Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fully thermally evaporated perovskite solar cells based on reverse layer-by-layer deposition

Abstract

Thermal evaporation is a well-established technique in thin-film manufacturing and holds great promise for the scalable fabrication of perovskite solar cells. However, the performance of fully thermally evaporated perovskite solar cells lags behind that of solution-processed counterparts. Here we report a reverse layer-by-layer deposition strategy to control the diffusion of solid-phase precursor, whereby the organic formamidinium iodide is deposited before the inorganic precursors (CsI/PbCl2/PbI2). Subsequent annealing leads to enhanced interfacial contact, efficient charge extraction and top-down perovskite crystallization with enhanced vertical uniformity. We fabricate fully thermally evaporated inverted perovskite solar cells with power conversion efficiencies of 25.19% (for an active area of 0.066 cm2) and 23.38% (1 cm2 area). Unencapsulated devices retain 95.2% of their initial power conversion efficiency after 1,000 h of continuous operation at the maximum power point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ crystallization process for perovskite thin films fabricated by thermal evaporation.
Fig. 2: MD simulations of molecular diffusion and perovskite component homogeneity.
Fig. 3: Optoelectronic properties of the thermally evaporated films.
Fig. 4: Device performance and operational stability of the fully thermally evaporated PSCs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are available via figshare at https://doi.org/10.6084/m9.figshare.29882729) (ref. 44).

References

  1. Abzieher, T. et al. Vapor phase deposition of perovskite photovoltaics: short track to commercialization? Energy Environ. Sci. 17, 1645–1663 (2024).

    Article  Google Scholar 

  2. Kosasih, F. U., Erdenebileg, E., Mathews, N., Mhaisalkar, S. G. & Bruno, A. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6, 2692–2734 (2022).

    Article  Google Scholar 

  3. Kore, B. P. et al. Efficient fully textured perovskite silicon tandems with thermally evaporated hole transporting materials. Energy Environ. Sci. 18, 354–366 (2025).

    Article  Google Scholar 

  4. Luo, H. et al. Inorganic framework composition engineering for scalable fabrication of perovskite/silicon tandem solar cells. ACS Energy Lett. 8, 4993–5002 (2023).

    Article  Google Scholar 

  5. Li, J. et al. Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 17, 435–441 (2023).

    Article  ADS  Google Scholar 

  6. Fang, J. et al. Anion exchange promoting non-impurities enables conformable and efficient inverted perovskite solar cells. Energy Environ. Sci. 17, 7829–7837 (2024).

    Article  Google Scholar 

  7. Dewi, H. A., Erdenebileg, E., De Luca, D., Mhaisalkar, S. G. & Bruno, A. Accelerated MAPbI3 co-evaporation: productivity gains without compromising performance. ACS Energy Lett. 9, 4319–4322 (2024).

    Article  Google Scholar 

  8. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  ADS  Google Scholar 

  9. Li, J. et al. Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation. J. Alloys Compd. 818, 152903 (2020).

    Article  Google Scholar 

  10. Chen, M. et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 10, 16 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  11. Chen, C.-W. et al. Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv. Mater. 26, 6647–6652 (2014).

    Article  Google Scholar 

  12. Feng, J. et al. High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy Environ. Sci. 14, 3035–3043 (2021).

    Article  Google Scholar 

  13. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2015).

    Article  ADS  Google Scholar 

  14. Ono, L. K., Wang, S., Kato, Y., Raga, S. R. & Qi, Y. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ. Sci. 7, 3989–3993 (2014).

    Article  Google Scholar 

  15. Li, H. et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8, eabo7422 (2022).

    Article  Google Scholar 

  16. Zhou, J. et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 8, 1691–1706 (2024).

    Article  Google Scholar 

  17. Green, M. A. et al. Solar cell efficiency tables (version 64). Prog. Photovolt. Res. Appl. 32, 425–441 (2024).

    Article  Google Scholar 

  18. Li, S. et al. High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics. Nature 635, 82–88 (2024).

    Article  ADS  Google Scholar 

  19. Gao, D. et al. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024).

    Article  ADS  Google Scholar 

  20. Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).

    Article  ADS  Google Scholar 

  21. Kim, B.-S., Kim, T.-M., Choi, M.-S., Shim, H.-S. & Kim, J.-J. Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Org. Electron. 17, 102–106 (2015).

    Article  Google Scholar 

  22. Avila, J. et al. Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n–i–p perovskite solar cells. J. Mater. Chem. A 7, 25796–25801 (2019).

    Article  Google Scholar 

  23. Kim, B.-S. et al. Simple approach for an electron extraction layer in an all-vacuum processed n-i-p perovskite solar cell. Energy Adv. 1, 252–257 (2022).

    Article  Google Scholar 

  24. Jiang, Y., He, S., Qiu, L., Zhao, Y. & Qi, Y. Perovskite solar cells by vapor deposition based and assisted methods. Appl. Phys. Rev. 9, 021305 (2022).

    Article  ADS  Google Scholar 

  25. Diercks, A. et al. Sequential evaporation of inverted FAPbI3 perovskite solar cells—impact of substrate on crystallization and film formation. ACS Energy Lett. 10, 1165–1173 (2025).

    Article  Google Scholar 

  26. Shen, Y. et al. Strain regulation retards natural operation decay of perovskite solar cells. Nature 635, 882–889 (2024).

    Article  ADS  Google Scholar 

  27. Feeney, T. et al. Understanding and exploiting interfacial interactions between phosphonic acid functional groups and co-evaporated perovskites. Matter 7, 2066–2090 (2024).

    Article  Google Scholar 

  28. Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article  ADS  Google Scholar 

  29. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  ADS  Google Scholar 

  30. Xiong, W. et al. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature 633, 344–350 (2024).

    Article  ADS  Google Scholar 

  31. Wang, J. et al. High-quality additive-free α-FAPbI3 film fabricated by alkane/nanocrystals method and surface chemistry modulation for efficient perovskite solar cell. Adv. Funct. Mater. 35, 2402024 (2024).

    Article  Google Scholar 

  32. Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).

    Article  ADS  Google Scholar 

  33. Chen, C. et al. Robust fully screen-printed perovskite solar cells based on synergistic Ostwald ripening. Angew. Chem. Int. Ed. 64, e202425162 (2025).

    Article  Google Scholar 

  34. Lan, Z. et al. Homogenizing the electron extraction via eliminating low-conductive contacts enables efficient perovskite solar cells with reduced up-scaling losses. Adv. Funct. Mater. 34, 2316591 (2024).

    Article  Google Scholar 

  35. Jiang, X. et al. Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature 635, 860–866 (2024).

    Article  ADS  Google Scholar 

  36. Wang, X. et al. Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photon. 18, 1269–1275 (2024).

    Article  ADS  Google Scholar 

  37. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  ADS  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  40. Weller, M. T., Weber, O. J., Frost, J. M. & Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015).

    Article  Google Scholar 

  41. Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).

    Article  ADS  Google Scholar 

  42. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  ADS  Google Scholar 

  43. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  Google Scholar 

  44. Xu, Y. et al. Fully thermally evaporated perovskite solar cells based on reverse layer-by-layer deposition. figshare https://doi.org/10.6084/m9.figshare.29882729 (2025).

Download references

Acknowledgements

Y. Chen acknowledges financial support from the National Natural Science Foundation of China (22425903 and 62288102), the National Key Research and Development Program of China (2023YFB4204500), the Basic Research Program of Jiangsu (BK20243057), the Jiangsu Provincial Departments of Science and Technology (BE2022023, BK20220010, BZ2023060 and BK20241875) and the Open Research Fund of Suzhou Laboratory (SZLAB-1308-2024-ZD006). Y. Xia acknowledges financial support from the National Natural Science Foundation of China (22379067). Q.G. acknowledges financial support from the National Natural Science Foundation of China (U24A20568) and the Open Research Fund of Suzhou Laboratory (SZLAB-1308-2024-ZD006). Y. Lv acknowledges financial support from the National Natural Science Foundation of China (52302266). L.C. acknowledges financial support from the National Natural Science Foundation of China (22409091). Z.H. acknowledges financial support from the National Natural Science Foundation of China (62205142). We acknowledge the assistance from Shanghai Synchrotron Radiation Facility (SSRF) for the GIWAXS measurements, and Shanghai Ideaoptics Inc. for the PLQY and QFLS measurements. We thank B. Yu, J. Chen and D. Ma for their assistance in TA measurements.

Author information

Authors and Affiliations

Contributions

Y. Chen and Q.G. conceived of the idea and directed the overall project. W.H., Y. Chen, Q.G. and Y. Xia supervised the work. Y. Xu fabricated all the devices and conducted the characterization. T.P. and X.K. helped with the device fabrication and material characterization. Y. Li and N.M. performed the photoluminescence and electroluminescence imaging characterization. J.L., Y. Cui and Z.W. performed the atomic Kelvin probe force microscopy imaging characterization. K.X. and X.S. performed the density functional theory and molecular dynamics calculations. X.M., Y. Lv, L.C. and Z.H. participated in data analysis. Y. Xia, Q.G. and Y. Chen wrote the paper. All authors read and commented on the paper.

Corresponding authors

Correspondence to Qingxun Guo, Yingdong Xia, Yonghua Chen or Wei Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Kyungkon Kim, Soo Young Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12, Figs. 1–45 and Table 1.

Reporting Summary

Supplementary Video 1

The annealing process of RLE precursor film at 170 °C, performed under ambient air condition with a relative humidity (RH) of 20%–30%.

Supplementary Video 2

Molecular dynamics simulation of inter-diffusion of FAI and PbI2 molecules under 443 K.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xu, K., Pan, T. et al. Fully thermally evaporated perovskite solar cells based on reverse layer-by-layer deposition. Nat. Photon. 19, 1345–1352 (2025). https://doi.org/10.1038/s41566-025-01768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01768-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing