Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optomechanical self-organization in a mesoscopic atom array

Abstract

Increasing the number of particles in a system often leads to qualitative changes in its properties, such as breaking of symmetries and the appearance of phase transitions. This renders a macroscopic system fundamentally different from its individual microscopic constituents. Lying between these extremes, mesoscopic systems exhibit microscopic fluctuations that influence behaviour on longer length scales, leading to critical phenomena and dynamics. Therefore, tracing the properties of well-controlled mesoscopic systems can help bridge the gap between an exact description of few-body microscopic systems and the emergent description of many-body systems. Here we explore the mesoscopic signatures of an optomechanical self-organization phase transition using arrays of cold atoms inside an optical cavity. By precisely engineering atom–cavity interactions, we reveal how critical behaviour depends on the atom number, identify characteristic dynamical behaviours in the self-organized regime and observe a finite optomechanical susceptibility at the critical point. These findings advance our understanding of particle-number- and time-resolved properties of phase transitions in mesoscopic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cavity-induced self-organization.
Fig. 2: Dependence of the critical point on atom number.
Fig. 3: Lifetime of the self-organized state.
Fig. 4: Optomechanical susceptibility.

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

Code is available from the corresponding author upon reasonable request.

References

  1. Anderson, P. More is different. Science 177, 393–396 (1972).

    Article  ADS  Google Scholar 

  2. Jou, D. & Restuccia, L. Mesoscopic transport equations and contemporary thermodynamics: an introduction. Contemp. Phys. 52, 465–474 (2011).

    Article  ADS  Google Scholar 

  3. Iachello, F. & Zamfir, N. V. Quantum phase transitions in mesoscopic systems. Phys. Rev. Lett. 92, 212501 (2004).

    Article  ADS  Google Scholar 

  4. Vidal, J. & Dusuel, S. Finite-size scaling exponents in the Dicke model. Europhys. Lett. 74, 817–822 (2006).

    Article  ADS  Google Scholar 

  5. Stitely, K. C., Masson, S. J., Giraldo, A., Krauskopf, B. & Parkins, S. Superradiant switching, quantum hysteresis, and oscillations in a generalized Dicke model. Phys. Rev. A 102, 063702 (2020).

    Article  ADS  Google Scholar 

  6. Karapetrov, G., Fedor, J., Iavarone, M., Rosenmann, D. & Kwok, W. K. Direct observation of geometrical phase transitions in mesoscopic superconductors by scanning tunneling microscopy. Phys. Rev. Lett. 95, 167002 (2005).

    Article  ADS  Google Scholar 

  7. Bird, J. et al. Quantum transport in open mesoscopic cavities. Chaos Solitons Fractals 8, 1299–1324 (1997).

    Article  ADS  Google Scholar 

  8. Knoll, A. et al. Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid. Nat. Mater. 3, 886–891 (2004).

    Article  ADS  Google Scholar 

  9. Matheny, M. H. et al. Exotic states in a simple network of nanoelectromechanical oscillators. Science 363, eaav7932 (2019).

    Article  MathSciNet  Google Scholar 

  10. Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).

    Article  ADS  Google Scholar 

  11. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  ADS  Google Scholar 

  12. Ren, H. et al. Topological phonon transport in an optomechanical system. Nat. Commun. 13, 3476 (2022).

    Article  ADS  Google Scholar 

  13. Andrade, L. H. F. et al. Damped precession of the magnetization vector of superparamagnetic nanoparticles excited by femtosecond optical pulses. Phys. Rev. Lett. 97, 127401 (2006).

    Article  ADS  Google Scholar 

  14. Thirion, C., Wernsdorfer, W. & Mailly, D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nat. Mater. 2, 524–527 (2003).

    Article  ADS  Google Scholar 

  15. Bayha, L. et al. Observing the emergence of a quantum phase transition shell by shell. Nature 587, 583–587 (2020).

    Article  ADS  Google Scholar 

  16. Brantut, J.-P., Meineke, J., Stadler, D., Krinner, S. & Esslinger, T. Conduction of ultracold fermions through a mesoscopic channel. Science 337, 1069–1071 (2012).

    Article  ADS  Google Scholar 

  17. Zeiher, J., Wolf, J., Isaacs, J. A., Kohler, J. & Stamper-Kurn, D. M. Tracking evaporative cooling of a mesoscopic atomic quantum gas in real time. Phys. Rev. X 11, 041017 (2021).

    Google Scholar 

  18. Gorman, D. J. et al. Engineering vibrationally assisted energy transfer in a trapped-ion quantum simulator. Phys. Rev. X 8, 011038 (2018).

    Google Scholar 

  19. Guo, Y. et al. Observation of the 2D–1D crossover in strongly interacting ultracold bosons. Nat. Phys. 20, 934–938 (2024).

    Article  Google Scholar 

  20. Safavi-Naini, A. et al. Verification of a many-ion simulator of the Dicke model through slow quenches across a phase transition. Phys. Rev. Lett. 121, 040503 (2018).

    Article  ADS  Google Scholar 

  21. Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    Article  ADS  Google Scholar 

  22. Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Article  Google Scholar 

  23. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  Google Scholar 

  24. Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).

    Article  ADS  Google Scholar 

  25. Mivehvar, F., Piazza, F., Donner, T. & Ritsch, H. Cavity QED with quantum gases: new paradigms in many-body physics. Adv. Phys. 70, 1–153 (2021).

    Article  ADS  Google Scholar 

  26. Kirton, P., Roses, M. M., Keeling, J. & Dalla Torre, E. G. Introduction to the Dicke model: from equilibrium to nonequilibrium, and vice versa. Adv. Quantum Technol. 2, 1800043 (2019).

    Article  Google Scholar 

  27. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article  ADS  Google Scholar 

  28. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article  ADS  Google Scholar 

  29. Morales, A., Zupancic, P., Léonard, J., Esslinger, T. & Donner, T. Coupling two order parameters in a quantum gas. Nat. Mater. 17, 686–690 (2018).

    Article  ADS  Google Scholar 

  30. Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).

    Article  ADS  Google Scholar 

  31. Zhiqiang, Z. et al. Nonequilibrium phase transition in a spin-1 Dicke model. Optica 4, 424–429 (2017).

    Article  Google Scholar 

  32. Black, A. T., Chan, H. W. & Vuletić, V. Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. Phys. Rev. Lett. 91, 203001 (2003).

    Article  ADS  Google Scholar 

  33. Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).

    Article  ADS  Google Scholar 

  34. Deist, E., Gerber, J. A., Lu, Y.-H., Zeiher, J. & Stamper-Kurn, D. M. Superresolution microscopy of optical fields using tweezer-trapped single atoms. Phys. Rev. Lett. 128, 083201 (2022).

    Article  ADS  Google Scholar 

  35. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scr. 1998, 127 (1998).

    Article  Google Scholar 

  36. Yan, Z. et al. Superradiant and subradiant cavity scattering by atom arrays. Phys. Rev. Lett. 131, 253603 (2023).

    Article  ADS  Google Scholar 

  37. Reimann, R. et al. Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015).

    Article  ADS  Google Scholar 

  38. Begley, S., Vogt, M., Gulati, G. K., Takahashi, H. & Keller, M. Optimized multi-ion cavity coupling. Phys. Rev. Lett. 116, 223001 (2016).

    Article  ADS  Google Scholar 

  39. Neuzner, A., Körber, M., Morin, O., Ritter, S. & Rempe, G. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. Nat. Photon. 10, 303–306 (2016).

    Article  ADS  Google Scholar 

  40. Schütz, S., Jäger, S. B. & Morigi, G. Thermodynamics and dynamics of atomic self-organization in an optical cavity. Phys. Rev. A 92, 063808 (2015).

    Article  ADS  Google Scholar 

  41. Arnold, K. J., Baden, M. P. & Barrett, M. D. Self-organization threshold scaling for thermal atoms coupled to a cavity. Phys. Rev. Lett. 109, 153002 (2012).

    Article  ADS  Google Scholar 

  42. Niedenzu, W., Grießer, T. & Ritsch, H. Kinetic theory of cavity cooling and self-organisation of a cold gas. Europhys. Lett. 96, 43001 (2011).

    Article  ADS  Google Scholar 

  43. Landau, L. in On the Theory of Phase Transitions 193–216 (Elsevier, 1965).

  44. Zhang, X. et al. Observation of a superradiant quantum phase transition in an intracavity degenerate Fermi gas. Science 373, 1359–1362 (2021).

    Article  ADS  Google Scholar 

  45. Néel, L. Thermoremanent magnetization of fine powders. Rev. Mod. Phys. 25, 293–295 (1953).

    Article  ADS  Google Scholar 

  46. Knobel, M. et al. Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J. Nanosci. Nanotechnol. 8, 2836–2857 (2008).

    Article  Google Scholar 

  47. Mottl, R. et al. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions. Science 336, 1570–1573 (2012).

    Article  ADS  Google Scholar 

  48. Helson, V. et al. Density-wave ordering in a unitary Fermi gas with photon-mediated interactions. Nature 618, 716–720 (2023).

    Article  ADS  Google Scholar 

  49. Vukics, A., Dombi, A., Fink, J. M. & Domokos, P. Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition. Quantum 3, 150 (2019).

    Article  Google Scholar 

  50. Di Terlizzi, I. et al. Variance sum rule for entropy production. Science 383, 971–976 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  51. Su, L. et al. Fast single atom imaging for optical lattice arrays. Nat. Commun. 16, 1017 (2025).

    Article  Google Scholar 

  52. Luo, C. et al. Momentum-exchange interactions in a Bragg atom interferometer suppress Doppler dephasing. Science 384, 551–556 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  53. Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).

    Article  ADS  Google Scholar 

  54. Kroeze, R. M. et al. Directly observing replica symmetry breaking in a vector quantum-optical spin glass. Preprint at https://doi.org/10.48550/arXiv.2311.04216 (2024).

  55. Ye, M. et al. Universal quantum optimization with cold atoms in an optical cavity. Phys. Rev. Lett. 131, 103601 (2023).

    Article  ADS  Google Scholar 

  56. Torggler, V., Aumann, P., Ritsch, H. & Lechner, W. A quantum N-queens solver. Quantum 3, 149 (2019).

    Article  Google Scholar 

  57. Anikeeva, G. et al. Number partitioning with Grover’s algorithm in central spin systems. PRX Quantum 2, 020319 (2021).

    Article  ADS  Google Scholar 

  58. Ilias, T., Yang, D., Huelga, S. F. & Plenio, M. B. Criticality-enhanced quantum sensing via continuous measurement. PRX Quantum 3, 010354 (2022).

    Article  ADS  Google Scholar 

  59. Fernández-Lorenzo, S. & Porras, D. Quantum sensing close to a dissipative phase transition: symmetry breaking and criticality as metrological resources. Phys. Rev. A 96, 013817 (2017).

    Article  ADS  Google Scholar 

  60. Tsang, M. Quantum transition-edge detectors. Phys. Rev. A 88, 021801 (2013).

    Article  ADS  Google Scholar 

  61. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Song for assistance in the laboratory. We acknowledge support from the AFOSR (grant no. FA9550-1910328 (D.M.S.-K.)) and Young Investigator Prize grant no. 21RT0751 (A.A.-G.), from ARO through the MURI program (grant no. W911NF-20-1-0136 (D.M.S.-K.)), from DARPA (grant no. W911NF2010090 (D.M.S.-K.)), from the NSF (QLCI program through grant no. OMA-2016245 (D.M.S.-K.) and CAREER award no. 2047380 (A.A.-G.)), from the David and Lucile Packard Foundation (A.A.-G.), and from the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator (D.M.S.-K.). J.H. acknowledges support from the Department of Defense through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program. C.C.R. acknowledges support from the European Union’s Horizon Europe programme under the Marie-Skłodowska Curie Action LIME (grant no. 101105916).

Author information

Authors and Affiliations

Authors

Contributions

J.H., Y.-H.L., Z.Y. and T.X. contributed to building the experimental setup, performing the experiments and analysing the data. C.C.R., S.J.M., A.A.-G., D.M.S.-K. and J.H. contributed to the theoretical model. Z.Y. and D.M.S.-K. conceived the experiments. All authors contributed to the writing of the manuscript and discussed the results. All work was supervised by D.M.S.-K. and A.A.-G.

Corresponding author

Correspondence to Dan M. Stamper-Kurn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Peter Domokos and Jean-Philippe Brantut for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic of the heterodyne detection system.

The pump and LO beams originate from separate fibres and are combined at a polarizing beamsplitter (PBS) with orthogonal polarizations. They are then both sent into a single-mode fibre, which ensures that they are mode-matched at the fibre output. Upon emerging from the fibre, they pass through a half-waveplate (labeled as λ/2) at 45 and are split at another PBS. Each output port of the last PBS is directed to a sensor on a balanced photodetector, which subtracts the signals on the two sensors. The output voltage of the detector is proportional to \({E}_{{\rm{LO}}}{E}_{{\rm{cav}}}\sin (\varDelta \omega t+\vartheta +\phi )\) where ELO is the LO electric field amplitude, Ecav is the cavity electric field amplitude, Δω = 2π × 20 MHz is the frequency difference between the pump and LO, ϕ is the phase of the LO relative to the pump, and ϑ is the phase of the cavity field relative to the pump.

Extended Data Fig. 2 Example time traces of the detected field in each of the three pumping frames.

a, Scatter plots of the complex cavity field before phase correction. The real (Re(\(\langle \hat{c}_\vartheta \rangle\))) and imaginary (Im(\(\langle \hat{c}_\vartheta \rangle\))) quadratures of the detected field with respect to the average phase of the cavity emission, ϑ, are plotted. Lighter points indicate earlier times and darker points indicate later times. From these data, the angle ϕ of the major axis in each frame is determined by PCA. b, Detected field after rotation by ϕ. Because PCA only determines the angle of the major axis up to a π rotation, in the antinode frames, we define the average projection of the field onto the axis defined by ϑ to be positive. The sign of the node frame is determined by comparing ϑnode to the angle linearly interpolated from ϑfirst frame and ϑlast frame and assuming that the two angles are within π/2 of each other. c, Time traces of cproj. Values of cproj are obtained by projecting the phase-corrected measurements of \(\hat{c}\) (shown in (b)) onto the ϑ-axis. The shaded dark purple regions indicate the shot noise level. Data shown in figure were taken with N = 18, Δpa = − 2π × 80 MHz, Δpc = − 2π × 2.15 MHz, and Ω = 2π × 63.9 MHz.

Extended Data Fig. 3 Dependence of the critical point on Δpa.

a, Data showing the bifurcation for 20 atoms at four values of Δpa. Markers represent the maxima of the fitted Boltzmann probability distribution of cproj. Shaded areas show the width of the distribution at half-maximum. Different pump-cavity detunings were chosen for each setting of Δpa to compensate for the different dispersive shifts on the cavity resonance frequency for 20 atoms placed at the nodes. The values used are Δpc = − 2π × {1.79, 1.9, 2.02, 2.26} MHz corresponding to Δpa = − 2π × {100, 80, 60, 40} MHz. These correspond approximately to Δpc(T) − 2π × 1.6 MHz when accounting for the shift that thermal atoms put on the cavity resonance frequency. b, Extracted Ωc (circles) exhibit an approximately linear dependence on Δpa. The dashed line shows a fit to equation (4), which gives a fitted temperature of T = 66 ± 8 μK. The shaded region shows the prediction of equation (4) for the independent temperature measurement. Error bars are smaller than the markers.

Extended Data Fig. 4 Interpolation of Ωc from Boltzmann fits.

a, Data showing the bifurcation for 20 atoms at Δpa = 2π × 80 MHz. Markers represent the maxima of the fitted Boltzmann probability distribution of cproj. Blue shaded areas show the width of the distribution at half-maximum. Bottom insets show histograms (light blue) and Boltzmann fits (dark blue) for values of Ω in the gray shaded region. b, By fitting experimentally obtained distributions, such as those shown in (a), to the Boltzmann distribution, we extract the parameter B at different values of Ω for various N. The N shown here correspond to the data shown in Fig. 2a of the main text. The value of Ωc (stars) is linearly interpolated from the two points directly on either side of the B = 0 line. Error bars on the fitted B values are smaller than the markers. Lines are guides to the eye.

Supplementary information

Supplementary Information

Supplementary Sections I–IV, Equations (1)–(34) and Fig. 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, J., Lu, YH., Xiang, T. et al. Optomechanical self-organization in a mesoscopic atom array. Nat. Phys. 21, 1071–1077 (2025). https://doi.org/10.1038/s41567-025-02916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02916-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing