Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hetero-integrated perovskite/Si3N4 on-chip photonic system

Abstract

Integrated photonic chips hold substantial potential in optical communications, computing, light detection and ranging, sensing, and imaging, offering exceptional data throughput and low power consumption. A key objective is to build a monolithic on-chip photonic system that integrates light sources, processors and photodetectors on a single chip. However, this remains challenging due to limitations in materials engineering, chip integration techniques and design methods. Perovskites offer simple fabrication, tolerance to lattice mismatch, flexible bandgap tunability and low cost, making them promising for hetero-integration with silicon photonics. Here we propose and experimentally realize a near-infrared monolithic on-chip photonic system based on a perovskite/silicon nitride photonic platform, developing nano-hetero-integration technology to integrate efficient light-emitting diodes, high-performance processors and sensitive photodetectors. Photonic neural networks are implemented to perform photonic simulations and computer vision tasks. Our network efficiently predicts the topological invariant in a two-dimensional disordered Su–Schrieffer–Heeger model and simulates nonlinear topological models with an average fidelity of 87%. In addition, we achieve a test accuracy of over 85% in edge detection and 56% on the CIFAR-10 dataset using a scaled-up architecture. This work addresses the challenge of integrating diverse nanophotonic components on a chip, offering a promising solution for chip-integrated multifunctional photonic information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposal of the monolithic hetero-integration of perovskite/Si3N4 on-chip photonic system.
Fig. 2: Characterizations of the monolithic hetero-integrated perovskite/Si3N4 on-chip photonic system.
Fig. 3: AMCD calculations in a 2D disordered SSH model.
Fig. 4: Time-dependent photonic simulations in the nonlinear topological model.
Fig. 5: Edge detection and image classification tasks.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

References

  1. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  MATH  Google Scholar 

  2. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article  ADS  MATH  Google Scholar 

  3. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  ADS  MATH  Google Scholar 

  4. Lee, D. et al. Fluidic self-assembly for microLED displays by controlled viscosity. Nature 619, 755–760 (2023).

    Article  ADS  MATH  Google Scholar 

  5. Ren, A. et al. High-bandwidth perovskite photonic sources on silicon. Nat. Photon. 17, 798–805 (2023).

    Article  ADS  MATH  Google Scholar 

  6. Taal, A. J. et al. Optogenetic stimulation probes with single-neuron resolution based on organic leds monolithically integrated on CMOS. Nat. Electron. 6, 669–679 (2023).

    Article  Google Scholar 

  7. Najarian, A. M. et al. Sub-millimetre light detection and ranging using perovskites. Nat. Electron. 5, 511–518 (2022).

    Article  MATH  Google Scholar 

  8. Yoshioka, K. et al. Ultrafast intrinsic optical-to-electrical conversion dynamics in a graphene photodetector. Nat. Photon. 16, 718–723 (2022).

    Article  ADS  MATH  Google Scholar 

  9. Koepfli, S. M. et al. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science 380, 1169–1174 (2023).

    Article  ADS  MATH  Google Scholar 

  10. Lee, K. J. et al. Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance. Nat. Photon. 17, 236–243 (2023).

    Article  ADS  MATH  Google Scholar 

  11. Ren, A. et al. Emerging light-emitting diodes for next-generation data communications. Nat. Electron. 4, 559–572 (2021).

    Article  MATH  Google Scholar 

  12. Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).

    Article  MATH  Google Scholar 

  13. Li, K. H. et al. InGaN RGB light-emitting diodes with monolithically integrated photodetectors for stabilizing color chromaticity. IEEE Trans. Ind. Electron. 67, 5154–5160 (2020).

    Article  MATH  Google Scholar 

  14. An, X. et al. Ultrafast miniaturized GaN-based optoelectronic proximity sensor. Photon. Res. 10, 1964–1970 (2022).

    Article  MATH  Google Scholar 

  15. Krishnaiah, M. et al. Physically detachable and operationally stable Cs2SnI6 photodetector arrays integrated with µ-LEDs for broadband flexible optical systems. Adv. Mater. 34, 2109673 (2022).

    Article  Google Scholar 

  16. Bie, Y.-Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017).

    Article  ADS  MATH  Google Scholar 

  17. Dolores-Calzadilla, V. et al. Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon. Nat. Commun. 8, 14323 (2017).

    Article  ADS  Google Scholar 

  18. Wen, P. et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat. Commun. 13, 909 (2022).

    Article  ADS  MATH  Google Scholar 

  19. Flöry, N. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 15, 118–124 (2020).

    Article  ADS  MATH  Google Scholar 

  20. Maiti, R. et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photon. 14, 578–584 (2020).

    Article  ADS  MATH  Google Scholar 

  21. Lischke, S. et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photon. 15, 925–931 (2021).

    Article  ADS  MATH  Google Scholar 

  22. Grotevent, M. J. et al. Integrated photodetectors for compact Fourier-transform waveguide spectrometers. Nat. Photon. 17, 59–64 (2023).

    Article  ADS  Google Scholar 

  23. Tchernycheva, M. et al. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors. Nano Lett. 14, 3515–3520 (2014).

    Article  ADS  MATH  Google Scholar 

  24. Kwon, K. et al. Heterogeneously integrated light emitting diodes and photodetectors in the metal-insulator-metal waveguide platform. Nanophotonics 12, 2603–2610 (2023).

    Article  MATH  Google Scholar 

  25. Li, K. H. et al. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica 5, 564–569 (2018).

    Article  ADS  MATH  Google Scholar 

  26. Wang, Y. et al. Full-duplex light communication with a monolithic multicomponent system. Light Sci. Appl. 7, 83 (2018).

    Article  ADS  MATH  Google Scholar 

  27. Schwarz, B. et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat. Commun. 5, 4085 (2014).

    Article  ADS  MATH  Google Scholar 

  28. Tani, K. et al. On-chip optical interconnection using integrated germanium light emitters and photodetectors. Opt. Express 29, 28021–28036 (2021).

    Article  ADS  MATH  Google Scholar 

  29. Liu, Y. et al. Electrically driven monolithic subwavelength plasmonic interconnect circuits. Sci. Adv. 3, e1701456 (2017).

    Article  ADS  Google Scholar 

  30. Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).

    Article  MATH  Google Scholar 

  31. Park, J.-S. et al. Heteroepitaxial growth of III-V semiconductors on silicon. Crystals 10, 1163 (2020).

    Article  MATH  Google Scholar 

  32. Li, M. et al. Acceleration of radiative recombination for efficient perovskite LEDs. Nature 630, 631–635 (2024).

    Article  ADS  MATH  Google Scholar 

  33. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article  ADS  MATH  Google Scholar 

  34. Vasilopoulou, M. et al. Advances in solution-processed near-infrared light-emitting diodes. Nat. Photon. 15, 656–669 (2021).

    Article  ADS  MATH  Google Scholar 

  35. Kunert, B. et al. How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches. Semicond. Sci. Technol. 33, 093002 (2018).

    Article  ADS  MATH  Google Scholar 

  36. Liang, D. & Bowers, J. E. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light Adv. Manuf. 2, 59–83 (2021).

    Article  MATH  Google Scholar 

  37. Liu, Y. et al. Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments. Nat. Commun. 13, 1338 (2022).

    Article  ADS  MATH  Google Scholar 

  38. Euvrard, J., Yan, Y. & Mitzi, D. B. Electrical doping in halide perovskites. Nat. Rev. Mater. 6, 531–549 (2021).

    Article  ADS  MATH  Google Scholar 

  39. Dong, H. et al. Metal halide perovskite for next-generation optoelectronics: progresses and prospects. eLight 3, 3 (2023).

    Article  MATH  Google Scholar 

  40. Zhao, B. et al. Light management for perovskite light-emitting diodes. Nat. Nanotechnol. 18, 981–992 (2023).

    Article  ADS  MATH  Google Scholar 

  41. Barrigón, E. et al. Synthesis and applications of III–V nanowires. Chem. Rev. 119, 9170–9220 (2019).

    Article  MATH  Google Scholar 

  42. Ning, C.-Z., Dou, L. & Yang, P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017).

    Article  ADS  Google Scholar 

  43. Han, T.-H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).

    Article  ADS  MATH  Google Scholar 

  44. Yang, X. et al. Towards micro-PeLED displays. Nat. Rev. Mater. 8, 341–353 (2023).

    Article  ADS  Google Scholar 

  45. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  ADS  MATH  Google Scholar 

  46. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  ADS  MATH  Google Scholar 

  47. Dursun, I. et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics 3, 1150–1156 (2016).

    Article  MATH  Google Scholar 

  48. Liao, C. L. et al. High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth. IEEE Electron Device Lett. 35, 563–565 (2014).

    Article  ADS  Google Scholar 

  49. Liao, C. L. et al. High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer. IEEE Electron Device Lett. 34, 611–613 (2013).

    Article  ADS  Google Scholar 

  50. Kim, J.-S., Kajii, H. & Ohmori, Y. Characteristics of optical response in red organic light-emitting diodes using two dopant system for application to the optical link devices. Thin Solid Films 499, 343–348 (2006).

    Article  ADS  MATH  Google Scholar 

  51. Wang, L. et al. 1.3 GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photon. Res. 9, 792–802 (2021).

    Article  MATH  Google Scholar 

  52. Lin, G.-R. et al. Ultrafast 2 × 2 green micro-LED array for optical wireless communication beyond 5 Gbit/s. Photon. Res. 9, 2077–2087 (2021).

    Article  ADS  MATH  Google Scholar 

  53. Li, L. et al. An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater. 32, 1907257 (2020).

    Article  Google Scholar 

  54. Shen, L. et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 28, 10794–10800 (2016).

    Article  Google Scholar 

  55. Bao, C. et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 29, 1703209 (2017).

    Article  Google Scholar 

  56. Schwartz, T. et al. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  ADS  MATH  Google Scholar 

  57. Sheinfux, H. H. et al. Observation of Anderson localization in disordered nanophotonic structures. Science 356, 953–956 (2017).

    Article  ADS  MATH  Google Scholar 

  58. Wang, C. et al. Structural amorphization-induced topological order. Phys. Rev. Lett. 128, 056401 (2022).

    Article  ADS  Google Scholar 

  59. Wang, Y. et al. Direct observation of topology from single-photon dynamics. Phys. Rev. Lett. 122, 193903 (2019).

    Article  ADS  Google Scholar 

  60. Shi, X. et al. Disorder-induced topological phase transition in a one-dimensional mechanical system. Phys. Rev. Res. 3, 033012 (2021).

    Article  MATH  Google Scholar 

  61. Wang, Y. et al. Large-scale full-programmable quantum walk and its applications. Preprint at arXiv https://doi.org/10.48550/arXiv.2208.13186 (2022).

  62. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019).

    MATH  Google Scholar 

  63. Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Kirsch, M. S. et al. Nonlinear second-order photonic topological insulators. Nat. Phys. 17, 995–1000 (2021).

    Article  MATH  Google Scholar 

  65. Krizhevsky, A. & Hinton, G. Learning Multiple Layers of Features from Tiny Images. MS thesis, Univ. Toronto (2009).

  66. Deng, J. et al. ImageNet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).

  67. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986).

    Article  MATH  Google Scholar 

  68. LeCun, Y. et al. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article  MATH  Google Scholar 

  69. Deng, L. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29, 141–142 (2012).

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant nos. 92150302 (X.H.), 12474322 (X.H.), 52325310 (R.Z.) and U24A6003 (R.Z.), the Beijing Natural Science Foundation under grant no. JQ21005 (R.Z.), the Innovation Program for Quantum Science and Technology under grant no. 2021ZD0301500 (X.H.), and the Zhejiang Provincial Government (D.D.). Work done in Hong Kong was supported by RGC Hong Kong through grant nos. 16307821 and JLFS/P-603/24 (C.T.C.).

Author information

Authors and Affiliations

Authors

Contributions

X.H., D.D., R.Z., C.T.C. and K.L. conceived the project. K.L. prepared the design. K.L., Z.D. and T.D. constructed the theoretical model and performed the numerical simulations. K.L., Y.L., M.Y. and S.W. fabricated the samples. K.L., Y.L., M.Y., Y.W. and H.Y. performed the measurements. K.L. and Y.L. performed the data processing. K.L., Y.L., Z.D. and T.D. prepared the paper. C.L. contributed to the discussions. X.H., D.D., R.Z., C.T.C. and Q.G. supervised the research.

Corresponding authors

Correspondence to C. T. Chan, Rui Zhu, Dawei Di or Xiaoyong Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Juejun Hu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Comparison of this work with various monolithic photonic integration schemes based on different material platforms

Supplementary information

Supplementary Information

Supplementary Notes 1–9 and Figs. 1–29.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, K., Lian, Y., Yu, M. et al. Hetero-integrated perovskite/Si3N4 on-chip photonic system. Nat. Photon. 19, 358–368 (2025). https://doi.org/10.1038/s41566-024-01603-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01603-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing