Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrabright near-infrared fluorescent DNA frameworks for near-single-cell cancer imaging

Abstract

Cancer imaging approaching single-cell levels is highly desirable for studying in vivo cell migration and cancer metastasis. However, current imaging probes struggle to simultaneously achieve high sensitivity, deep-tissue penetration and tissue specificity. Here we report size- and shape-resolved fluorescent DNA framework (FDF) dots with tail emission in the second near-infrared window (1,000–1,700 nm, NIR-II), which enable near-single-cell-level, tumour-targeting deep-tissue (~1 cm) NIR-II imaging in tumour-bearing mouse models. The construction of DNA frameworks with embedded hydrophobic nanocavity results in the non-covalent encapsulation of a designed NIR-Ib (900–1,000 nm) probe (dye Sq964). The FDF dots exhibit high water solubility, brightness and photostability. We find that the stable tumour retention of FDF dots with enhanced signal intensity arises from their shape-dependent accumulation in tumour cells. FDF-dot-based cancer imaging reveals in vivo sensitivity down to ~40 tumour cells, high tumour-to-normal tissue ratios up to ~26 and long-term imaging over 11 days. We also demonstrate NIR-II-image-guided breast cancer surgery with the complete excision of metastases with a minimum size of ~53 μm (~20 cells).

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NIR-Ib FDF dots for cancer imaging and image-guided tumour surgery.
Fig. 2: Optical properties of FDF dots.
Fig. 3: Versatility of DNA frameworks for encapsulation of diverse dyes.
Fig. 4: Breast cancer cell labelling with FDF dots.
Fig. 5: In vivo imaging of FDF-dot-labelled breast cancer cells.
Fig. 6: NIR-image-guided surgery of metastases.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information. Additional data and files are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Jafari, S. H. et al. Breast cancer diagnosis: imaging techniques and biochemical markers. J. Cell. Physiol. 233, 5200–5213 (2018).

    Article  MATH  Google Scholar 

  2. Wang, F. et al. High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proc. Natl Acad. Sci. USA 119, e2123111119 (2022).

    Article  Google Scholar 

  3. Sheng, Z. et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv. Mater. 30, 1800766 (2018).

    Article  ADS  Google Scholar 

  4. Zhu, W. et al. Zwitterionic AIEgens: rational molecular design for NIR-II fluorescence imaging-guided synergistic phototherapy. Adv. Funct. Mater. 31, 2007026 (2020).

    Article  Google Scholar 

  5. Lu, L. F. et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat. Commun. 11, 4192 (2020).

    Article  ADS  MATH  Google Scholar 

  6. Ling, S. S. et al. Tumor microenvironment-activated NIR-II nanotheranostic system for precise diagnosis and treatment of peritoneal metastasis. Angew. Chem. Int. Ed. 59, 7219–7223 (2020).

    Article  MATH  Google Scholar 

  7. Wang, T. et al. A hybrid erbium(iii)-bacteriochlorin near-infrared probe for multiplexed biomedical imaging. Nat. Mater. 20, 1571–1578 (2021).

    Article  ADS  MATH  Google Scholar 

  8. Liu, Y. et al. Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: from strategic design toward molecular imaging and theranostics. Chem. Rev. 122, 209–268 (2022).

    Article  MATH  Google Scholar 

  9. Wang, P. et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 9, 2898 (2018).

    Article  ADS  MATH  Google Scholar 

  10. Wang, S. et al. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission. Nano Lett. 19, 2418–2427 (2019).

    Article  ADS  MATH  Google Scholar 

  11. Wang, R., Zhou, L., Wang, W. X., Li, X. M. & Zhang, F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat. Commun. 8, 14702 (2017).

    Article  ADS  Google Scholar 

  12. Santos, H. D. A. et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat. Commun. 11, 2933 (2020).

    Article  ADS  MATH  Google Scholar 

  13. Wan, H. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9, 1171 (2018).

    Article  ADS  MATH  Google Scholar 

  14. Li, B. et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat. Commun. 11, 3102 (2020).

    Article  ADS  MATH  Google Scholar 

  15. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  ADS  Google Scholar 

  16. Li, Y. et al. Small-molecule fluorophores for near-infrared IIb imaging and image-guided therapy of vascular diseases. CCS Chem. 4, 3735–3750 (2022).

    Article  MATH  Google Scholar 

  17. Yang, Q. L. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 140, 1715–1724 (2018).

    Article  MATH  Google Scholar 

  18. Antaris, A. L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 8, 15269 (2017).

    Article  ADS  MATH  Google Scholar 

  19. Kenry, Duan, Y. & Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 30, 1802394 (2018).

    Article  Google Scholar 

  20. Niekamp, S., Stuurman, N. & Vale, R. D. A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging. Nat. Methods 17, 437–441 (2020).

    Article  Google Scholar 

  21. Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. 53, 7745–7750 (2014).

    Article  MATH  Google Scholar 

  22. Edwardson, T. G. W., Carneiro, K. M. M., McLaughlin, C. K., Serpell, C. J. & Sleiman, H. F. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nat. Chem. 5, 868–875 (2013).

    Article  Google Scholar 

  23. Ding, H. et al. DNA nanostructure-programmed like-charge attraction at the cell-membrane interface. ACS Cent. Sci. 4, 1344–1351 (2018).

    Article  MATH  Google Scholar 

  24. Bastings, M. M. C. et al. Modulation of the cellular uptake of DNA origami through control over mass and shape. Nano Lett. 18, 3557–3564 (2018).

    Article  ADS  MATH  Google Scholar 

  25. Wang, P. et al. Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc. 140, 2478–2484 (2018).

    Article  MATH  Google Scholar 

  26. Chou, L. Y., Zagorovsky, K. & Chan, W. C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 9, 148–155 (2014).

    Article  ADS  Google Scholar 

  27. Ge, Z., Gu, H., Li, Q. & Fan, C. Concept and development of framework nucleic acids. J. Am. Chem. Soc. 140, 17808–17819 (2018).

    Article  Google Scholar 

  28. Wiraja, C. et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun. 10, 1147 (2019).

    Article  ADS  MATH  Google Scholar 

  29. Peng, X. et al. DNA nanostructure-programmed cell entry via corner angle-mediated molecular interaction with membrane receptors. Nano Lett. 21, 6946–6951 (2021).

    Article  ADS  MATH  Google Scholar 

  30. Cosco, E. D. et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat. Chem. 12, 1123–1130 (2020).

    Article  MATH  Google Scholar 

  31. Liu, D. K. et al. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J. Am. Chem. Soc. 143, 17136–17143 (2021).

    Article  Google Scholar 

  32. Xu, W., Wang, D. & Tang, B. Z. NIR-II AIEgens: a win-win integration towards bioapplications. Angew. Chem. Int. Ed. 60, 7476–7487 (2021).

    Article  MATH  Google Scholar 

  33. Zhang, Q. et al. Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl. Mater. Interfaces 10, 3421–3430 (2018).

    Article  MATH  Google Scholar 

  34. Du, R. R. et al. Innate immune stimulation using 3D wireframe DNA origami. ACS Nano 16, 20340–20352 (2022).

    Article  Google Scholar 

  35. Lucas, C. R. et al. DNA origami nanostructures elicit dose-dependent immunogenicity and are nontoxic up to high doses in vivo. Small 18, e2108063 (2022).

    Article  Google Scholar 

  36. Lu, J. Q. et al. Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 12, 11041–11061 (2018).

    Article  MATH  Google Scholar 

  37. Paschall, A. V. & Liu, K. B. An orthotopic mouse model of spontaneous breast cancer metastasis. J. Vis. Exp. 114, 54040 (2016).

    Google Scholar 

  38. Wojtynek, N. E. et al. Nanoparticle formulation of indocyanine green improves image-guided surgery in a murine model of breast cancer. Mol. Imaging Biol. 22, 891–903 (2020).

    Article  Google Scholar 

  39. Speak, A. O. et al. A high-throughput in vivo screening method in the mouse for identifying regulators of metastatic colonization. Nat. Protoc. 12, 2465–2477 (2017).

    Article  MATH  Google Scholar 

  40. Goldman, E. et al. Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology 28, 43LT01 (2017).

    Article  MATH  Google Scholar 

  41. Lou, Y. et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 71, 3364–3376 (2011).

    Article  MATH  Google Scholar 

  42. Sun, H. et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 28, 9581–9588 (2016).

    Article  ADS  MATH  Google Scholar 

  43. Gao, H. et al. Far-red/near-infrared emissive (1,3-dimethyl)barbituric acid-based AIEgens for high-contrast detection of metastatic tumors in the lung. Chem. Asian J. 14, 871–876 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  44. Kawakita, N., Takizawa, H., Kondo, K., Sakiyama, S. & Tangoku, A. Indocyanine green fluorescence navigation thoracoscopic metastasectomy for pulmonary metastasis of hepatocellular carcinoma. Ann. Thorac. Cardiovasc. Surg. 22, 367–369 (2016).

    Article  Google Scholar 

  45. Keating, J. et al. Near-infrared intraoperative molecular imaging can locate metastases to the lung. Ann. Thorac. Surg. 103, 390–398 (2017).

    Article  MATH  Google Scholar 

  46. On, K. C. et al. Tumor-targeting glycol chitosan nanoparticles for image-guided surgery of rabbit orthotopic VX2 lung cancer. Pharmaceutics 12, 621 (2020).

    Article  Google Scholar 

  47. Wada, H. et al. Intraoperative near-infrared fluorescence-guided peripheral lung tumor localization in rabbit models. Ann. Thorac. Surg. 107, 248–256 (2019).

    Article  MATH  Google Scholar 

  48. Zhou, H. et al. Specific small-molecule NIR-II fluorescence imaging of osteosarcoma and lung metastasis. Adv. Healthc. Mater. 9, e1901224 (2020).

    Article  Google Scholar 

  49. Mao, Y. et al. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries. Eur. J. Cardiothorac. Surg. 52, 1190–1196 (2017).

    Article  MATH  Google Scholar 

  50. Dang, X. et al. Deep-tissue optical imaging of near cellular-sized features. Sci. Rep. 9, 3873 (2019).

    Article  ADS  MATH  Google Scholar 

  51. Zhao, Y. et al. A temporally resolved DNA framework state machine in living cells. Nat. Mach. Intell. 5, 980–990 (2023).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank F. Zhang (Fudan University) and Q. Wang (Suzhou Institute of Nano-Tech and Nano-Bionics) for the NIR imaging assistance. This work was supported by the National Key R&D Program of China (2023YFC3404200 to Y.Z.), the National Natural Science Foundation of China (T2188102 to C.F., 21991134 to C.F., 22325406 to J.L. and 12305400 to Q.Y.), 2022 Shanghai ‘Science and Technology Innovation Action Plan’ Fundamental Research Project (22JC1401203 to Y.Z.) and the Xiangfu Lab Research Project (XF012022E0100 to C.F.). We would like to dedicate this paper to C.Z., who unfortunately passed away just before this paper was revised. C.Z. played an essential role in the research described here and he is greatly missed.

Author information

Authors and Affiliations

Contributions

C.F. and Y.Z. directed the research. C.F., Y.Z., J.L., C.Z., Xia Liu and B.S. conceived and designed the experiments. Xia Liu, B.S., Y.G., S.Z., Q.Y. and Xiaoguo Liu carried out the experiments and analysed the data. J.S., Q.L., L.W., J.L., H.T. and I.W. provided suggestions and technical support on the project. J.L., Y.Z. and C.F. wrote and revised the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Chunchang Zhao, Ying Zhu or Chunhai Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Xuechuan Hong, Hak Soo Choi and Xiaoyuan Chen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–31, Table 1 and Methods.

Supplementary Data 1

Source data for Supplementary Figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Shi, B., Gao, Y. et al. Ultrabright near-infrared fluorescent DNA frameworks for near-single-cell cancer imaging. Nat. Photon. 19, 79–88 (2025). https://doi.org/10.1038/s41566-024-01543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01543-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing