Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic phase transition in 1T-TaS2 via a thermal quench

Abstract

Ultrafast light–matter interaction has emerged as a mechanism to control the macroscopic properties of quantum materials. However, technological applications of photoinduced phases are limited by their ultrashort lifetimes and the low temperatures required for their stabilization. One such phase is the hidden metallic charge density wave state in 1T-TaS2, whose origin and stability above cryogenic temperatures remain the subject of debate. Here, we demonstrate that this phase can be stabilized at thermal equilibrium by accessing a mixed charge density wave order regime through thermal quenching. Using X-ray high-dynamic-range reciprocal space mapping and scanning tunnelling spectroscopy, we reveal the coexistence of commensurate charge density wave and hidden metallic charge density wave domains up to 210 K. Our findings show that each order parameter breaks basal plane mirror symmetry with different chiral orientations and induces out-of-plane unit cell tripling in the hidden phase. Despite metallic domain walls and a finite density of states, the bulk resistance remains insulating due to charge density wave stacking disorder. Our results establish the hidden state as a thermally stable phase and introduce an alternative mechanism for switchable metallic behaviour in thin flakes of 1T-TaS2 and similar materials with competing phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermal quench into the mixed-CDW phase.
Fig. 2: Temperature dependence of the mixed-CDW state.
Fig. 3: Electronic structure of the mixed-CDW phase.
Fig. 4: Dynamic phase transition with two competing order parameters in 1T-TaS2.

Similar content being viewed by others

Data availability

The X-ray scattering data, STM data and resistivity data generated in this study are available via Zenodo at https://doi.org/10.5281/zenodo.15374771 (ref. 69).

References

  1. Thompson, A. H., Gamble, R. F. & Revelli, J. F. Transitions between semiconducting and metallic phases in 1-T TaS2. Solid State Commun. 9, 981–985 (1971).

    Article  ADS  Google Scholar 

  2. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Article  ADS  Google Scholar 

  3. Fazekas, P. & Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Philos. Mag. B 39, 229–244 (1979).

    Article  ADS  Google Scholar 

  4. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

    Article  ADS  Google Scholar 

  5. Spijkerman, A., de Boer, J. L., Meetsma, A., Wiegers, G. A. & van Smaalen, S. X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3 + 2)-dimensional superspace. Phys. Rev. B 56, 13757–13767 (1997).

    Article  ADS  Google Scholar 

  6. Zong, A. et al. Ultrafast manipulation of mirror domain walls in a charge density wave. Sci. Adv. 4, eaau5501 (2018).

    Article  ADS  Google Scholar 

  7. Fichera, B. T. et al. Second harmonic generation as a probe of broken mirror symmetry. Phys. Rev. B 101, 241106 (2020).

    Article  ADS  Google Scholar 

  8. Luo, X. et al. Ultrafast modulations and detection of a ferro-rotational charge density wave using time-resolved electric quadrupole second harmonic generation. Phys. Rev. Lett. 127, 126401 (2021).

    Article  ADS  Google Scholar 

  9. Yang, H. F. et al. Visualization of chiral electronic structure and anomalous optical response in a material with chiral charge density waves. Phys. Rev. Lett. 129, 156401 (2022).

    Article  ADS  Google Scholar 

  10. Campbell, B. et al. Nanoscale electronic inhomogeneities in 1T-TaS2. Phys. Rev. Mater. 8, 034002 (2024).

    Article  Google Scholar 

  11. Sept, D. & Tuszyński, J. A. Inhomogeneous nucleation in first-order phase transitions. Phys. Rev. E 50, 4906–4910 (1994).

    Article  ADS  Google Scholar 

  12. Binder, K. Theory of first-order phase transitions. Rep. Prog. Phys. 50, 783 (1987).

    Article  ADS  Google Scholar 

  13. Domröse, T. et al. Light-induced hexatic state in a layered quantum material. Nat. Mater. 22, 1345–1351 (2023).

    Article  ADS  Google Scholar 

  14. Oxtoby, D. W. Nucleation of first-order phase transitions. Acc. Chem. Res. 31, 91–97 (1998).

    Article  Google Scholar 

  15. Salzmann, B. et al. Observation of the metallic mosaic phase in 1T-TaS2 at equilibrium. Phys. Rev. Mater. 7, 064005 (2023).

    Article  Google Scholar 

  16. Zhao, Y. et al. Spectroscopic visualization and phase manipulation of chiral charge density waves in 1T-TaS2. Nat. Commun. 14, 2223 (2023).

    Article  ADS  Google Scholar 

  17. Sung, S. et al. Two-dimensional charge order stabilized in clean polytype heterostructures. Nat. Commun. 13, 413 (2022).

    Article  ADS  Google Scholar 

  18. Husremović, S. et al. Encoding multistate charge order and chirality in endotaxial heterostructures. Nat. Commun. 14, 6031 (2023).

    Article  ADS  Google Scholar 

  19. Huang, W. C. et al. Ultrafast optical switching to a heterochiral charge-density wave state. Preprint at https://arxiv.org/abs/2405.20872 (2024).

  20. Mañas-Valero, S., Huddart, B. M., Lancaster, T., Coronado, E. & Pratt, F. L. Quantum phases and spin liquid properties of 1T-TaS2. npj Quantum Mater. 6, 69 (2021).

    Article  ADS  Google Scholar 

  21. Bozin, E. S. et al. Crystallization of polarons through charge and spin ordering transitions in 1T-TaS2. Nat. Commun. 14, 7055 (2023).

    Article  ADS  Google Scholar 

  22. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  ADS  Google Scholar 

  23. Stahl, Q. et al. Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2. Nat. Commun. 11, 1247 (2020).

    Article  ADS  Google Scholar 

  24. Vaskivskyi, I. et al. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2. Sci. Adv. 1, e1500168 (2015).

    Article  ADS  Google Scholar 

  25. Hollander, M. J. et al. Electrically driven reversible insulator–metal phase transition in 1T-TaS2. Nano Lett. 15, 1861–1866 (2015).

    Article  ADS  Google Scholar 

  26. Ma, L. et al. A metallic mosaic phase and the origin of mott-insulating state in 1T-TaS2. Nat. Commun. 7, 10956 (2016).

    Article  ADS  Google Scholar 

  27. Cho, D. et al. Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Commun. 7, 10453 (2016).

    Article  ADS  Google Scholar 

  28. Venturini, R. et al. Ultraefficient resistance switching between charge ordered phases in 1T-TaS2 with a single picosecond electrical pulse. Appl. Phys. Lett. 120, 253510 (2022).

    Article  ADS  Google Scholar 

  29. Tsen, A. W. et al. Structure and control of charge density waves in two-dimensional 1T-TaS2. Proc. Natl Acad. Sci. USA 112, 15054–15059 (2015).

    Article  ADS  Google Scholar 

  30. Gerasimenko, Y. A., Karpov, P., Vaskivskyi, I., Brazovskii, S. & Mihailovic, D. Intertwined chiral charge orders and topological stabilization of the light-induced state of a prototypical transition metal dichalcogenide. npj Quantum Mater. 4, 32 (2019).

    Article  ADS  Google Scholar 

  31. Maklar, J. et al. Coherent light control of a metastable hidden state. Sci. Adv. 9, eadi4661 (2023).

    Article  Google Scholar 

  32. Ravnik, J. et al. A time-domain phase diagram of metastable states in a charge ordered quantum material. Nat. Commun. 12, 2323 (2021).

    Article  ADS  Google Scholar 

  33. Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015).

    Article  ADS  Google Scholar 

  34. Mutka, H., Zuppiroli, L., Molinié, P. & Bourgoin, J. C. Charge-density waves and localization in electron-irradiated 1T-TaS2. Phys. Rev. B 23, 5030–5037 (1981).

    Article  ADS  Google Scholar 

  35. Zhang, W. et al. Visualizing the evolution from Mott insulator to Anderson insulator in Ti-doped 1T-TaS2. npj Quantum Mater. 7, 8 (2022).

  36. Sun, K. et al. Hidden CDW states and insulator-to-metal transition after a pulsed femtosecond laser excitation in layered chalcogenide 1T-TaS2−xSex. Sci. Adv. 4, eaas9660 (2018).

    Article  ADS  Google Scholar 

  37. Gao, F. Y. et al. Snapshots of a light-induced metastable hidden phase driven by the collapse of charge order. Sci. Adv. 8, eabp9076 (2022).

    Article  ADS  Google Scholar 

  38. Mante, P.-A. et al. Photo-induced hidden phase of 1T-TaS2 with tunable lifetime. Preprint at https://arxiv.org/abs/2203.13509 (2022).

  39. de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

    Article  ADS  Google Scholar 

  40. Mihailovic, D. et al. Ultrafast non-thermal and thermal switching in charge configuration memory devices based on 1T-TaS2. Appl. Phys. Lett. 119, 013106 (2021).

    Article  ADS  Google Scholar 

  41. Mraz, A. et al. Charge configuration memory devices: energy efficiency and switching speed. Nano Lett. 22, 4814–4821 (2022).

    Article  ADS  Google Scholar 

  42. Devidas, T. R. et al. Spontaneous conducting boundary channels in 1T-TaS2. Preprint at https://arxiv.org/abs/2405.02036 (2024).

  43. Ravnik, J., Vaskivskyi, I., Mertelj, T. & Mihailovic, D. Real-time observation of the coherent transition to a metastable emergent state in 1T-TaS2. Phys. Rev. B 97, 075304 (2018).

    Article  ADS  Google Scholar 

  44. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  ADS  Google Scholar 

  45. Tanda, S., Sambongi, T., Tani, T. & Tanaka, S. X-ray study of charge density wave structure in 1T-TaS2. J. Phys. Soc. Jpn 53, 476–479 (1984).

    Article  ADS  Google Scholar 

  46. Haupt, K. et al. Ultrafast metamorphosis of a complex charge-density wave. Phys. Rev. Lett. 116, 016402 (2016).

    Article  ADS  Google Scholar 

  47. Petocchi, F. et al. Mott versus hybridization gap in the low-temperature phase of 1T-TaS2. Phys. Rev. Lett. 129, 016402 (2022).

    Article  ADS  Google Scholar 

  48. Wang, Y. D. et al. Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 11, 4215 (2020).

    Article  ADS  Google Scholar 

  49. Ritschel, T., Berger, H. & Geck, J. Stacking-driven gap formation in layered 1T-TaS2. Phys. Rev. B 98, 195134 (2018).

    Article  ADS  Google Scholar 

  50. Lee, S.-H., Goh, J.-S. & Cho, D. Origin of the insulating phase and first-order metal-insulator transition in 1T-TaS2. Phys. Rev. Lett. 122, 106404 (2019).

    Article  ADS  Google Scholar 

  51. Butler, C. J., Yoshida, M., Hanaguri, T. & Iwasa, Y. Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nat. Commun. 11, 2477 (2020).

    Article  ADS  Google Scholar 

  52. Ritschel, T. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 11, 328–331 (2015).

    Article  Google Scholar 

  53. Cho, D. et al. Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS2. Nat. Commun. 8, 392 (2017).

    Article  ADS  Google Scholar 

  54. Park, J.-W., Lee, J. & Yeom, H.-W. Zoology of domain walls in quasi-2D correlated charge density wave of 1T-TaS2. npj Quantum Mater. 6, 32 (2021).

    Article  ADS  Google Scholar 

  55. Park, J.-W., Lee, J. & Yeom, H.-W. Stacking and spin order in a Van der Waals Mott insulator 1T-TaS2. Commun. Mater. 4, 99 (2023).

    Article  Google Scholar 

  56. Perfetti, L., Gloor, T. A., Mila, F., Berger, H. & Grioni, M. Unexpected periodicity in the quasi-two-dimensional Mott insulator 1T-TaS2 revealed by angle-resolved photoemission. Phys. Rev. B 71, 153101 (2005).

    Article  ADS  Google Scholar 

  57. Kim, J.-J., Yamaguchi, W., Hasegawa, T. & Kitazawa, K. Observation of Mott localization gap using low temperature scanning tunneling spectroscopy in commensurate 1T – TaSa2. Phys. Rev. Lett. 73, 2103–2106 (1994).

    Article  ADS  Google Scholar 

  58. Cho, D., Cho, Y.-H., Cheong, S.-W., Kim, K.-S. & Yeom, H.-W. Interplay of electron-electron and electron-phonon interactions in the low-temperature phase of 1T-TaS2. Phys. Rev. B 92, 085132 (2015).

    Article  ADS  Google Scholar 

  59. Liu, J. et al. Nonvolatile optical control of interlayer stacking order in 1T-TaS2. Preprint at https://arxiv.org/abs/2405.02831 (2024).

  60. Sun, Z. & Millis, A. J. Transient trapping into metastable states in systems with competing orders. Phys. Rev. X 10, 021028 (2020).

    Google Scholar 

  61. Sefidkhani, Y. M., de la Torre, A. & Fiete, G. A. Metastability in coexisting competing orders. Preprint at https://arxiv.org/abs/2411.17871 (2024).

  62. McMillan, W. L. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187–1196 (1975).

    Article  ADS  Google Scholar 

  63. Del Re, L., Fabrizio, M. & Tosatti, E. Nonequilibrium and nonhomogeneous phenomena around a first-order quantum phase transition. Phys. Rev. B 93, 125131 (2016).

    Article  ADS  Google Scholar 

  64. Burri, C. et al. Imaging of electrically controlled van der Waals layer stacking in 1T-TaS2. Preprint at https://arxiv.org/abs/2411.04830 (2024).

  65. Jarc, G. et al. Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2. Nature 622, 487–492 (2023).

    Article  ADS  Google Scholar 

  66. Chandran, A., Erez, A., Gubser, S. S. & Sondhi, S. L. Kibble-Zurek problem: universality and the scaling limit. Phys. Rev. B 86, 064304 (2012).

    Article  ADS  Google Scholar 

  67. Du, K. et al. Kibble–Zurek mechanism of Ising domains. Nat. Phys. https://doi.org/10.1038/s41567-023-02112-5 (2023).

  68. Wu, H. et al. Reversible non-volatile electronic switching in a near-room-temperature Van der Waals ferromagnet. Nat. Commun. https://doi.org/10.1038/s41467-024-46862-z (2024).

  69. Plumb, K. kplumb/delaTorre2025DynamicPhaseTransition: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.15374771 (2025).

Download references

Acknowledgements

A.d.l.T. acknowledges a helpful conversation with C. Ropers, M. Buchold, Y. Cao, M. Claassen, S. Gerber and D. M. Kennes. Work performed at Brown University by A.d.l.T., Q.W. and K.W.P. was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (Award No. DE-SC0021223). P.M.V., S.M.H. and D.B. acknowledge support from the National Science Foundation (NSF; Award Nos. DMR 2226097 and DMR 2226098) and the Mason Graduate Division’s Presidential Scholarship Program. G.A.F. and Y.M. gratefully acknowledge support from the NSF (Award No. DMR-2114825). G.A.F. acknowledges support from the Alexander von Humboldt Foundation. Research conducted at the Center for High-Energy X-ray Science is supported by the NSF (BIO, ENG and MPS Directorates; Award Nos DMR-1829070 and DMR-2342336).

Author information

Authors and Affiliations

Authors

Contributions

A.d.l.T and Q.W. synthesized and characterized the single-crystal samples. A.d.l.T., Q.W., K.W.P. and J.P.C.R. performed the high-dynamic-range X-ray scattering measurements. All X-ray experimental data were analysed and interpreted by A.d.l.T. and K.W.P. B.C., J.V.R. and S.M.H. performed and analysed the STM and STS measurements. D.B. and P.M.V. performed the cryo-Raman experiments. Y.M. and G.A.F. performed the Landau–Ginzburg free-energy calculations. A.d.l.T. and. K.W.P. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Alberto de la Torre or Kemp W. Plumb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Dragan Mihailovic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cooling rate dependence of the mixed-CDW state.

a Cooling rate simulations and reciprocal space maps and CDW state schematic b-d for three different scenarios: b slow cool from 400 K, c quench from 300 K, and d, quench from 400 K. Only the third case shown in d results in the emergence of the mixed CDW state.

Extended Data Fig. 2 Evidence for a two-domain NC-CDW phase.

a. Reciprocal space maps parallel to the [HK0] plane (δL = .5, L = 0) at T= 300 K for an as-grown sample. b. Reciprocal space maps parallel to the [HK0] plane (δL = .5, L = 0) at T= 300 K after a quench. Red and blue markers highlight the original NC-CDW and the second set of satellite peaks that emerge after the quench, respectively. Green dashed lines highlight the a* and b* directions. c. Reciprocal space map parallel to the [H0L] plane for the as-grown sample (δK =.15, K= 0). d. Reciprocal space map parallel to the [H0L] plane for the quenched sample (δK =.15, K= 0). Red and blue arrows point to two sets of out-of-plane Bragg peaks corresponding to the NC-CDW. The L dependence and central value of these peaks are different than those seen in the mixed phase sample for the H- CDW phase.

Extended Data Fig. 3 Temperature dependence of the CDW Bragg peaks.

Circular and square markers show the temperature dependence in cooling (blue) and warming (red) of two CDW Bragg peaks of opposite chirality in quenched samples of 1T-TaS2.

Extended Data Fig. 4 Chiral domains in STM.

a STM data with atomic resolution in two domains with different chirality in Fig. 3b. b The high-intensity fundamental peaks (qlattice) are highlighted in blue. The satellite peaks (qCDW, yellow) are associated with the mixed-CDW phase.The resolution of our STM measurements prevents us from resolving the difference in the magnitude and in-plane rotation of q between the C-CDW and H-CDW.

Extended Data Fig. 5 Raman characterization.

Unpolarized Raman spectra in a quenched (red) and as-grown (blue) at 5 K.

Supplementary information

Supplementary Information

Supplementary discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Torre, A., Wang, Q., Masoumi, Y. et al. Dynamic phase transition in 1T-TaS2 via a thermal quench. Nat. Phys. 21, 1267–1274 (2025). https://doi.org/10.1038/s41567-025-02938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02938-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing