Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin phase diagram of the interacting quantum Hall liquid

Abstract

Measurement of the ground-state spin polarization of quantum systems offers great potential for the discovery and characterization of correlated electronic states. However, spin polarization measurements have mainly involved optical1,2,3 and NMR4,5 techniques that perturb the delicate ground states and, for quantum Hall systems, have provided conflicting results1,4,6. Here we present spin-resolved pulsed tunnelling (SRPT) that precisely determines the phase diagram of the ground-state spin polarization as a function of magnetic field and Landau level (LL) filling factor (ν) with negligible perturbation to the system. Our phase diagram shows a variety of polarized, unpolarized and topological spin states in the lowest (N = 0) LL, which can largely be described by a weakly interacting composite fermion (CF) model7. However, the phase diagram shows unexpected behaviour in the N = 1 LL. We observe fully polarized ν = 5/2 and 8/3 states but a partially depolarized ν = 7/3 state. This behaviour deviates from the conventional theoretical picture7,8 of weakly interacting fractional quasiparticles, but instead suggests unusual electronic correlations and the possibility of new non-Abelian phases9,10,11. The results establish SRPT as a powerful technique for investigating correlated electron phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin-dependent tunnelling in the quantum Hall effect regime.
Fig. 2: Determination of the ground-state spin polarization.
Fig. 3: 𝑩𝝂 phase diagram of the ground-state spin polarization in the N = 0 Landau level.
Fig. 4: The ground-state spin polarization in the N = 1 LL.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Stern, M. et al. Optical probing of the spin polarization of the ν = 5/2 quantum Hall state. Phys. Rev. Lett. 105, 096801 (2010).

    Article  ADS  Google Scholar 

  2. Hayakawa, J., Muraki, K. & Yusa, G. Real-space imaging of fractional quantum Hall liquids. Nat. Nanotechnol. 8, 31–35 (2013).

    Article  ADS  Google Scholar 

  3. Kukushkin, I. V., Klitzing, K. V. & Eberl, K. Spin polarization of composite fermions: measurements of the Fermi energy. Phys. Rev. Lett. 82, 3665–3668 (1999).

    Article  ADS  Google Scholar 

  4. Tiemann, L., Gamez, G., Kumada, N. & Muraki, K. Unraveling the spin polarization of the Ν = 5/2 fractional quantum Hall state. Science 335, 828–831 (2012).

    Article  ADS  Google Scholar 

  5. Barrett, S. E., Dabbagh, G., Pfeiffer, L. N., West, K. W. & Tycko, R. Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling ν = 1. Phys. Rev. Lett. 74, 5112–5115 (1995).

    Article  ADS  Google Scholar 

  6. Kukushkin, I. V., Klitzing, K. V. & Eberl, K. Spin polarization of two-dimensional electrons in different fractional states and around filling factor ν = 1. Phys. Rev. B 55, 10607–10612 (1997).

    Article  ADS  Google Scholar 

  7. Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).

  8. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  ADS  Google Scholar 

  9. Bonderson, P. & Slingerland, J. K. Fractional quantum Hall hierarchy and the second Landau level. Phys. Rev. B 78, 125323 (2008).

  10. Balram, A. C., Jain, J. K. & Barkeshli, M. Zn superconductivity of composite bosons and the 7/3 fractional quantum Hall effect. Phys. Rev. Res. 2, 013349 (2020).

    Article  Google Scholar 

  11. Peterson, M. R. et al. Abelian and non-Abelian states in ν = 2/3 bilayer fractional quantum Hall systems. Phys. Rev. B 92, 035103 (2015).

    Article  ADS  Google Scholar 

  12. Smet, J. H. et al. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature 415, 281 (2002).

    Article  ADS  Google Scholar 

  13. Dial, O. E., Ashoori, R. C., Pfeiffer, L. N. & West, K. W. High-resolution spectroscopy of two-dimensional electron systems. Nature 448, 176–179 (2007).

    Article  ADS  Google Scholar 

  14. Ezawa, Z. F. & Tsitsishvili, G. Quantum Hall ferromagnets. Rep. Prog. Phys. 72, 086502 (2009).

    Article  ADS  Google Scholar 

  15. MacDonald, A. H., Oji, H. C. A. & Liu, K. L. Thermodynamic properties of an interacting two-dimensional electron gas in a strong magnetic field. Phys. Rev. B 34, 2681–2689 (1986).

    Article  ADS  Google Scholar 

  16. Chaudhary, G., Efimkin, D. K. & MacDonald, A. H. Tunneling density of states, correlation energy, and spin polarization in the fractional quantum Hall regime. Phys. Rev. B 100, 085107 (2019).

    Article  ADS  Google Scholar 

  17. Park, K. & Jain, J. K. Phase diagram of the spin polarization of composite fermions and a new effective mass. Phys. Rev. Lett. 80, 4237–4240 (1998).

    Article  ADS  Google Scholar 

  18. Archer, A. C. & Jain, J. K. Phase diagram of the two-component fractional quantum Hall effect. Phys. Rev. Lett. 110, 246801 (2013).

    Article  ADS  Google Scholar 

  19. Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993).

    Article  ADS  Google Scholar 

  20. Balram, A. C., Wurstbauer, U., Wójs, A., Pinczuk, A. & Jain, J. K. Fractionally charged skyrmions in fractional quantum Hall effect. Nat. Commun. 6, 8981 (2015).

    Article  ADS  Google Scholar 

  21. Fertig, H. A. et al. Hartree–Fock theory of skyrmions in quantum Hall ferromagnets. Phys. Rev. B 55, 10671–10680 (1997).

    Article  ADS  Google Scholar 

  22. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  23. Eisenstein, J. P. et al. Collapse of the even-denominator fractional quantum Hall effect in tilted fields. Phys. Rev. Lett. 61, 997–1000 (1988).

    Article  ADS  Google Scholar 

  24. Pan, W. et al. Competing quantum Hall phases in the second Landau level in the low-density limit. Phys. Rev. B 89, 241302 (2014).

    Article  ADS  Google Scholar 

  25. Kleinbaum, E., Kumar, A., Pfeiffer, L. N., West, K. W. & Csáthy, G. A. Gap reversal at filling factors 3+1/3 and 3+1/5: towards novel topological order in the fractional quantum Hall regime. Phys. Rev. Lett. 114, 076801 (2015).

    Article  ADS  Google Scholar 

  26. Pan, W., Baldwin, K. W., West, K. W., Pfeiffer, L. N. & Tsui, D. C. Spin transition in the ν = 8/3 fractional quantum Hall effect. Phys. Rev. Lett. 108, 216804 (2012).

    Article  ADS  Google Scholar 

  27. Haldane, D. F. in The Quantum Hall Effect (ed. Prange, R. E.) 303–352 (Springer, 1987).

  28. MacDonald, A. H. Introduction to the physics of the quantum Hall regime. Preprint at http://arxiv.org/abs/cond-mat/9410047 (1994).

  29. Jain, J. K., Kamilla, R. K., Park, K. & Scarola, V. W. Interacting composite fermions. Solid State Commun. 117, 117–122 (2001).

    Article  ADS  Google Scholar 

  30. d’Ambrumenil, N. & Reynolds, A. M. Fractional quantum Hall states in higher Landau levels. J. Phys. C 21, 119–132 (1988).

    Article  ADS  Google Scholar 

  31. MacDonald, A. H. & Girvin, S. M. Collective excitations of fractional Hall states and Wigner crystallization in higher Landau levels. Phys. Rev. B 33, 4009–4013 (1986).

    Article  ADS  Google Scholar 

  32. Chakraborty, T. & Pietiläinen, P. Temperature dependence of spin polarizations at higher Landau levels. Phys. Rev. Lett. 83, 5559–5562 (1999).

    Article  ADS  Google Scholar 

  33. Koulakov, A. A., Fogler, M. M. & Shklovskii, B. I. Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499 (1996).

    Article  ADS  Google Scholar 

  34. Samkharadze, N. et al. Observation of a transition from a topologically ordered to a spontaneously broken symmetry phase. Nat. Phys. 12, 191–195 (2016).

    Article  Google Scholar 

  35. Schreiber, K. A. et al. Electron–electron interactions and the paired-to-nematic quantum phase transition in the second Landau level. Nat. Commun. 9, 1–7 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. K. Jain and A. H. MacDonald for discussions. This work is supported by the Basic Energy Sciences Program of the Office of Science of the US Department of Energy through contract no. FG02-08ER46514 and by the Gordon and Betty Moore Foundation through grant GBMF2931. The work at Princeton University was funded by the Gordon and Betty Moore Foundation through the EPiQS (Emergent Phenomena in Quantum Systems) initiative grant GBMF4420 and by the National Science Foundation MRSEC (Materials Research Science and Engineering Centers) grant DMR-1420541.

Author information

Authors and Affiliations

Authors

Contributions

H.M.Y. and R.C.A. conceived the experiments. L.P., K.W.B. and K.W. contributed in the epitaxial growth of the sample. H.M.Y. carried out the measurements. H.M.Y. and R.C.A. performed data analysis and prepared the manuscript. R.C.A. supervised the project.

Corresponding author

Correspondence to R. C. Ashoori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Mikael Fremling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Discussion

Source data

Source Data Fig. 1

Raw tunnelling current spectra.

Source Data Fig. 2

Spin polarization 1D plot.

Source Data Fig. 3

Spin polarization 2D plot.

Source Data Fig. 4

Spin polarization 2D plot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, H.M., Baldwin, K.W., West, K. et al. Spin phase diagram of the interacting quantum Hall liquid. Nat. Phys. 16, 1022–1027 (2020). https://doi.org/10.1038/s41567-020-0946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-020-0946-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing