Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Van der Waals waveguide quantum electrodynamics probed by infrared nano-photoluminescence

A Publisher Correction to this article was published on 21 July 2025

This article has been updated

Abstract

Atomically layered van der Waals (vdW) materials exhibit remarkable properties, including highly confined infrared waveguide modes and the capacity for infrared emission in the monolayer limit. Here we engineered structures that leverage both of these nano-optical functionalities. Specifically, we encased a photoluminescing atomic sheet of MoTe2 within two bulk crystals of WSe2, forming a vdW waveguide for the embedded light-emitting monolayer. The modified electromagnetic environment offered by the WSe2 waveguide alters MoTe2 spontaneous emission—a phenomenon we directly image with our interferometric nano-photoluminescence technique. We captured spatially oscillating nanoscale patterns prompted by spontaneous emission from MoTe2 into waveguide modes of WSe2 slabs. We quantify the resulting Purcell-enhanced emission rate within the framework of a waveguide quantum electrodynamics model, relating the MoTe2 spontaneous emission rate to the measured waveguide dispersion. Our work marks a substantial advance in the implementation of all-vdW quantum electrodynamics waveguides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hyperspectral nano-photoluminescence imaging in a WSe2/MoTe2/WSe2 waveguide heterostructure.
Fig. 2: Nano-PL and nano-IR dispersions for a WSe2/MoTe2/WSe2 waveguide.
Fig. 3: Understanding nano-PL profiles.
Fig. 4: Purcell analysis of WSe2/MoTe2/WSe2 waveguides.

Similar content being viewed by others

Data availability

Example raw nano-PL data and analysis code are provided on FigShare via https://doi.org/10.6084/m9.figshare.28644431.v1 (ref. 49). Further data are available from the corresponding author on reasonable request.

Code availability

Example codes used to process raw nano-PL data and calculate the Purcell factors have been provided in an online data repository49. Additional code is available from the corresponding author upon reasonable request.

Change history

References

  1. Meystre, P. & Sargent, M. Elements of Quantum Optics (Springer, 2007).

  2. Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (1989).

    Article  ADS  Google Scholar 

  3. Sheremet, A. S., Petrov, M. I., Iorsh, I. V., Poshakinskiy, A. V. & Poddubny, A. N. Waveguide quantum electrodynamics: collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, 015002 (2023).

    Article  ADS  Google Scholar 

  4. Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 11312 (2022).

    Article  Google Scholar 

  5. Kleemann, M. E. et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 8, 1–7 (2017).

    Article  Google Scholar 

  6. Park, K. D., Jiang, T., Clark, G., Xu, X. & Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 13, 59–64 (2018).

    Article  ADS  Google Scholar 

  7. Qin, J. et al. Revealing strong plasmon–exciton coupling between nanogap resonators and two-dimensional semiconductors at ambient conditions. Phys. Rev. Lett. 124, 063902 (2020).

    Article  ADS  Google Scholar 

  8. Wang, Z. et al. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nat. Commun. 2016 71 7, 1–8 (2016).

    Google Scholar 

  9. Darlington, T. P. et al. Highly tunable room-temperature plexcitons in monolayer WSe2 gap-plasmon nanocavities. Preprint at https://arxiv.org/abs/2311.02513 (2023).

  10. Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    Article  ADS  Google Scholar 

  11. Parto, K. et al. Cavity-enhanced 2D material quantum emitters deterministically integrated with silicon nitride microresonators. Nano Lett. 22, 9748–9756 (2022).

    Article  ADS  Google Scholar 

  12. Rivera, P. et al. Coupling of photonic crystal cavity and interlayer exciton in heterobilayer of transition metal dichalcogenides. 2D Mater. 7, 15027 (2020).

    Article  Google Scholar 

  13. Siampour, H. et al. Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide. npj Quantum Inf. 9, 15 (2023).

    Article  ADS  Google Scholar 

  14. Meng, Y. et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl.10, 1–44 (2021).

    Article  Google Scholar 

  15. Kolchin, P. et al. High purcell factor due to coupling of a single emitter to a dielectric slot waveguide. Nano Lett. 15, 464–468 (2015).

    Article  ADS  Google Scholar 

  16. Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2021).

    Article  Google Scholar 

  17. Basov, D. N., Fogler, M. M. & García De Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  18. Hu, D. et al. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging. Nat. Commun. 8, 1471 (2017).

    Article  ADS  Google Scholar 

  19. Hu, D. et al. Tunable modal birefringence in a low-loss van der Waals waveguide. Adv. Mater. 31, 1807788 (2019).

    Article  Google Scholar 

  20. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides. Phys. Rev. B 90, 205422 (2014).

    Article  ADS  Google Scholar 

  21. Ruppert, C., Aslan, O. B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014).

    Article  ADS  Google Scholar 

  22. Fali, A. et al. Photodegradation protection in 2D in-plane heterostructures revealed by hyperspectral nanoimaging: the role of nanointerface 2D alloys. ACS Nano 15, 2447–2457 (2021).

    Article  Google Scholar 

  23. Jo, K. et al. Direct nano-imaging of light–matter interactions in nanoscale excitonic emitters. Nat. Commun. 14, 2649 (2023).

    Article  ADS  Google Scholar 

  24. Groß, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018).

    Article  ADS  Google Scholar 

  25. Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).

    Article  ADS  Google Scholar 

  26. Park, K.-D. et al. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 16, 53 (2016).

    Article  Google Scholar 

  27. Bae, H. et al. Light absorption and emission dominated by trions in the type-I van der Waals heterostructures. ACS Photon. 8, 1972–1978 (2021).

    Article  Google Scholar 

  28. Li, M. et al. A type-I van der Waals heterobilayer of WSe2/MoTe2. Nanotechnology 29, 335203 (2018).

    Article  ADS  Google Scholar 

  29. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  30. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  ADS  Google Scholar 

  31. Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).

    Article  ADS  Google Scholar 

  32. Park, K. D. et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Sci. Adv. 5, eaav5931 (2019).

    Article  ADS  Google Scholar 

  33. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2014).

    Article  ADS  Google Scholar 

  34. Shan, H. et al. Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap. Nat. Commun. 12, 6406 (2021).

    Article  ADS  Google Scholar 

  35. Lodahl, P., Schneble, D. & Ciccarello, F. Waveguide quantum electrodynamics. Opt. Photon. News 35, 34–41 (2024).

    Article  Google Scholar 

  36. Manga Rao, V. S. C. & Hughes, S. Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide. Phys. Rev. B 75, 205437 (2007).

    Article  ADS  Google Scholar 

  37. Scarpelli, L. et al. 99% Beta factor and directional coupling of quantum dots to fast light in photonic crystal waveguides determined by spectral imaging. Phys. Rev. B 100, 35311 (2019).

    Article  ADS  Google Scholar 

  38. Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).

    Article  ADS  Google Scholar 

  39. Kurman, Y., Schmidt, P., Koppens, F. & Kaminer, I. The ultimate Purcell factor in van der Waals heterostructures. In 2019 Conference on Lasers and Electro-Optics (Optica, 2019); https://doi.org/10.1364/CLEO_QELS.2019.FTU3C.3

  40. Rivera, N. et al. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).

    Article  ADS  Google Scholar 

  41. Krasnok, A. E. et al. An antenna model for the Purcell effect. Sci. Rep. 5, 1–16 (2015).

    Article  Google Scholar 

  42. Boddeti, A. K. et al. Long-range dipole–dipole interactions in a plasmonic lattice. Nano Lett. 22, 22–28 (2022).

    Article  ADS  Google Scholar 

  43. Hamza, A. O., Al-Dulaimi, A., Bouillard, J. S. G. & Adawi, A. M. Long-range and high-efficiency plasmon-assisted Förster resonance energy transfer. J. Phys. Chem. C 127, 21611–21616 (2023).

    Article  Google Scholar 

  44. Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).

    Article  ADS  Google Scholar 

  45. Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 1–8 (2021).

    Article  Google Scholar 

  46. Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, 1–6 (2020).

    Article  Google Scholar 

  47. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 2004–2007 (2006).

    Article  Google Scholar 

  48. McLeod, A. S. et al. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Phys. Rev. B 90, 085136 (2014).

    Article  ADS  Google Scholar 

  49. Moore, S. L. run_pickleload_v7.py Dataset and code. figshare https://doi.org/10.6084/m9.figshare.28644431.v1 (2025).

Download references

Acknowledgements

We thank A. Asenjo-Garcia for valuable discussion. Research on vdW waveguides at Columbia is supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. Development of nano-optical imaging is supported by DoE-BES DE-SC0018426.

Author information

Authors and Affiliations

Authors

Contributions

S.L.M. wrote the paper, performed the experiments, analysed the data and fabricated the heterostructures. H.Y.L. exfoliated the MoTe2 monolayers and guided the project. N.R. provided theoretical support for the data analysis. Y.K. performed the TRPL measurements. M.Z guided the TRPL measurements. E.S.Y. fabricated the template-stripped gold substrates. T.P.D. provided expertise for nano-PL measurements. A.J.S. provided guidance for the data analysis. M.A.H. synthesized the WSe2 and MoTe2 crystal. J.P. exfoliated the WSe2 crystal. X.X., X.Y.Z., J.S.O., M.D., P.J.S. and D.N.B. provided guidance for the project. C.R.D. and J.H. provided access to laboratory facilities.

Corresponding author

Correspondence to S. L. Moore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–10, Equations, Figs. 1–12, Table 1 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, S.L., Lee, H.Y., Rivera, N. et al. Van der Waals waveguide quantum electrodynamics probed by infrared nano-photoluminescence. Nat. Photon. 19, 833–839 (2025). https://doi.org/10.1038/s41566-025-01694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01694-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing