Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable coherent mixed-dimensional perovskite heterojunctions and quantum wells grown from solution

Abstract

Coherent heterojunctions, quantum wells and multiple quantum wells are needed for high-performance devices; these are generally grown via a dedicated vapour phase epitaxy process. Here we demonstrate the growth of coherent perovskite heterojunctions and quantum wells made of mixed-dimensional perovskites using a solution process. By exploiting the solubility difference of methylammonium (MA+) and 4-(aminomethyl)piperidinium (4AMP2+), we assemble layered perovskites with different layer numbers. The resulting 4AMP-MAn1PbnI3n+1 materials each with different layer numbers or bandgaps form quantum wells. Heterojunctions and quantum wells made of 4AMP-MA2Pb3I10 (n = 3) and 4AMP-MAPb2I7 (n = 2) with various barrier thickness are tailored by the solution temperature profile during crystal growth. Multiple quantum wells have been formed by cycling temperature profiles. The planar heterojunction and quantum wells have lattice matching without interfacial defects, and exhibit strong thermal stability. Type I band alignment at the n = 2/n = 3 heterojunction is confirmed by both computation and optical studies. This study opens a new direction for the development of sophisticated perovskite heterojunction and quantum well devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterojunction and quantum well growth method.
Fig. 2: Structure schematic and characterizations of a quantum well.
Fig. 3: Precisely controlling of multi quantum well formations.
Fig. 4: Structure schematic and characterizations of a crystal with both quantum wells and heterojunction.
Fig. 5: The band alignment and carrier diffusion near the heterojunction.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the article and its Supplementary Information. Source Data are provided with this paper.

References

  1. Peng, J., Chen, Y., Zheng, K., Pullerits, T. & Liang, Z. Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chem. Soc. Rev. 46, 5714–5729 (2017).

    Article  Google Scholar 

  2. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  3. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  Google Scholar 

  4. Fei, C. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023).

    Article  ADS  Google Scholar 

  5. Huang, Z. et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023).

    Article  ADS  Google Scholar 

  6. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  ADS  Google Scholar 

  7. Li, J. et al. Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 17, 435–441 (2023).

    Article  ADS  Google Scholar 

  8. Zhao, L. et al. High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy. Nat. Photon. 17, 315–323 (2023).

    ADS  Google Scholar 

  9. He, Y. et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photon. 15, 36–42 (2021).

    Article  ADS  Google Scholar 

  10. Sakhatskyi, K. et al. Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity. Nat. Photon. 17, 510–517 (2023).

    Article  ADS  Google Scholar 

  11. Zhou, Y. et al. Self-powered perovskite photon-counting detectors. Nature 616, 712–718 (2023).

    Article  ADS  Google Scholar 

  12. Szabó, G., Park, N.-G., De Angelis, F. & Kamat, P. V. Are perovskite solar cells reaching the efficiency and voltage limits? ACS Energy Lett. 8, 3829–3831 (2023).

    Article  Google Scholar 

  13. Luo, L. et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023).

    ADS  Google Scholar 

  14. Zhou, Y. et al. Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci. Adv. 7, eabg6716 (2021).

    Article  ADS  Google Scholar 

  15. Li, H. et al. 2D/3D Heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).

    Article  ADS  Google Scholar 

  16. Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790–795 (2020).

    Article  ADS  Google Scholar 

  17. Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    Article  ADS  Google Scholar 

  18. Mali, S. S. et al. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat. Energy 8, 989–1001 (2023).

    Article  ADS  Google Scholar 

  19. Pan, D. et al. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites. Nat. Nanotechnol. 16, 159–165 (2021).

    Article  ADS  Google Scholar 

  20. Akriti et al. Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nat. Nanotechnol. 16, 584–591 (2021).

    Article  ADS  Google Scholar 

  21. Yi, M. & Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015).

    Article  Google Scholar 

  22. Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    Article  ADS  Google Scholar 

  23. Luo, Y. et al. Photo-induced halide redistribution in 2D halide perovskite lateral heterostructures. Joule 7, 2376–2385 (2023).

    Article  Google Scholar 

  24. Roy, C. R. et al. Anion exchange of Ruddlesden–Popper lead halide perovskites produces stable lateral heterostructures. J. Am. Chem. Soc. 143, 5212–5221 (2021).

    Article  ADS  Google Scholar 

  25. Dou, L. et al. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl Acad. Sci. USA 114, 7216–7221 (2017).

    Article  ADS  Google Scholar 

  26. Lai, M. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl Acad. Sci. USA 115, 11929–11934 (2018).

    Article  ADS  Google Scholar 

  27. Zhang, X. et al. Solution-grown large-sized single-crystalline 2D/3D perovskite heterostructure for self-powered photodetection. Adv Optical Mater. 8, 2000311 (2020).

    Article  Google Scholar 

  28. Zhang, X., Zhu, T., Ji, C., Yao, Y. & Luo, J. In situ epitaxial growth of centimeter-sized lead-free (BA)2CsAgBiBr7/Cs2AgBiBr6 heterocrystals for self-driven X-ray detection. J. Am. Chem. Soc. 143, 20802–20810 (2021).

    Article  ADS  Google Scholar 

  29. Cao M. et al. Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Appl. Phys. Lett. 109, (2016).

  30. Pan, Y. et al. Visible elimination, ultraviolet and near-infrared dual-band photodetector based on single-crystal perovskite heterojunctions toward secure optical communication. ACS Photon. 11, 1252–1263 (2024).

    Article  Google Scholar 

  31. Zhu, Z. et al. Room-temperature epitaxial welding of 3D and 2D perovskites. Nat. Mater. 21, 1042–1049 (2022).

    Article  ADS  Google Scholar 

  32. Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article  Google Scholar 

  33. Yoon, S. J., Kuno, M. & Kamat, P. V. Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites. ACS Energy Lett. 2, 1507–1514 (2017).

    Article  Google Scholar 

  34. Panish, M. B. Molecular beam epitaxy. Science 208, 916–922 (1980).

    Article  ADS  Google Scholar 

  35. Cho, A. Y. & Arthur, J. R. Molecular beam epitaxy. Prog. Solid State Chem. 10, 157–191 (1975).

    Article  Google Scholar 

  36. Liu, Y., Yang, Z. & Liu, S. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv. Sci. 5, 1700471 (2018).

    Article  Google Scholar 

  37. Shi, Z., Ni, Z. & Huang, J. Direct observation of fast carriers transport along out-of-plane direction in a Dion–Jacobson layered perovskite. ACS Energy Lett. 7, 984–987 (2022).

    Article  Google Scholar 

  38. Lin, Y. et al. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1008 (2019).

    Article  ADS  Google Scholar 

  39. Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).

    Article  ADS  Google Scholar 

  40. Mao, L. et al. Seven-layered 2D hybrid lead iodide perovskites. Chem 5, 2593–2604 (2019).

    Article  Google Scholar 

  41. Ni, Z. et al. High grain boundary recombination velocity in polycrystalline metal halide perovskites. Sci. Adv. 8, eabq8345 (2022).

    Article  ADS  Google Scholar 

  42. Ziffer, M. E., Mohammed, J. C. & Ginger, D. S. Electroabsorption spectroscopy measurements of the exciton binding energy, electron-hole reduced effective mass, and bandgap in the perovskite CH3NH3PbI3. ACS Photon. 3, 1060–1068 (2016).

    Article  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science within the US Department of Energy. The WAXS measurements used resources of the Center for Functional Nanomaterials and the SMI beamline (12-ID) of the National Synchrotron Light Source II, both supported by US DOE Office of Science Facilities at Brookhaven National Laboratory under contract no. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

Z.S. and J.H. conceived the idea. Z.S. designed the experiments, synthesized heterojunction crystals, and performed XRD and PL related measurements. H.Z. and Y.Z. conducted the WAXS measurement and analysed related data. H.J. performed SEM measurements. Y.X., X.W. and Y.Y. performed the DFT band alignment calculations. Z.N. provided helpful suggestions about PL measurements. Z.S. and J.H. wrote the paper, and all authors reviewed the paper.

Corresponding author

Correspondence to Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Table 1.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Source Data Fig. 5

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Xian, Y., Wang, X. et al. Tunable coherent mixed-dimensional perovskite heterojunctions and quantum wells grown from solution. Nat. Photon. 19, 1056–1063 (2025). https://doi.org/10.1038/s41566-025-01723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01723-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing