Abstract
Atomically layered van der Waals (vdW) materials exhibit remarkable properties, including highly confined infrared waveguide modes and the capacity for infrared emission in the monolayer limit. Here we engineered structures that leverage both of these nano-optical functionalities. Specifically, we encased a photoluminescing atomic sheet of MoTe2 within two bulk crystals of WSe2, forming a vdW waveguide for the embedded light-emitting monolayer. The modified electromagnetic environment offered by the WSe2 waveguide alters MoTe2 spontaneous emission—a phenomenon we directly image with our interferometric nano-photoluminescence technique. We captured spatially oscillating nanoscale patterns prompted by spontaneous emission from MoTe2 into waveguide modes of WSe2 slabs. We quantify the resulting Purcell-enhanced emission rate within the framework of a waveguide quantum electrodynamics model, relating the MoTe2 spontaneous emission rate to the measured waveguide dispersion. Our work marks a substantial advance in the implementation of all-vdW quantum electrodynamics waveguides.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
Example raw nano-PL data and analysis code are provided on FigShare via https://doi.org/10.6084/m9.figshare.28644431.v1 (ref. 49). Further data are available from the corresponding author on reasonable request.
Code availability
Example codes used to process raw nano-PL data and calculate the Purcell factors have been provided in an online data repository49. Additional code is available from the corresponding author upon reasonable request.
Change history
21 July 2025
A Correction to this paper has been published: https://doi.org/10.1038/s41566-025-01743-9
References
Meystre, P. & Sargent, M. Elements of Quantum Optics (Springer, 2007).
Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (1989).
Sheremet, A. S., Petrov, M. I., Iorsh, I. V., Poshakinskiy, A. V. & Poddubny, A. N. Waveguide quantum electrodynamics: collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, 015002 (2023).
Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 11312 (2022).
Kleemann, M. E. et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 8, 1–7 (2017).
Park, K. D., Jiang, T., Clark, G., Xu, X. & Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 13, 59–64 (2018).
Qin, J. et al. Revealing strong plasmon–exciton coupling between nanogap resonators and two-dimensional semiconductors at ambient conditions. Phys. Rev. Lett. 124, 063902 (2020).
Wang, Z. et al. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nat. Commun. 2016 71 7, 1–8 (2016).
Darlington, T. P. et al. Highly tunable room-temperature plexcitons in monolayer WSe2 gap-plasmon nanocavities. Preprint at https://arxiv.org/abs/2311.02513 (2023).
Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).
Parto, K. et al. Cavity-enhanced 2D material quantum emitters deterministically integrated with silicon nitride microresonators. Nano Lett. 22, 9748–9756 (2022).
Rivera, P. et al. Coupling of photonic crystal cavity and interlayer exciton in heterobilayer of transition metal dichalcogenides. 2D Mater. 7, 15027 (2020).
Siampour, H. et al. Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide. npj Quantum Inf. 9, 15 (2023).
Meng, Y. et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl.10, 1–44 (2021).
Kolchin, P. et al. High purcell factor due to coupling of a single emitter to a dielectric slot waveguide. Nano Lett. 15, 464–468 (2015).
Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2021).
Basov, D. N., Fogler, M. M. & García De Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).
Hu, D. et al. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging. Nat. Commun. 8, 1471 (2017).
Hu, D. et al. Tunable modal birefringence in a low-loss van der Waals waveguide. Adv. Mater. 31, 1807788 (2019).
Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides. Phys. Rev. B 90, 205422 (2014).
Ruppert, C., Aslan, O. B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014).
Fali, A. et al. Photodegradation protection in 2D in-plane heterostructures revealed by hyperspectral nanoimaging: the role of nanointerface 2D alloys. ACS Nano 15, 2447–2457 (2021).
Jo, K. et al. Direct nano-imaging of light–matter interactions in nanoscale excitonic emitters. Nat. Commun. 14, 2649 (2023).
Groß, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018).
Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).
Park, K.-D. et al. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 16, 53 (2016).
Bae, H. et al. Light absorption and emission dominated by trions in the type-I van der Waals heterostructures. ACS Photon. 8, 1972–1978 (2021).
Li, M. et al. A type-I van der Waals heterobilayer of WSe2/MoTe2. Nanotechnology 29, 335203 (2018).
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).
Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).
Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).
Park, K. D. et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Sci. Adv. 5, eaav5931 (2019).
Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2014).
Shan, H. et al. Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap. Nat. Commun. 12, 6406 (2021).
Lodahl, P., Schneble, D. & Ciccarello, F. Waveguide quantum electrodynamics. Opt. Photon. News 35, 34–41 (2024).
Manga Rao, V. S. C. & Hughes, S. Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide. Phys. Rev. B 75, 205437 (2007).
Scarpelli, L. et al. 99% Beta factor and directional coupling of quantum dots to fast light in photonic crystal waveguides determined by spectral imaging. Phys. Rev. B 100, 35311 (2019).
Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).
Kurman, Y., Schmidt, P., Koppens, F. & Kaminer, I. The ultimate Purcell factor in van der Waals heterostructures. In 2019 Conference on Lasers and Electro-Optics (Optica, 2019); https://doi.org/10.1364/CLEO_QELS.2019.FTU3C.3
Rivera, N. et al. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).
Krasnok, A. E. et al. An antenna model for the Purcell effect. Sci. Rep. 5, 1–16 (2015).
Boddeti, A. K. et al. Long-range dipole–dipole interactions in a plasmonic lattice. Nano Lett. 22, 22–28 (2022).
Hamza, A. O., Al-Dulaimi, A., Bouillard, J. S. G. & Adawi, A. M. Long-range and high-efficiency plasmon-assisted Förster resonance energy transfer. J. Phys. Chem. C 127, 21611–21616 (2023).
Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).
Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 1–8 (2021).
Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, 1–6 (2020).
Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 2004–2007 (2006).
McLeod, A. S. et al. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Phys. Rev. B 90, 085136 (2014).
Moore, S. L. run_pickleload_v7.py Dataset and code. figshare https://doi.org/10.6084/m9.figshare.28644431.v1 (2025).
Acknowledgements
We thank A. Asenjo-Garcia for valuable discussion. Research on vdW waveguides at Columbia is supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. Development of nano-optical imaging is supported by DoE-BES DE-SC0018426.
Author information
Authors and Affiliations
Contributions
S.L.M. wrote the paper, performed the experiments, analysed the data and fabricated the heterostructures. H.Y.L. exfoliated the MoTe2 monolayers and guided the project. N.R. provided theoretical support for the data analysis. Y.K. performed the TRPL measurements. M.Z guided the TRPL measurements. E.S.Y. fabricated the template-stripped gold substrates. T.P.D. provided expertise for nano-PL measurements. A.J.S. provided guidance for the data analysis. M.A.H. synthesized the WSe2 and MoTe2 crystal. J.P. exfoliated the WSe2 crystal. X.X., X.Y.Z., J.S.O., M.D., P.J.S. and D.N.B. provided guidance for the project. C.R.D. and J.H. provided access to laboratory facilities.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–10, Equations, Figs. 1–12, Table 1 and References.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Moore, S.L., Lee, H.Y., Rivera, N. et al. Van der Waals waveguide quantum electrodynamics probed by infrared nano-photoluminescence. Nat. Photon. 19, 833–839 (2025). https://doi.org/10.1038/s41566-025-01694-1
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41566-025-01694-1
This article is cited by
-
van der Waals materials for waveguide QED
Nature Photonics (2025)


