Abstract
High-dimensional encoding of quantum information holds the potential to greatly increase the computational power of existing devices by enlarging the accessible state space for a fixed register size and by reducing the number of required entangling gates. However, qudit-based quantum computation remains far less developed than conventional qubit-based approaches, particularly for photons, which represent natural multilevel information carriers that play a crucial role in the development of quantum networks. A major obstacle for realizing quantum gates between two individual photons is the restriction of direct interaction between photons in linear media. In particular, essential logic components for quantum operations such as native qudit–qudit entangling gates are still missing for optical quantum information processing. Here we address this challenge by presenting a protocol for realizing an entangling gate—the controlled phase-flip gate—for two photonic qudits in an arbitrary dimension. We experimentally demonstrate this protocol by realizing a four-dimensional qudit–qudit controlled phase-flip gate, whose decomposition would require at least 13 two-qubit entangling gates. Our photonic qudits are encoded in orbital angular momentum, and we have developed a new active high-precision phase-locking technology to construct a high-dimensional orbital angular momentum beamsplitter that increases the stability of the controlled phase-flip gate, resulting in a process fidelity within a range of [0.71 ± 0.01, 0.85 ± 0.01]. Our experiment represents an important advance for high-dimensional optical quantum information processing and has the potential for wider applications beyond optical system.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
All data supporting the findings of this study are provided within the Article. Source data are provided with this paper. They are also available via Figshare at https://doi.org/10.6084/m9.figshare.30946265 (ref. 66).
References
Vertesi, T., Pironio, S. & Brunner, N. Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010).
Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011).
Malik, M., Erhard, M., Huber, M., Krenn, M., Fickler, R. & Zeilinger, A. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).
Martin, A. et al. Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett. 118, 110501 (2017).
Erhard, M., Malik, M., Krenn, M. & Zeilinger, A. Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018).
Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020).
Designolle, S. et al. Genuine high-dimensional quantum steering. Phys. Rev. Lett. 126, 200404 (2021).
Hiekkamäki, M. & Fickler, R. High-dimensional two-photon interference effects in spatial modes. Phys. Rev. Lett. 126, 123601 (2021).
Chi, Y. et al. A programmable qudit-based quantum processor. Nat. Commun. 13, 1166 (2022).
Bruß, D. & Macchiavello, C. Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002).
Pivoluska, M., Huber, M. & Malik, M. Layered quantum key distribution. Phys. Rev. A 97, 032312 (2018).
Doda, M. et al. Quantum key distribution overcoming extreme noise: simultaneous subspace coding using high-dimensional entanglement. Phys. Rev. Appl. 15, 034003 (2021).
Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).
Bulla, L. et al. Distribution of genuine high-dimensional entanglement over 10.2 km of noisy metropolitan atmosphere. Phys. Rev. A 107, L050402 (2023).
Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009).
Wang, Y., Hu, Z., Sanders, B. C. & Kais, S. Qudits and high-dimensional quantum computing. Front. Phys. 8, 479 (2020).
Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022).
Hrmo, P. et al. Native qudit entanglement in a trapped ion quantum processor. Nat. Commun. 14, 2242 (2023).
Gao, X., Appel, P., Friis, N., Ringbauer, M. & Huber, M. On the role of entanglement in qudit–based circuit compression. Quantum 7, 1141 (2023).
Kiktenko, E. O., Nikolaeva, A. S., Xu, P., Shlyapnikov, G. V. & Fedorov, A. K. Scalable quantum computing with qudits on a graph. Phys. Rev. A 101, 022304 (2020).
Nikolaeva, A. S., Kiktenko, E. O. & Fedorov, A. K. Efficient realization of quantum algorithms with qudits. EPJ Quantum Technol. 11, 43 (2024).
Gao, X., Erhard, M., Zeilinger, A. & Krenn, M. Computer-inspired concept for high-dimensional multipartite quantum gates. Phys. Rev. Lett. 125, 050501 (2020).
Babazadeh, A. et al. High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119, 180510 (2017).
Brandt, F. et al. High-dimensional quantum gates using full–field spatial modes of photons. Optica 7, 98–107 (2020).
Nielsen, M. A. and Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).
Allen, L., Beijersbergen, M. W., Spreeuw, R. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Krenn, M., Malik, M., Erhard, M. & Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes. Phil. Trans. R. Soc. A 375, 20150442 (2017).
Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).
O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).
Pittman, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002).
Langford, N. K. et al. Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005).
Okamoto, R., Hofmann, H. F., Takeuchi, S. & Sasaki, K. Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005).
Gasparoni, S., Pan, J.-W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled–NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004).
Zhao, Z. et al. Experimental demonstration of a nondestructive controlled-not quantum gate for two independent photon qubits. Phys. Rev. Lett. 94, 030501 (2005).
Huang, Y.-F., Ren, X.-F., Zhang, Y.-S., Duan, L.-M. & Guo, G.-C. Experimental teleportation of a quantum controlled-NOT gate. Phys. Rev. Lett. 93, 240501 (2004).
Zeuner, J. et al. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits. npj Quantum Inf. 4, 13 (2018).
Bao, X.-H. et al. Optical nondestructive controlled-NOT gate without using entangled photons. Phys. Rev. Lett. 98, 170502 (2007).
Li, J.-P. et al. Heralded nondestructive quantum entangling gate with single-photon sources. Phys. Rev. Lett. 126, 140501 (2021).
Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).
Wang, X.-L. et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).
Zhang, W., Qi, Q., Zhou, J. & Chen, L. Mimicking Faraday rotation to sort the orbital angular momentum of light. Phys. Rev. Lett. 112, 153601 (2014).
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).
Agnew, M., Leach, J., McLaren, M., Roux, F. S. & Boyd, R. W. Tomography of the quantum state of photons entangled in high dimensions. Phys. Rev. A 84, 062101 (2011).
Wu, S., Huang, W., Yang, P., Liu, S. & Chen, L. Arbitrary phase-locking in Mach–Zehnder interferometer. Opt. Commun. 442, 148–151 (2019).
Black, E. D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001).
Wan, P. et al. Postselection-free cavity enhanced narrow band orbital angular momentum entangled photon source. Phys. Rev. Lett. 134, 053801 (2025).
Hofmann, H. F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys. Rev. Lett. 94, 160504 (2005).
Chen, M. et al. High-dimensional two-photon quantum controlled phase-flip gate. Phys. Rev. Research 6, 033004 (2024).
Jeff Kimble, H. The quantum internet. Nature 453, 1023–1030 (2008).
Vitelli, C. et al. Joining the quantum state of two photons into one. Nat. Photon. 7, 521–526 (2013).
Gao, X., Krenn, M., Kysela, J. & Zeilinger, A. Arbitrary d-dimensional Pauli X gates of a flying qudit. Phys. Rev. A 99, 023825 (2019).
Wang, X., Sanders, B. C. & Berry, D. W. Entangling power and operator entanglement in qudit systems. Phys. Rev. A 67, 042323 (2003).
Barreiro, J. T., Wei, T.-C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282–286 (2008).
Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).
Williams, B. P., Sadlier, R. J. & Humble, T. S. Superdense coding over optical fiber links with complete Bell-state measurements. Phys. Rev. Lett. 118, 050501 (2017).
Luo, Y.-H. et al. Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019).
Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019).
Hu, X.-M. et al. Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020).
Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).
Bocharov, A., Roetteler, M. & Svore, K. M. Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96, 012306 (2017).
Miao, K. C. et al. Overcoming leakage in quantum error correction. Nat. Phys. 19, 1780–1786 (2023).
Muthukrishnan, A. & Stroud, C. R. Multi-valued logic gates for quantum computation. Phys. Rev. A 62, 052309 (2000).
Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).
Wang, X.-L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).
Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).
Liu, Z. et al. Supporting data for heralded high-dimensional photon-photon quantum gate. Figshare https://doi.org/10.6084/m9.figshare.30946265 (2025).
Acknowledgements
This work was supported by the National Key Research and Development Program of China (number 2020YFA0309500); the National Natural Science Foundation of China (numbers 12234009, 12274215, 12404382, 12574392, 12427808 and U25A20194); Quantum Science and Technology—National Science and Technology Major Project (number 2021ZD0301400); the Program for Innovative Talents and Entrepreneurs in Jiangsu; Key R&D Program of Jiangsu Province (BE2023002); the Natural Science Foundation of Jiangsu Province (numbers BK20233001, BK20220759 and BK20252118). M.H. acknowledges funding from the European Research Council (Consolidator grant ‘Cocoquest’ 101043705) and the Horizon-Europe research and innovation programme under grant agreement number 101070168 (HyperSpace). N.F. acknowledges financial support from the Austrian Science Fund (FWF) through the standalone project P 36478-N funded by the European Union—NextGenerationEU, as well as by the Austrian Federal Ministry of Education, Science and Research via the Austrian Research Promotion Agency (FFG) through the flagship project FO999897481 (HPQC) and the project FO999921407 (HDcode) funded by the European Union—NextGenerationEU. M.H. and N.F. acknowledge financial support from the Austrian Research Promotion Agency (FFG) through project FO999914030 (MUSIQ) and project FO999921415 (Vanessa-QC) funded by the European Union—NextGenerationEU. We would like to thank R. Hogan for valuable discussions.
Author information
Authors and Affiliations
Contributions
H.-T.W., X.-L.W. and X.G. conceived the idea, designed the research methodology and supervised the project. Z.-F.L. and Z.-C.R. presented the experimental scheme and performed the experiment. Z.-C.R. performed the revision experiment. P.W., W.-Z.Z., Z.-M.C., J.W., Y.-P.S. and H.-B.X. assisted in the experiment. X.G., M.H. and N.F. contributed to the theoretical proposal. All authors analysed and discussed the results and reviewed the manuscript. Z.-F.L., Z.-C.R., N.F., M.H., X.G., X.-L.W. and H.-T.W. wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–5, Figs. 1–6 and Tables 1–3.
Source data
Source Data Fig. 4
Experimental raw data.
Source Data Fig. 5
Experimental raw data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, ZF., Ren, ZC., Wan, P. et al. Heralded high-dimensional photon–photon quantum gate. Nat. Photon. (2026). https://doi.org/10.1038/s41566-026-01846-x
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41566-026-01846-x