Srivastava, S. et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327, 1355–1359 (2010).

    Article  ADS  Google Scholar 

  14. Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

    Article  ADS  Google Scholar 

  15. Belkin, M. A., Han, S. H., Wei, X. & Shen, Y. R. Sum-frequency generation in chiral liquids near electronic resonance. Phys. Rev. Lett. 87, 113001 (2001).

    Article  ADS  Google Scholar 

  16. Donskoi, S. M. & Makarov, V. A. Five-wave mixing ωb = ω1 + ω1 + ω1 – ω2 in the bulk of a chiral liquid. J. Raman Spectrosc. 31, 779–784 (2000).

    Article  ADS  Google Scholar 

  17. Romero, L. C. D., Meech, S. R. & Andrews, D. L. Five-wave mixing in molecular fluids. J. Phys. B At. Mol. Opt. Phys. 30, 5609–5619 (1997).

    Article  ADS  Google Scholar 

  18. De Boni, L., Toro, C. & Hernández, F. E. Synchronized double L-scan technique for the simultaneous measurement of polarization-dependent two-photon absorption in chiral molecules. Opt. Lett. 33, 2958 (2008).

    Article  ADS  Google Scholar 

  19. Mesnil, H. & Hache, F. Experimental evidence of third-order nonlinear dichroism in a liquid of chiral molecules. Phys. Rev. Lett. 85, 4257–4260 (2000).

    Article  ADS  Google Scholar 

  20. Markowicz, P. P. et al. Modified Z-scan techniques for investigations of nonlinear chiroptical effects. Opt. Exp. 12, 5209 (2004).

    Article  ADS  Google Scholar 

  21. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  Google Scholar 

  22. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  Google Scholar 

  23. Wang, Z., Cheng, F., Winsor, T. & Liu, Y. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27, 412001 (2016).

    Article  Google Scholar 

  24. Ren, M., Plum, E., Xu, J. & Zheludev, N. I. Giant nonlinear optical activity in a plasmonic metamaterial. Nat. Commun. 3, 833 (2012).

    Article  ADS  Google Scholar 

  25. Tang, Y. et al. Nano‐Kirigami metasurface with giant nonlinear optical circular dichroism. Laser Photon. Rev. 14, 2000085 (2020).

    Article  ADS  Google Scholar 

  26. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  Google Scholar 

  27. Guerrero-Martínez, A., Alonso-Gómez, J. L., Auguié, B., Cid, M. M. & Liz-Marzán, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 6, 381–400 (2011).

    Article  Google Scholar 

  28. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

    Article  ADS  Google Scholar 

  29. Menon, V. M., Deych, L. I. & Lisyansky, A. A. Towards polaritonic logic circuits. Nat. Photon. 4, 345–346 (2010).

    Article  ADS  Google Scholar 

  30. Miller, D. A. B. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).

    Article  ADS  Google Scholar 

  31. Ali, R., Dutra, R. S., Pinheiro, F. A., Rosa, F. S. S. & Maia Neto, P. A. Theory of optical tweezing of dielectric microspheres in chiral host media and its applications. Sci. Rep. 10, 16481 (2020).

    Article  Google Scholar 

  32. Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

    Article  ADS  Google Scholar 

  33. Smirnova, D. A., Khanikaev, A. B., Smirnov, L. A. & Kivshar, Y. S. Multipolar third-harmonic generation driven by optically induced magnetic resonances. ACS Photonics 3, 1468–1476 (2016).

    Article  Google Scholar 

  34. Gandolfi, M., Tognazzi, A., Rocco, D., De Angelis, C. & Carletti, L. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces. Phys. Rev. A 104, 023524 (2021).

    Article  ADS  Google Scholar 

  35. Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett 16, 4635–4640 (2016).

    Article  ADS  Google Scholar 

  36. Smirnova, D. & Kivshar, Y. S. Multipolar nonlinear nanophotonics. Optica 3, 1241 (2016).

    Article  ADS  Google Scholar 

  37. Yan, J. et al. Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity. Chem. Mater. 32, 476–488 (2020).

    Article  Google Scholar 

  38. Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 7, 479–479 (2012).

    Article  ADS  Google Scholar 

  39. Collins, J. T. et al. First observation of optical activity in hyper-Rayleigh scattering. Phys. Rev. X 9, 011024 (2019).

    Google Scholar 

  40. Verreault, D. et al. Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers. J. Am. Chem. Soc. 142, 257–263 (2020).

    Article  Google Scholar 

  41. Ohnoutek, L. et al. Single nanoparticle chiroptics in a liquid: optical activity in hyper-Rayleigh scattering from Au helicoids. Nano Lett 20, 5792–5798 (2020).

    Article  ADS  Google Scholar 

  42. Bey, P. P., Giuliani, J. F. & Rabin, H. Linear and circular polarized laser radiation in optical third harmonic generation. Phys. Lett. A 26, 128–129 (1968).

    Article  ADS  Google Scholar 

  43. Dewitz, J. P., Hübner, W. & Bennemann, K. H. Theory for nonlinear Mie-scattering from spherical metal clusters. Zeitschrift für Phys. D 37, 75–84 (1996).

    Article  Google Scholar 

  44. Ohnoutek, L. et al. Optical activity in third‐harmonic rayleigh scattering: a new route for measuring chirality. Laser Photon. Rev. 2100235 (2021); https://doi.org/10.1002/lpor.202100235

  45. Van Steerteghem, N., Clays, K., Verbiest, T. & Van Cleuvenbergen, S. Third-Harmonic Scattering for Fast and Sensitive Screening of the Second Hyperpolarizability in Solution. Anal. Chem. 89, 2964–2971 (2017).

    Article  Google Scholar 

  46. Moris, M. et al. Harmonic light scattering study reveals structured clusters upon the supramolecular aggregation of regioregular poly(3-alkylthiophene). Commun. Chem. 2, 130 (2019).

    Article  Google Scholar 

  47. Ford, J. S. & Andrews, D. L. Molecular tensor analysis of third-harmonic scattering in liquids. J. Phys. Chem. A 122, 563–573 (2018).

    Article  Google Scholar 

  48. Shelton, D. P. Third harmonic scattering in liquids. J. Chem. Phys. 149, 224504 (2018).

    Article  ADS  Google Scholar 

  49. Tang, C. L. & Rabin, H. Selection rules for circularly polarized waves in nonlinear optics. Phys. Rev. B 3, 4025–4034 (1971).

    Article  ADS  Google Scholar 

  50. Clay, G. O. et al. Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin. J. Opt. Soc. Am. B 23, 932 (2006).

    Article  ADS  Google Scholar 

  51. Shubnikov, A. V. in Crystal Symmetries Vol. 16, 357–364 (Elsevier, 1988).

  52. Grigoriev, K. S., Kuznetsov, N. Y., Cherepetskaya, E. B. & Makarov, V. A. Second harmonic generation in isotropic chiral medium with nonlocality of nonlinear optical response by heterogeneously polarized pulsed beams. Opt. Express 25, 6253 (2017).

    Article  ADS  Google Scholar 

  53. Boyd, R. W. Nonlinear Optics (Elsevier, 2003); https://doi.org/10.1016/B978-0-12-121682-5.X5000-7

  54. Multian, V. V. et al. Averaged third-order susceptibility of ZnO nanocrystals from third harmonic generation and third harmonic scattering. Opt. Mater. (Amst). 84, 579–585 (2018).

    Article  ADS  Google Scholar 

  55. Takatsy, G. A rapid and accurate method for serial dilutions. Kiserl Orvostud 5, 393–397 (1950).

    Google Scholar 

  56. Galaverna, R., Ribessi, R. L., Rohwedder, J. J. R. & Pastre, J. C. Coupling continuous flow microreactors to microNIR spectroscopy: ultracompact device for facile in-line reaction monitoring. Org. Process Res. Dev. 22, 780–788 (2018).

    Article  Google Scholar 

  57. Qu, Z. et al. Metal-bridged graphene–protein supraparticles for analog and digital nitric oxide sensing. Adv. Mater. 33, 2007900 (2021).

    Article  Google Scholar 

  58. Ohnoutek, L., Olohan, B. J. & Valev, V. K. Dataset for Third Harmonic Hyper Mie Scattering Optical Activity From Semiconductor Helices (University of Bath Research Data Archive, 2021); https://doi.org/10.15125/BATH-01005

  59. Gaponik, N. et al. Thiol-Capping of CdTe Nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B 106, 7177–7185 (2002).

    Article  Google Scholar 

  60. Feng, W. et al. Assembly of mesoscale helices with near-unity enantiomeric excess and light–matter interactions for chiral semiconductors. Sci. Adv. 3, e1601159 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Carbery for providing cuvettes with 1 mm pathlength. V.K.V. acknowledges support from the Royal Society through the University Research Fellowships, the Royal Society grants PEF1\170015, RF\ERE\210172, ICA\R1\201088 and RGF\EA\180228, the STFC grant ST/R005842/1 and the EPSRC grant EP/T001046/1. L.O. and V.K.V. acknowledge funding and support from the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Condensed Matter Physics (CDT-CMP), grant EP/L015544/1. N.A.K acknowledges the Vannevar Bush DoD Fellowship to N.A.K. titled Engineered Chiral Ceramics, ONR N000141812876, and ONR COVID-19 Newton Award Pathways to Complexity with Imperfect Nanoparticles, HQ00342010033. D.M.R. and G.D.P. acknowledge support from the EPSRC through grant EPSRC DTP EB- BB1250.

Author information

Authors and Affiliations

Authors

Contributions

V.K.V. and N.A.K. conceived the experiments. L.O., V.K.V. and B.O. performed the nonlinear optical experiments. J-Y.K., J.L. and N.A.K. prepared and provided the samples. L.O., D.M.R. and G.D.P. performed the linear optical experiments. J-Y.K. performed the numerical simulations. L.O., J-Y.K., N.A.K. and V.K.V. analysed the data. L.O. and V.K.V. wrote the first draft and all authors contributed towards writing the paper.

Corresponding authors

Correspondence to Nicholas A. Kotov or Ventsislav K. Valev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Costantino De Angelis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohnoutek, L., Kim, JY., Lu, J. et al. Third-harmonic Mie scattering from semiconductor nanohelices. Nat. Photon. 16, 126–133 (2022). https://doi.org/10.1038/s41566-021-00916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-021-00916-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing