Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Skyrmion bags of light in plasmonic moiré superlattices

Abstract

The study of van der Waals heterostructures with an interlayer twist, known as twistronics, has been instrumental in advancing the understanding of many strongly correlated phases, many of which derive from the topology of the physical system. Here we explore the application of the twistronics paradigm in plasmonic systems with a non-trivial topology by creating a moiré skyrmion superlattice using two superimposed plasmonic skyrmion lattices with a relative twist. We measure the complex electric field distribution of the moiré skyrmion superlattice using time-resolved polarimetric photoemission electron microscopy. Our results show that each supercell has very large topological invariants and harbours a skyrmion bag, the size of which is controllable by the twist angle and centre of rotation. Our work indicates how twistronics can enable the creation of various topological features in optical fields and provides a route for locally manipulating electromagnetic field distributions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hexagonal moiré lattices in solid state physics and plasmonics.
Fig. 2: Simulated plasmonic moiré skyrmion lattices.
Fig. 3: Ultrafast time-resolved vector microscopy of plasmonic skyrmion bags.
Fig. 4: Analysis of PEEM simulation results and experimental results of a skyrmion bag with seven skyrmions.
Fig. 5: PEEM simulations of plasmonic skyrmion bags of different sizes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request. Reconstructed electric field distributions of the PEEM measurements and PEEM simulations are available via Figshare at https://doi.org/10.6084/m9.figshare.28541801 (ref. 56). Source data are provided with this paper.

Code availability

The code used to produce the results are available from the corresponding author upon reasonable request.

References

  1. Campanera, J. M., Savini, G., Suarez-Martinez, I. & Heggie, M. I. Density functional calculations on the intricacies of moiré patterns on graphite. Phys. Rev. B 75, 235449 (2007).

    Article  ADS  Google Scholar 

  2. Shterman, D., Gjonaj, B. & Bartal, G. Experimental demonstration of multi moiré structured illumination microscopy. ACS Photonics 5, 1898–1902 (2018).

    Article  Google Scholar 

  3. Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).

    Article  ADS  Google Scholar 

  4. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2019).

    Article  ADS  Google Scholar 

  5. Fu, Q. et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photonics 14, 663–668 (2020).

    Article  ADS  Google Scholar 

  6. Wang, P. et al. Two-dimensional Thouless pumping of light in photonic moiré lattices. Nat. Commun. 13, 6738 (2022).

    Article  ADS  Google Scholar 

  7. Guan, J. et al. Far-field coupling between moiré photonic lattices. Nat. Nanotechnol. 18, 514–520 (2023).

    Article  ADS  Google Scholar 

  8. González-Tudela, A. & Cirac, J. I. Cold atoms in twisted-bilayer optical potentials. Phys. Rev. A 100, 053604 (2019).

    Article  ADS  Google Scholar 

  9. Luo, X. W. & Zhang, C. Spin-twisted optical lattices: tunable flat bands and Larkin-Ovchinnikov superfluids. Phys. Rev. Lett. 126, 103201 (2021).

    Article  ADS  Google Scholar 

  10. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  11. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  ADS  Google Scholar 

  12. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  Google Scholar 

  13. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article  ADS  Google Scholar 

  14. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article  ADS  Google Scholar 

  15. Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).

    Article  ADS  Google Scholar 

  16. Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    Article  MathSciNet  Google Scholar 

  17. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  ADS  Google Scholar 

  18. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  19. Tang, J. et al. Magnetic skyrmion bundles and their current-driven dynamics. Nat. Nanotechnol. 16, 1086–1091 (2021).

    Article  ADS  Google Scholar 

  20. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  ADS  Google Scholar 

  21. Fukuda, J. I. & Žumer, S. Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun. 2, 246 (2011).

    Article  ADS  Google Scholar 

  22. Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys. 15, 655–659 (2019).

    Article  Google Scholar 

  23. Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18, 15–25 (2023).

    Article  ADS  Google Scholar 

  24. Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).

    Article  ADS  Google Scholar 

  25. Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).

    Article  ADS  Google Scholar 

  26. Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photonics 18, 258–266 (2024).

    Article  ADS  Google Scholar 

  27. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  28. Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    Article  Google Scholar 

  29. Yang, L. et al. Embedded skyrmion bags in thin films of chiral magnets. Adv. Mater. 36, 2403274 (2024).

  30. Zheludev, N. I. & Yuan, G. Optical superoscillation technologies beyond the diffraction limit. Nat. Rev. Phys. 4, 16–32 (2021).

    Article  Google Scholar 

  31. Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

    Article  Google Scholar 

  32. Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017).

    Article  ADS  Google Scholar 

  33. Dai, Y. et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev. 9, 11420 (2022).

    Article  Google Scholar 

  34. Lei, X. et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett. 127, 237403 (2021).

    Article  ADS  Google Scholar 

  35. Tsesses, S., Cohen, K., Ostrovsky, E., Gjonaj, B. & Bartal, G. Spin-orbit interaction of light in plasmonic lattices. Nano Lett. 19, 4010–4016 (2019).

    Article  ADS  Google Scholar 

  36. Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article  ADS  Google Scholar 

  37. Lifshitz, R. Quasicrystals: a matter of definition. Found. Phys. 33, 1703–1711 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  38. Putley, H. J., Davies, B., Rodríguez-Fortuño, F. J., Bykov, A. Yu. & Zayats, A. V. Mixing skyrmions and merons in topological quasicrystals of evanescent optical field. Preprint at arxiv.org/abs/2409.03932 (2024).

  39. Lopes dos Santos, J. M. B., Peres, N. M. R. & Neto, A. H. C. Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012).

    Article  ADS  Google Scholar 

  40. Gorodetski, Y., Niv, A., Kleiner, V. & Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).

    Article  ADS  Google Scholar 

  41. Davis, T. J. et al. Subfemtosecond and nanometer plasmon dynamics with photoelectron microscopy: theory and efficient simulations. ACS Photonics 4, 2461–2469 (2017).

    Article  Google Scholar 

  42. Ge, H. et al. Observation of acoustic skyrmions. Phys. Rev. Lett. 127, 144502 (2021).

    Article  Google Scholar 

  43. Smirnova, D. A., Nori, F. & Bliokh, K. Y. Water-wave vortices and skyrmions. Phys. Rev. Lett. 132, 054003 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  44. Ghosh, A. et al. A topological lattice of plasmonic merons. Appl. Phys. Rev. 8, 41413 (2021).

    Article  Google Scholar 

  45. Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).

    Article  ADS  Google Scholar 

  46. Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  47. Berry, M. V. & Dennis, M. R. Knotted and linked phase singularities in monochromatic waves. Proc. R. Soc. A: Math. Phys. Eng. Sci. 457, 2251–2263 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  48. Kahl, P. et al. Direct observation of surface plasmon polariton propagation and interference by time-resolved imaging in normal-incidence two photon photoemission microscopy. Plasmonics 13, 239–246 (2018).

    Article  Google Scholar 

  49. Dreher, P. et al. Spatio-temporal topology of plasmonic spin meron pairs revealed by polarimetric photo-emission microscopy. Adv. Photonics 6, 066007 (2024).

    Article  Google Scholar 

  50. Dreher, P. et al. Momentum space separation of quantum path interferences between photons and surface plasmon polaritons in nonlinear photoemission microscopy. Nanophotonics 13, 1593–1602 (2024).

    Article  ADS  Google Scholar 

  51. Yang, A. et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing. Adv. Sci. 10, 2205249 (2023).

    Article  Google Scholar 

  52. Shen, Y. et al. Roadmap on spatiotemporal light fields. J. Opt. 25, 093001 (2023).

    Article  ADS  Google Scholar 

  53. Neubauer, A. et al. Spectroscopy of nanoantenna-covered Cu2O: towards enhancing quadrupole transitions in Rydberg excitons. Phys. Rev. B 106, 165305 (2022).

    Article  ADS  Google Scholar 

  54. Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 514, 343–347 (2014).

    Article  ADS  Google Scholar 

  55. Hill, H. M. et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992–2997 (2015).

    Article  ADS  Google Scholar 

  56. Schwab, J. et al. Skyrmion bags of light in plasmonic moiré superlattices. figshare https://doi.org/10.6084/m9.figshare.28541801 (2025).

Download references

Acknowledgements

We acknowledge support from the ERC (Complexplas, 3DPrintedoptics) (J.S., F.M., A.M., B.F. and H.G.), DFG (grant no. SPP1391 Ultrafast Nanooptics (J.S., F.M., A.M., B.F., H.G., A.N., P.D. and F.-J.M.z.H.), CRC 1242 Non-Equilibrium Dynamics of Condensed Matter in the Time Domain (project no. 278162697-SFB 1242 to A.N., P.D. and F.-J.M.z.H.), BMBF (Printoptics) (J.S., F.M., A.M., B.F. and H.G.), BW Stiftung (Spitzenforschung, Opterial) (J.S., F.M., A.M., B.F. and H.G.) and Carl-Zeiss Stiftung (J.S., F.M., A.M., B.F. and H.G.). T.J.D. acknowledges support from the MPI Guest Professorship Program and from the DFG (grant no. GRK2642) through a Photonic Quantum Engineers for a Mercator Fellowship. S.T. acknowledges support from the Adams fellowship programme of the Israel Academy of Science and Humanities, the Rothschild fellowship of the Yad Hanadiv Foundation, the VATAT-Quantum fellowship of the Israel Council for Higher Education, the Helen Diller Quantum Center postdoctoral fellowship and the Viterbi fellowship of the Technion – Israel Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

G.B and S.T. conceived the idea of twisted skyrmion lattices and skyrmion bags. J.S., F.M. and H.G. conceived the idea of the commensurate angles. J.S. and T.J.D. carried out the simulations, analytical calculations and skyrmion number analysis. A.N., P.D. and F.-J.M.z.H. carried out the PEEM experiment and vectorial retrieval. B.F., A.M. and H.G. grew the single-crystal gold flakes and carried out the ion-beam structuring. K.C., S.T. and G.B carried out the scanning near-field optical microscopy experiment. J.S., T.J.D., S.T., B.F. and H.G. wrote the paper. All authors contributed to the discussions and the final editing.

Corresponding author

Correspondence to Harald Giessen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Henry Putley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temporal analysis of PEEM measurement results.

The experimental skyrmion number of the skyrmion bag and the cluster within in the bag are displayed as a function of the time delay between the pump and probe pulse in the PEEM experiment. The data is plotted together with the results obtained from the PEEM simulation (solid lines).

Extended Data Fig. 2 Analysis of PEEM simulation results of a skyrmion bag comprising (a-c) N=1 skyrmion (skyrmionium) and (d-f) N=19 skyrmions.

a, d, Electric field distribution exemplary for structures with twist angle φ\(=\)30° (\(N=1\)) and φ\(=\)9.4° (\(N=19\)). The out-of-plane component is illustrated using the color plot and the in-plane component of the electric field is depicted using the vector plot. b, e, Distributions of the out-of-plane amplitude (brightness) and in-plane orientation (color) of the normalized electric field. Colorful areas indicate closed-loop lines, along which the electric field vectors only have an in-plane component. The in-plane orientation of the field vectors rotates by \(2\pi\) along these lines of all skyrmions. c, f, Skyrmion number density of the electric field. Integration of the skyrmion number density yields the total skyrmion number. For the total bag the integrated area is given by the enclosed space inside the dashed green line. The skyrmion cluster only counts the skyrmions inside the bag which means that in this case the skyrmion number density is integrated within the area surrounded by the dashed red line.

Source data

Extended Data Fig. 3 Skyrmion number of the skyrmion bag and the skyrmion cluster inside the bag as a function of the twist angle for the skyrmion bags with 19 (a), 7 (b) and 1 (c) skyrmions in the bag.

The skyrmion numbers are calculated by integrating the skyrmion number density. For the total bag, the integrated area is given by the enclosed space inside the green dashed line of Fig. 4c, f. The skyrmion cluster only counts the skyrmions inside the bag which means that the skyrmion number density is integrated within the area surrounded by the orange line of Fig. 4c, f. For the three different skyrmion bags, both skyrmion numbers remain constant over a wide range of twist angles.

Extended Data Fig. 4 Analysis of (a-c) PEEM simulation, (d-f) PEEM measurement results of a skyrmion bag with 7 skyrmions at twist angle of 13.2°.

a, d, Electric field distribution. The out-of-plane component is illustrated using the color plot and the in-plane component of the electric field is depicted using the vector plot. b, e, Distributions of the out-of-plane amplitude (brightness) and in-plane orientation (color) of the normalized electric field. Colorful areas indicate closed-loop lines, along which the electric field vectors only have an in-plane component. The in-plane orientation of the field vectors rotates by \(2\pi\) along these lines of all skyrmions. c, f, Skyrmion number density of the electric field. Integration of the skyrmion number density yields the total skyrmion number. For the total bag the integrated area is given by the enclosed space inside the green dashed line. The skyrmion cluster only counts the skyrmions inside the bag which means that the skyrmion number density is integrated within the area surrounded by the dashed red line.

Source data

Extended Data Fig. 5 Further analysis of PEEM measurement results of skyrmion bags with 7 skyrmions in a commensurate superlattice at 13.2° twist angle.

a, Electric field distribution. The out-of-plane component is illustrated using the color plot. b, Skyrmion number density of the electric field. Integration of the skyrmion number density yields the total skyrmion number. For the total bags the integrated area is given by the enclosed space inside the green dashed lines. The skyrmion cluster only counts the skyrmions inside the bag, which means that the skyrmion number density is integrated within the area surrounded by the dashed red lines. In this measurement, three out of seven skyrmion bags of the observed superlattice have the correct skyrmion numbers of \({S}_{\mathrm{bag}}=6\) and \({S}_{\mathrm{cluster}}=7\). The center super-cell is surrounded by black dashed lines.

Source data

Supplementary information

Supplementary Information

Supplementary Notes 1–10, Figs. 1–12 and Table 1.

Supplementary Video 1

Electric field vector from the PEEM simulation of the 16.4° structure.

Supplementary Video 2

Skyrmion number density from the PEEM simulation of the 16.4° structure.

Supplementary Video 3

Reconstructed electric field vector from the PEEM measurements of the 16.4° structure.

Supplementary Video 4

Skyrmion number density from the PEEM measurements of the 16.4° structure.

Supplementary Video 5

Reconstructed electric field vector from the PEEM measurements of the 13.2° structure.

Source data

Source Data Fig. 2

Source data for electric field distributions.

Source Data Fig. 3

Source data for electric field distributions and scanning electron microscopy images.

Source Data Fig. 4

Source data for electric field distributions.

Source Data Fig. 5

Source data for electric field distributions.

Source Data Extended Data Fig. 2

Source data for electric field distributions.

Source Data Extended Data Fig. 4

Source data for electric field distributions.

Source Data Extended Data Fig. 5

Source data for electric field distributions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwab, J., Neuhaus, A., Dreher, P. et al. Skyrmion bags of light in plasmonic moiré superlattices. Nat. Phys. 21, 988–994 (2025). https://doi.org/10.1038/s41567-025-02873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02873-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing