Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical pumping of electronic quantum Hall states with vortex light

Abstract

A fundamental requirement for quantum technologies is the ability to coherently control the interaction between electrons and photons. However, in many scenarios involving the interaction between light and matter, the exchange of linear or angular momentum between electrons and photons is not feasible, a condition known as the dipole approximation limit. An example of a case beyond this limit that has remained experimentally elusive is when the interplay between chiral electrons and vortex light is considered, where the orbital angular momentum of light can be transferred to electrons. Here we present a mechanism for such an orbital angular momentum transfer from optical vortex beams to electronic quantum Hall states. Specifically, we identify a robust contribution to the radial photocurrent, in an annular graphene sample within the quantum Hall regime, that depends on the vorticity of light. This phenomenon can be interpreted as an optical pumping scheme, where the angular momentum of photons is transferred to electrons, generating a radial current, and the current direction is determined by the vorticity of the light. Our findings offer fundamental insights into the optical probing and manipulation of quantum coherence, with wide-ranging implications for advancing quantum coherent optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of OAM pumping.
Fig. 2: OAM-selective PC generation.
Fig. 3: Polarization-resolved and power-dependent PC measurements.
Fig. 4: Gate voltage dependence of PC.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are reported in the main text, Supplementary Information and Supplementary Video 1. Source data are available from the corresponding authors on reasonable request.

References

  1. Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022).

    ADS  Google Scholar 

  2. Basov, D., Fogler, M. & García de Abajo, F. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Google Scholar 

  3. Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 7, 12998 (2016).

    ADS  MATH  Google Scholar 

  4. Grass, T., Bhattacharya, U., Sell, J. & Hafezi, M. Two-dimensional excitons from twisted light and the fate of the photon’s orbital angular momentum. Phys. Rev. B 105, 205202 (2022).

    ADS  Google Scholar 

  5. Konzelmann, A. M., Krüger, S. O. & Giessen, H. Interaction of orbital angular momentum light with Rydberg excitons: modifying dipole selection rules. Phys. Rev. B 100, 115308 (2019).

    ADS  MATH  Google Scholar 

  6. Quinteiro, G. F. Below-bandgap excitation of bulk semiconductors by twisted light. Europhys. Lett. 91, 27002 (2010).

    ADS  MATH  Google Scholar 

  7. Andersen, M. et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006).

    ADS  MATH  Google Scholar 

  8. Boulier, T. et al. Injection of orbital angular momentum and storage of quantized vortices in polariton superfluids. Phys. Rev. Lett. 116, 116402 (2016).

    ADS  MATH  Google Scholar 

  9. Dominici, L. et al. Interactions and scattering of quantum vortices in a polariton fluid. Nat. Commun. 9, 1467 (2018).

    ADS  MATH  Google Scholar 

  10. Kwon, M.-S. et al. Direct transfer of light’s orbital angular momentum onto a nonresonantly excited polariton superfluid. Phys. Rev. Lett. 122, 045302 (2019).

    ADS  MATH  Google Scholar 

  11. Andersen, M. L., Stobbe, S., Sørensen, A. S. & Lodahl, P. Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nat. Phys. 7, 215–218 (2011).

    Google Scholar 

  12. Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljačić, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  13. Wieck, A., Sigg, H. & Ploog, K. Observation of resonant photon drag in a two-dimensional electron gas. Phys. Rev. Lett. 64, 463 (1990).

    ADS  MATH  Google Scholar 

  14. Gullans, M. J., Taylor, J. M., Imamoğlu, A., Ghaemi, P. & Hafezi, M. High-order multipole radiation from quantum Hall states in Dirac materials. Phys. Rev. B 95, 235439 (2017).

    ADS  Google Scholar 

  15. Takahashi, H. T., Proskurin, I. & Kishine, J.-i Landau level spectroscopy by optical vortex beam. J. Phys. Soc. Jpn. 87, 113703 (2018).

    ADS  MATH  Google Scholar 

  16. Cao, B., Grass, T., Solomon, G. & Hafezi, M. Optical flux pump in the quantum Hall regime. Phys. Rev. B 103, L241301 (2021).

    ADS  MATH  Google Scholar 

  17. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

    ADS  MATH  Google Scholar 

  18. Suarez-Forero, D. G. et al. Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system. Nat. Photon. 17, 912–916 (2023).

    ADS  MATH  Google Scholar 

  19. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  20. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    ADS  MATH  Google Scholar 

  21. Jalali Mehrabad, M., Mittal, S. & Hafezi, M. Topological photonics: fundamental concepts, recent developments, and future directions. Phys. Rev. A 108, 040101 (2023).

    ADS  Google Scholar 

  22. Allen, L., Barnett, S. M. & Padgett, M. J. Optical Angular Momentum (CRC Press, 2003).

  23. Bliokh, K. Y. et al. Roadmap on structured waves. J. Opt. 25, 103001 (2023).

    ADS  MATH  Google Scholar 

  24. Rosen, G. F. Q., Tamborenea, P. I. & Kuhn, T. Interplay between optical vortices and condensed matter. Rev. Mod. Phys. 94, 035003 (2022).

    ADS  MathSciNet  MATH  Google Scholar 

  25. Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  26. Cohen-Tannoudji, C. & Kastler, A. in Progress in Optics Vol. 5, 1–81 (Elsevier, 1966).

  27. Cao, B. et al. Chiral transport of hot carriers in graphene in the quantum Hall regime. ACS Nano 16, 18200–18209 (2022).

    Google Scholar 

  28. Feldman, B. E. et al. Observation of a nematic quantum Hall liquid on the surface of bismuth. Science 354, 316–321 (2016).

    ADS  MATH  Google Scholar 

  29. Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).

    ADS  MATH  Google Scholar 

  30. Appugliese, F. et al. Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect. Science 375, 1030–1034 (2022).

    ADS  MathSciNet  MATH  Google Scholar 

  31. Grass, T. et al. Optical control over bulk excitations in fractional quantum Hall systems. Phys. Rev. B 98, 155124 (2018).

    ADS  MATH  Google Scholar 

  32. Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).

    ADS  MATH  Google Scholar 

  33. Ivanov, P. A., Letscher, F., Simon, J. & Fleischhauer, M. Adiabatic flux insertion and growing of Laughlin states of cavity Rydberg polaritons. Phys. Rev. A 98, 013847 (2018).

    ADS  MATH  Google Scholar 

  34. Binanti, F., Goldman, N. & Repellin, C. Spectroscopy of edge and bulk collective modes in fractional Chern insulators. Phys. Rev. Research 6, L012054 (2024).

    ADS  Google Scholar 

  35. Winter, L. & Zilberberg, O. Fractional quantum Hall edge polaritons. Preprint at https://arxiv.org/abs/2308.12146 (2023).

  36. Katan, Y. T. & Podolsky, D. Modulated Floquet topological insulators. Phys. Rev. Lett. 110, 016802 (2013).

    ADS  Google Scholar 

  37. Bhattacharya, U. et al. Fermionic Chern insulator from twisted light with linear polarization. Phys. Rev. B 105, L081406 (2022).

    ADS  MATH  Google Scholar 

  38. Kim, H., Dehghani, H., Ahmadabadi, I., Martin, I. & Hafezi, M. Floquet vortex states induced by light carrying an orbital angular momentum. Phys. Rev. B 105, L081301 (2022).

    ADS  Google Scholar 

  39. Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2022).

    MATH  Google Scholar 

  40. But, D. et al. Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons. Nat. Photon. 13, 783–787 (2019).

    ADS  MATH  Google Scholar 

  41. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    ADS  MATH  Google Scholar 

  42. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    ADS  MATH  Google Scholar 

  43. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    ADS  MATH  Google Scholar 

  44. Jessen, B. S. et al. Lithographic band structure engineering of graphene. Nat. Nanotechnol. 14, 340–346 (2019).

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge fruitful discussions with C. Dean, A. Macdonald, I. Kaminer, I. Ahmadabadi, J. Shabani and P. Yu. This work was supported by AFOSR FA95502010223, ONR N00014-20-1-2325, ARO W911NF2010232, MURI FA9550-19-1-0399, FA9550-22-1-0339, NSF IMOD DMR-2019444, ARL W911NF1920181, Simons and Minta Martin foundations, and EU Horizon 2020 project Graphene Flagship Core 3 (grant agreement ID 881603). T.G. acknowledges financial support from the Agencia Estatal de Investigación (AEI) through Proyectos de Generación de Conocimiento PID2022-142308NA-I00 (EXQUSMI), and that this work has been produced with the support of a 2023 Leonardo Grant for Researchers in Physics, BBVA Foundation. The BBVA Foundation is not responsible for the opinions, comments and contents included in the project and/or the results derived therefrom, which are the total and absolute responsibility of the authors. The BBVA Foundation is not responsible for the opinions, comments and contents included in the project and/or the results derived therefrom, which are the total and absolute responsibility of the authors.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and M.J.M. performed the experiments and analysed the data. N.P. and R.S. fabricated the graphene sample using hBN from K.W. and T.T. B.C., D.G.S.F., K.L., M.S.A. and G.S.S. contributed to building the measurement set-up and software used for measurements. B.C., M.H. and G.S.S. conceived the idea for the experiment. Theoretical analysis was performed by C.J.E., T.G. and J.S. The results were interpreted by D.S., M.J.M., N.S. and M.H. D.S., M.J.M. and M.H. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Mahmoud Jalali Mehrabad or Mohammad Hafezi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Ido Kaminer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Sections 1–11 and discussion.

Supplementary Video 1

Illustrative schematic video describing the OAM pumping with vortex light.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Session, D., Jalali Mehrabad, M., Paithankar, N. et al. Optical pumping of electronic quantum Hall states with vortex light. Nat. Photon. 19, 156–161 (2025). https://doi.org/10.1038/s41566-024-01565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01565-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing