Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous-wave nonlinear polarization control and signatures of criticality in a perovskite cavity

Abstract

Halide perovskites have emerged as promising photonic materials for fundamental physics studies and technological applications. Their potential for nonlinear optics has also drawn great interest. Yet, so far, continuous-wave (CW) nonlinearities have remained elusive. Here we demonstrate CW nonlinear phenomena in a CsPbBr3 perovskite cavity. We first demonstrate optical bistability, the hallmark of single-mode coherent nonlinear optics. Next, we exploit the interplay of nonlinearity and birefringence to demonstrate nonlinear control over the polarization of light. Finally, by measuring the optical hysteresis of our cavity as a function of temperature, we find a dramatic enhancement of the nonlinearity around 65 K, which may indicate a phase transition in CsPbBr3. Our results position CsPbBr3 cavities as a suitable platform for nonlinear optics, offering strong and tuneable CW nonlinearity and birefringence. Moreover, our approach to uncover signatures of a phase transition of matter via optical hysteresis measurements is promising for exploring strongly correlated states of light–matter systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tunable birefringent perovskite cavity.
Fig. 2: Polarization modes and optical bistability.
Fig. 3: Nonlinear polarization rotation and multistability.
Fig. 4: Optical hysteresis reveals signatures of a phase transition.

Similar content being viewed by others

Data availability

The data in this study are available via Zenodo at https://doi.org/10.5281/zenodo.15046017 (ref. 71).

References

  1. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article  ADS  Google Scholar 

  2. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photonics 10, 295–302 (2016).

    Article  ADS  Google Scholar 

  3. Makarov, S. et al. Halide-perovskite resonant nanophotonics. Adv. Opt. Mater. 7, 1800784 (2019).

    Article  Google Scholar 

  4. Su, R. et al. Perovskite semiconductors for room-temperature exciton–polaritonics. Nat. Mater. 20, 1315–1324 (2021).

    Article  ADS  Google Scholar 

  5. Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

    Article  ADS  Google Scholar 

  6. Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

    Article  ADS  Google Scholar 

  7. Bao, W. et al. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc. Natl Acad. Sci. USA 116, 20274–20279 (2019).

    Article  ADS  Google Scholar 

  8. Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    Article  Google Scholar 

  9. Tao, R. et al. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater. 21, 761–766 (2022).

    Article  ADS  Google Scholar 

  10. Feng, J. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv. 7, eabj6627 (2021).

    Article  ADS  Google Scholar 

  11. Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).

    Article  ADS  Google Scholar 

  12. Wu, J. et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett. 21, 3120–3126 (2021).

    Article  ADS  Google Scholar 

  13. Wu, J. et al. Perovskite polariton parametric oscillator. Adv. Photonics 3, 055003 (2021).

    Article  ADS  Google Scholar 

  14. Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).

    Article  ADS  Google Scholar 

  15. Zhou, Y. et al. Nonlinear optical properties of halide perovskites and their applications. Appl. Phys. Rev. 7, 041313 (2020).

    Article  ADS  Google Scholar 

  16. Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article  ADS  Google Scholar 

  17. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  18. Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photonics 8, 685–694 (2014).

    Article  ADS  Google Scholar 

  19. Paraïso, T., Wouters, M., Léger, Y., Morier-Genoud, F. & Deveaud-Plédran, B. Multistability of a coherent spin ensemble in a semiconductor microcavity. Nat. Mater. 9, 655–660 (2010).

    Article  ADS  Google Scholar 

  20. Moroney, N. et al. A Kerr polarization controller. Nat. Commun. 13, 398 (2022).

    Article  ADS  Google Scholar 

  21. King, J. et al. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat. Photonics 18, 74–80 (2024).

    Article  ADS  Google Scholar 

  22. Cotrufo, M., Cordaro, A., Sounas, D. L., Polman, A. & Alù, A. Passive bias-free non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum. Nat. Photonics 18, 81–90 (2024).

    Article  ADS  Google Scholar 

  23. Estrecho, E. et al. Direct measurement of polariton–polariton interaction strength in the Thomas–Fermi regime of exciton–polariton condensation. Phys. Rev. B 100, 035306 (2019).

    Article  ADS  Google Scholar 

  24. Schmidt, D. et al. Tracking dark excitons with exciton polaritons in semiconductor microcavities. Phys. Rev. Lett. 122, 047403 (2019).

    Article  ADS  Google Scholar 

  25. Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016).

    Article  Google Scholar 

  26. Trichet, A. A. P., Dolan, P. R., Coles, D. M., Hughes, G. M. & Smith, J. M. Topographic control of open-access microcavities at the nanometer scale. Opt. Express 23, 17205–17216 (2015).

    Article  ADS  Google Scholar 

  27. Geng, Z. et al. Fano lineshapes and Rabi splittings: can they be artificially generated or obscured by the numerical aperture? ACS Photonics 8, 1271–1276 (2021).

    Article  Google Scholar 

  28. Biegańska, D. et al. Collective excitations of exciton-polariton condensates in a synthetic gauge field. Phys. Rev. Lett. 127, 185301 (2021).

    Article  ADS  Google Scholar 

  29. Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112, 066402 (2014).

    Article  ADS  Google Scholar 

  30. Rechcińska, K. et al. Engineering spin–orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).

    Article  ADS  Google Scholar 

  31. Li, Y. et al. Manipulating polariton condensates by Rashba–Dresselhaus coupling at room temperature. Nat. Commun. 13, 3785 (2022).

    Article  ADS  Google Scholar 

  32. Liang, J. et al. Polariton spin Hall effect in a Rashba–Dresselhaus regime at room temperature. Nat. Photonics 18, 357–362 (2024).

    Article  ADS  Google Scholar 

  33. Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    Article  ADS  Google Scholar 

  34. Liao, Q. et al. Experimental measurement of the divergent quantum metric of an exceptional point. Phys. Rev. Lett. 127, 107402 (2021).

    Article  ADS  Google Scholar 

  35. Duggan, R., del Pino, J., Verhagen, E. & Alù, A. Optomechanically induced birefringence and optomechanically induced Faraday effect. Phys. Rev. Lett. 123, 023602 (2019).

    Article  ADS  Google Scholar 

  36. Hoi, I.-C. et al. Giant cross–Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013).

    Article  ADS  Google Scholar 

  37. Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photonics 7, 138–141 (2013).

    Article  ADS  Google Scholar 

  38. Copie, F. et al. Interplay of polarization and time-reversal symmetry breaking in synchronously pumped ring resonators. Phys. Rev. Lett. 122, 013905 (2019).

    Article  ADS  Google Scholar 

  39. Kiesewetter, S., Polkinghorne, R., Opanchuk, B. & Drummond, P. D. xSPDE: extensible software for stochastic equations. SoftwareX 5, 12–15 (2016).

    Article  ADS  Google Scholar 

  40. Geng, Z. et al. Universal scaling in the dynamic hysteresis, and non-Markovian dynamics, of a tunable optical cavity. Phys. Rev. Lett. 124, 153603 (2020).

    Article  ADS  Google Scholar 

  41. Peters, K. J. H., Geng, Z., Malmir, K., Smith, J. M. & Rodriguez, S. R. K. Extremely broadband stochastic resonance of light and enhanced energy harvesting enabled by memory effects in the nonlinear response. Phys. Rev. Lett. 126, 213901 (2021).

    Article  ADS  Google Scholar 

  42. Keijsers, G. et al. Photon superfluidity through dissipation. Phys. Rev. Res. 6, 023266 (2024).

    Article  Google Scholar 

  43. Amelio, I., Minguzzi, A., Richard, M. & Carusotto, I. Galilean boosts and superfluidity of resonantly driven polariton fluids in the presence of an incoherent reservoir. Phys. Rev. Res. 2, 023158 (2020).

    Article  Google Scholar 

  44. Li, X. et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016).

    Article  ADS  Google Scholar 

  45. Shinde, A., Gahlaut, R. & Mahamuni, S. Low-temperature photoluminescence studies of CsPbBr3 quantum dots. J. Phys. Chem. C 121, 14872–14878 (2017).

    Article  Google Scholar 

  46. Ding, T. X., Hou, L., van der Meer, H., Alivisatos, A. P. & Orrit, M. Hundreds-fold sensitivity enhancement of photothermal microscopy in near-critical xenon. J. Phys. Chem. Lett. 7, 2524–2529 (2016).

    Article  Google Scholar 

  47. Rodová, M., Brožek, J., Knížek, K. & Nitsch, K. Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667–673 (2003).

    Article  Google Scholar 

  48. Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett. 17, 5020–5026 (2017).

    Article  ADS  Google Scholar 

  49. Li, X. et al. Evidence for ferroelectricity of all-inorganic perovskite CsPbBr3 quantum dots. J. Am. Chem. Soc. 142, 3316–3320 (2020).

    Article  Google Scholar 

  50. Xue, J. et al. Photon-induced reversible phase transition in CsPbBr3 perovskite. Adv. Funct. Mater. 29, 1807922 (2019).

    Article  Google Scholar 

  51. Cheng, P. et al. All-optical excitatory and inhibitory synapses based on reversible photo-induced phase transition in single-crystal CsPbBr3 perovskite. Adv. Opt. Mater. 12, 2303306 (2024).

    Article  Google Scholar 

  52. Boziki, A., Dar, M. I., Jacopin, G., Grätzel, M. & Rothlisberger, U. Molecular origin of the asymmetric photoluminescence spectra of CsPbBr3 at low temperature. J. Phys. Chem. Lett. 12, 2699–2704 (2021).

    Article  Google Scholar 

  53. Pan, F. et al. Free and self-trapped exciton emission in perovskite CsPbBr3 microcrystals. RSC Adv. 12, 1035–1042 (2022).

    Article  ADS  Google Scholar 

  54. Guo, Y. et al. Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites. Nat. Commun. 10, 1175 (2019).

    Article  ADS  Google Scholar 

  55. Ghosh, D., Welch, E., Neukirch, A. J., Zakhidov, A. & Tretiak, S. Polarons in halide perovskites: a perspective. J. Phys. Chem. Lett. 11, 3271–3286 (2020).

    Article  Google Scholar 

  56. Masharin, M. A. et al. Polaron-enhanced polariton nonlinearity in lead halide perovskites. Nano Lett. 22, 9092–9099 (2022).

    Article  ADS  Google Scholar 

  57. Pirc, R. & Blinc, R. Spherical random-bond–random-field model of relaxor ferroelectrics. Phys. Rev. B 60, 13470–13478 (1999).

    Article  ADS  Google Scholar 

  58. Cotleţ, O., Zeytinoglu, S., Sigrist, M., Demler, E. & Imamoglu, A. Superconductivity and other collective phenomena in a hybrid Bose–Fermi mixture formed by a polariton condensate and an electron system in two dimensions. Phys. Rev. B 93, 054510 (2016).

    Article  ADS  Google Scholar 

  59. Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).

    Google Scholar 

  60. Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022).

    Article  ADS  Google Scholar 

  61. Whittaker, C. E. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photonics 15, 193–196 (2021).

    Article  ADS  Google Scholar 

  62. Polimeno, L. et al. Tuning of the Berry curvature in 2D perovskite polaritons. Nat. Nanotechnol. 16, 1349–1354 (2021).

    Article  ADS  Google Scholar 

  63. Król, M. et al. Realizing optical persistent spin helix and Stern–Gerlach deflection in an anisotropic liquid crystal microcavity. Phys. Rev. Lett. 127, 190401 (2021).

    Article  ADS  Google Scholar 

  64. Muszyński, M. et al. Realizing persistent-spin-helix lasing in the regime of Rashba–Dresselhaus spin–orbit coupling in a dye-filled liquid-crystal optical microcavity. Phys. Rev. Appl. 17, 014041 (2022).

    Article  ADS  Google Scholar 

  65. Ren, J. et al. Realization of exciton-mediated optical spin–orbit interaction in organic microcrystalline resonators. Laser Photonics Rev. 16, 2100252 (2022).

    Article  ADS  Google Scholar 

  66. Łempicka-Mirek, K. et al. Electrically tunable Berry curvature and strong light–matter coupling in liquid crystal microcavities with 2D perovskite. Sci. Adv. 8, eabq7533 (2022).

    Article  ADS  Google Scholar 

  67. Su, R. et al. Direct measurement of a non-Hermitian topological invariant in a hybrid light–matter system. Sci. Adv. 7, eabj8905 (2021).

    Article  Google Scholar 

  68. Feist, J. & Garcia-Vidal, F. J. Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114, 196402 (2015).

    Article  ADS  Google Scholar 

  69. Morimoto, T. & Nagaosa, N. Photocurrent of exciton polaritons. Phys. Rev. B 102, 235139 (2020).

    Article  ADS  Google Scholar 

  70. Hofstrand, A., Cotrufo, M. & Alù, A. Nonreciprocal pulse shaping and chaotic modulation with asymmetric noninstantaneous nonlinear resonators. Phys. Rev. A 104, 053529 (2021).

    Article  ADS  Google Scholar 

  71. Keijsers, G. et al. Dataset for “continuous-wave nonlinear polarization control and signatures of criticality in a perovskite cavity”. Zenodo https://doi.org/10.5281/zenodo.15046017 (2025).

Download references

Acknowledgements

We thank A. Trichet for providing the mirror sample with concave features. We thank N. Commandeur, R. Struik, and H.-J. Boluijt for technical support. We thank J. Theenhaus for initial experiments with CsPbBr3 crystals. This work is part of the research programme of the Netherlands Organisation for Scientific Research (NWO). S.R.K.R. acknowledges an ERC Starting Grant with project number 852694.

Author information

Authors and Affiliations

Authors

Contributions

G.K. and R.M.d.B. performed the experiments. Z.G. and G.K. built the set-up. R.M.d.B synthesized the CsPbBr3 crystals. B.V. and K.J.H.P. developed the theoretical model. G.K. contributed to the development of the model, performed calculations and analysed all results together with S.R.K.R. S.R.K.R. conceived the project and supervised the work. S.R.K.R. and G.K. wrote the manuscript. All authors discussed the results and the manuscript.

Corresponding author

Correspondence to S. R. K. Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and accompanying discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keijsers, G., de Boer, R.M., Verdonschot, B. et al. Continuous-wave nonlinear polarization control and signatures of criticality in a perovskite cavity. Nat. Photon. 19, 733–739 (2025). https://doi.org/10.1038/s41566-025-01692-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01692-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing