Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microcavity Kerr optical frequency division with integrated SiN photonics

Abstract

Optical frequency division has revolutionized microwave and millimetre-wave generation and set spectral purity records owing to its unique capability to transfer high fractional stability from optical to electronic frequencies. Recently, rapid developments in integrated optical reference cavities and microresonator-based optical frequency combs (microcombs) have created a path to transform optical frequency division technology to the chip scale. Here we demonstrate an ultralow-phase-noise millimetre-wave oscillator by leveraging integrated photonic components and microcavity Kerr optical frequency division. The oscillator derives its stability from an integrated complementary-metal–oxide–semiconductor-compatible SiN coil cavity, and the optical frequency division is achieved spontaneously through Kerr interaction in the integrated SiN microresonator between the soliton microcombs and the injected reference lasers. Besides achieving low phase noise for integrated millimetre-wave oscillators, our demonstration greatly simplifies the implementation of integrated optical frequency division oscillators and could be useful in applications of radar, spectroscopy and astronomy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of Kerr OFD for stable microwave and mmWave generation.
Fig. 2: Experimental setup.
Fig. 3: Observation of Kerr locking and Kerr OFD.
Fig. 4: Characterization of mmWave generated from Kerr OFD.
Fig. 5: Approximate phase noise of several integrated microcomb-based microwave and mmWave oscillators.

Similar content being viewed by others

Data availability

Data for Figs. 35 and Extended Data Fig. 1 are available via Figshare at https://doi.org/10.6084/m9.figshare.27629772 (ref. 43).

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    Article  ADS  Google Scholar 

  2. Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).

    Article  ADS  Google Scholar 

  3. Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 10–18 instability. Science 368, 889–892 (2020).

    Article  ADS  Google Scholar 

  4. Li, J. & Vahala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands. Optica 10, 33–34 (2023).

    Article  ADS  Google Scholar 

  5. Lee, H. et al. Spiral resonators for on-chip laser frequency stabilization. Nat. Commun. 4, 2468 (2013).

    Article  ADS  Google Scholar 

  6. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article  ADS  Google Scholar 

  7. Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    Article  ADS  Google Scholar 

  8. Liu, K. et al. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica 9, 770–775 (2022).

    Article  ADS  Google Scholar 

  9. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  10. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  11. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  12. Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).

    Article  ADS  Google Scholar 

  13. Sun, S. et al. Integrated optical frequency division for microwave and mmWave generation. Nature 627, 540–545 (2024).

    Article  ADS  Google Scholar 

  14. Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).

    Article  ADS  Google Scholar 

  15. Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).

    Article  ADS  Google Scholar 

  16. He, Y. et al. Chip-scale high-performance photonic microwave oscillator. Sci. Adv. 10, eado9570 (2024).

    Article  Google Scholar 

  17. Zhang, S. et al. Terahertz wave generation using a soliton microcomb. Opt. Express 27, 35257–35266 (2019).

    Article  ADS  Google Scholar 

  18. Wang, B. et al. Towards high-power, high-coherence, integrated photonic mmwave platform with microcavity solitons. Light: Sci. Appl. 10, 4 (2021).

    Article  ADS  Google Scholar 

  19. Rappaport, T. S. et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019).

    Article  Google Scholar 

  20. Clivati, C. et al. A VLBI experiment using a remote atomic clock via a coherent fibre link. Sci. Rep. 7, 40992 (2017).

    Article  ADS  Google Scholar 

  21. Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).

    Article  ADS  Google Scholar 

  22. Taheri, H., Matsko, A. B. & Maleki, L. Optical lattice trap for Kerr solitons. Eur. Phys. J. D 71, 153 (2017).

    Article  ADS  Google Scholar 

  23. Wildi, T., Ulanov, A., Englebert, N., Voumard, T. & Herr, T. Sideband injection locking in microresonator frequency combs. APL Photon. 8, 120801 (2023).

  24. Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023).

    Article  ADS  Google Scholar 

  25. Matsko, A. B. & Maleki, L. Low threshold Kerr solitons. Opt. Lett. 48, 715–718 (2023).

    Article  ADS  Google Scholar 

  26. Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    Article  ADS  Google Scholar 

  27. Lu, Z. et al. Synthesized soliton crystals. Nat. Commun. 12, 3179 (2021).

    Article  ADS  Google Scholar 

  28. Xie, X. et al. Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond. Optica 1, 429–435 (2014).

    Article  ADS  Google Scholar 

  29. Jin, X. et al. Microresonator-referenced soliton microcombs with zeptosecond-level timing noise. Nat. Photon. https://doi.org/10.1038/s41566-025-01669-2 (2025).

  30. Ji, Q.-X. et al. Dispersive-wave-agile optical frequency division. Nat. Photon. https://doi.org/10.1038/s41566-025-01667-4 (2025).

  31. Stone, J. R. et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett. 121, 063902 (2018).

    Article  ADS  Google Scholar 

  32. Kwon, D. et al. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci. Rep. 7, 40917 (2017).

    Article  ADS  Google Scholar 

  33. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    Article  ADS  Google Scholar 

  34. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    Article  ADS  Google Scholar 

  35. Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    Article  ADS  Google Scholar 

  36. Liu, K. et al. Integrated photonic molecule Brillouin laser with a high-power sub-100-MHz fundamental linewidth. Opt. Lett. 49, 45–48 (2024).

    Article  ADS  Google Scholar 

  37. Heffernan, B. M., Greenberg, J., Hori, T., Tanigawa, T. & Rolland, A. Brillouin laser-driven terahertz oscillator up to 3 THz with femtosecond-level timing jitter. Nat. Photon. 18, 1263–1268 (2024).

  38. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators. Optica 3, 1132–1135 (2016).

    Article  ADS  Google Scholar 

  39. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  40. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  Google Scholar 

  41. Yang, Q.-F., Yi, X., Yang, K. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

    Article  Google Scholar 

  42. Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Opt. Lett. 41, 3419–3422 (2016).

    Article  ADS  Google Scholar 

  43. Sun, S. et al. Raw data for ‘microcavity Kerr optical frequency division with integrated SiN photonics’. Figshare https://doi.org/10.6084/m9.figshare.27629772 (2025).

Download references

Acknowledgements

We acknowledge M. Woodson and S. Estrella from Freedom Photonics for the MUTC PD fabrication, Ligentec for SiN microresonator fabrication and Q.-X. Ji at the California Institute of Technology for helpful discussion. We also acknowledge DARPA GRYPHON (HR0011-22-2-0008, all authors), National Science Foundation (2023775; S.S., F.T., S.H., B.W., Z.Y., R.L., J.S.M., S.M.B., A.B. and X.Y.) and the Air Force Office of Scientific Research (FA9550-21-1-0301; S.S., B.W., Z.Y., R.L. and X.Y.). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing official policies of DARPA, ARPA-E or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. and S.S. designed the experiments. S.S., F.T. and S.H. performed the system measurements. M.W.H., K.L., J.W., D.J.B., K.D.N. and P.A.M. developed the reference lasers. J.S.M. and A.B. designed and fabricated the CC-MUTC PDs. S.S., X.Y., F.T. and S.H. analysed the experimental results. X.Y., D.J.B., A.B., S.M.B., P.A.M. and K.D.N. supervised and led the scientific collaboration. All authors participated in preparing the manuscript.

Corresponding authors

Correspondence to Daniel J. Blumenthal or Xu Yi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks David Moss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phase noise comparison in different OFD systems.

(a) Phase noise comparison of reference lasers used in ref. 13 and in this work. While the length of the coil reference cavities is both 4 meters, the quality factor of the cavity in this work is improved, and the reference cavity is now packaged to isolate environmental noises. The reference laser in this work reaches the thermal refractive noise limit between 1 kHz to 10 kHz offset frequency. (b) Phase noise comparison of conventional OFD13 versus the Kerr OFD in this work. The same reference lasers and soliton microcomb are used for both OFD oscillators. The conventional OFD in our setup has a servo bandwidth around 150 kHz, and the in-loop noise is limiting phase noise starting around 10 kHz offset frequency. In the low offset frequency, both methods give similar phase noise results. The phase noise in both panel (a) and (b) are measured by using optical interferometry method.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Harrington, M.W., Tabatabaei, F. et al. Microcavity Kerr optical frequency division with integrated SiN photonics. Nat. Photon. 19, 637–642 (2025). https://doi.org/10.1038/s41566-025-01668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01668-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing