Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capillary interactions drive the self-organization of bacterial colonies

Abstract

Many bacteria inhabit thin water layers on solid surfaces. These thin films occur both naturally—in soils, on hosts and on textiles—and in the laboratory on agar hydrogels. In these environments, cells experience capillary forces, but it is unclear how these forces shape bacterial collective behaviour. Here we show that the water menisci formed around bacteria lead to capillary attraction between cells while still allowing them to slide past one another. We develop an experimental apparatus that allows us to control bacterial collective behaviour by varying the strength and range of capillary forces. Combining three-dimensional imaging and cell tracking with agent-based modelling, we demonstrate that capillary attraction organizes rod-shaped bacteria into densely packed nematic groups and influences their collective dynamics and morphologies. Our results suggest that capillary forces may be a ubiquitous physical ingredient in shaping microbial communities in partially hydrated environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Water menisci around bacteria and colloidal particles on a hydrated substrate.
Fig. 2: Capillary forces promote mergers and hinder separation of bacterial cells.
Fig. 3: Capillary attraction and cell motility lead to multiple phases of collective cell organization.
Fig. 4: Water availability controls the organization of colonies of M. xanthus.

Similar content being viewed by others

Data availability

All data are available from the authors upon request. Source data are provided with this paper.

Code availability

Simulation and analysis codes are available via Zenodo at https://doi.org/10.5281/zenodo.12745141 (ref. 59). Source code of an interactive simulation application is available via GitHub at https://github.com/f-chenyi/water_app.

References

  1. Or, D., Smets, B. F., Wraith, J. M., Dechesne, A. & Friedman, S. P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Adv. Water Res. 30, 1505–1527 (2007).

    Article  Google Scholar 

  2. Stovicek, A., Azatyan, A., Soares, M. I. M. & Gillor, O. The impact of hydration and temperature on bacterial diversity in arid soil mesocosms. Front. Microbiol. 8, 1078 (2017).

    Article  Google Scholar 

  3. Tuller, M. & Or, D. Water films and scaling of soil characteristic curves at low water contents. Water Resour. Res. 41, W9403 (2005).

    Article  ADS  Google Scholar 

  4. Reichenbach, H. The ecology of the myxobacteria. Environ. Microbiol. 1, 15–21 (1999).

    Article  Google Scholar 

  5. Beattie, G. A. Water relations in the interaction of foliar bacterial pathogens with plants. Annu. Rev. Phytopathol. 49, 533–555 (2011).

    Article  Google Scholar 

  6. Møllebjerg, A., Palmén, L. G., Gori, K. & Meyer, R. L. The bacterial life cycle in textiles is governed by fiber hydrophobicity. Microbiol. Spectr. 9, e01185–21 (2021).

    Article  Google Scholar 

  7. Shinn, L. E. A cinematographic analysis of the motion of colonies of B. alvei. J. Bacteriol. 36, 419–422 (1938).

    Article  Google Scholar 

  8. Berg, H. C. Swarming motility: it better be wet. Curr. Biol. 15, R599–R600 (2005).

    Article  Google Scholar 

  9. Ping, L., Wu, Y., Hosu, B. G., Tang, J. X. & Berg, H. C. Osmotic pressure in a bacterial swarm. Biophys. J. 107, 871–878 (2014).

    Article  ADS  Google Scholar 

  10. Wang, Q., Suzuki, A., Mariconda, S., Porwollik, S. & Harshey, R. M. Sensing wetness: a new role for the bacterial flagellum. EMBO J. 24, 2034–2042 (2005).

    Article  Google Scholar 

  11. Yang, A., Tang, W. S., Si, T. & Tang, J. X. Influence of physical effects on the swarming motility of Pseudomonas aeruginosa. Biophys. J. 112, 1462–1471 (2017).

    Article  ADS  Google Scholar 

  12. Zhang, R., Turner, L. & Berg, H. C. The upper surface of Escherichia coli swarm is stationary. Proc. Natl Acad. Sci. USA 107, 288–290 (2009).

    Article  ADS  Google Scholar 

  13. Partridge, J. D. & Harshey, R. M. More than motility: Salmonella flagella contribute to overriding friction and facilitating colony hydration during swarming. J. Bacteriol. 195, 919–929 (2013).

    Article  Google Scholar 

  14. Spormann, A. M. Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol. Mol. Biol. Rev. 63, 621–641 (1999).

    Article  Google Scholar 

  15. Henrichsen, J. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36, 478–503 (1972).

    Article  Google Scholar 

  16. Mignot, T., Shaevitz, J. W., Hartzell, P. W. & Zusman, D. R. Evidence that focal adhesion complexes power bacterial gliding motility. Science 315, 853–856 (2007).

    Article  ADS  Google Scholar 

  17. Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).

    Article  ADS  Google Scholar 

  18. Semmler, A. B., Whitchurch, C. B. & Mattick, J. S. A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145, 2863–2873 (1999).

    Article  Google Scholar 

  19. Turnbull, L. & Whitchurch, C. B. in Pseudomonas Methods and Protocols (eds Filloux, A. & Ramos, J. L.) 73–86 (Humana Press, 2014).

  20. Ramos, C. H. et al. The environment topography alters the way to multicellularity in Myxococcus xanthus. Sci. Adv. 7, eabh2278 (2021).

    Article  ADS  Google Scholar 

  21. Kralchevsky, P. A. & Nagayama, K. Capillary forces between colloidal particles. Langmuir 10, 23–36 (1994).

    Article  Google Scholar 

  22. Cavallo, M., Botto, L., Lewandowsi, E. P., Wang, M. & Stebe, K. J. Curvature-driven capillary migration and assembly of rod-like particles. Proc. Natl Acad. Sci. USA 108, 20923–20928 (2011).

    Article  ADS  Google Scholar 

  23. Gudavadze, I. & Florin, E.-L. Normal capillary forces on a spherical particle protruding from a thin liquid film and its application to swarming bacteria. Colloids Surf. A 636, 128176 (2022).

    Article  Google Scholar 

  24. De Lazzer, A., Dreyer, M. & Rath, H. J. Particle–surface capillary forces. Langmuir 15, 4551–4559 (1999).

    Article  Google Scholar 

  25. Tecon, R. & Or, D. Bacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness. Sci. Rep. 6, 19409 (2016).

    Article  ADS  Google Scholar 

  26. Dechesne, A., Or, D., Gulez, G. & Smets, B. F. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions. Appl. Environ. Microbiol. 74, 5195–5200 (2008).

    Article  ADS  Google Scholar 

  27. Copenhagen, K., Alert, R., Wingreen, N. S. & Shaevitz, J. W. Topological defects promote layer formation in Myxococcus xanthus colonies. Nat. Phys. 17, 211–215 (2021).

    Article  Google Scholar 

  28. Sabass, B., Koch, M. D., Liu, G., Stone, H. A. & Shaevitz, J. W. Force generation by groups of migrating bacteria. Proc. Natl Acad. Sci. USA 114, 7266–7271 (2017).

    Article  ADS  Google Scholar 

  29. Clausen, M., Jakovljevic, V., Søgaard-Andersen, L. & Maier, B. High-force generation is a conserved property of type IV pilus systems. J. Bacteriol. 191, 4633–4638 (2009).

    Article  Google Scholar 

  30. Balagam, R. et al. Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility. PLoS Comput. Biol. 10, e1003619 (2014).

    Article  Google Scholar 

  31. Ginelli, F., Peruani, F., Bar, M. & Chaté, H. Large-scale collective properties of self-propelled rods. Phys. Rev. Lett. 104, 184502 (2010).

    Article  ADS  Google Scholar 

  32. Grobmann, R., Peruani, F. & Bar, M. Mesoscale pattern formation of self-propelled rods with velocity reversal. Phys. Rev. E 94, 050602 (2016).

    Article  ADS  Google Scholar 

  33. Chaté, H., Ginelli, F. & Montagne, R. Simple model for active nematics: quasi-long-range order and giant fluctuations. Phys. Rev. Lett. 96, 180602 (2006).

    Article  ADS  Google Scholar 

  34. Ngo, S. et al. Large-scale chaos and fluctuations in active nematics. Phys. Rev. Lett. 113, 038302 (2014).

    Article  ADS  Google Scholar 

  35. Bar, M., Grobmann, R., Heidenreich, S. & Peruani, F. Self-propelled rods: insights and perspectives for active matter. Annu. Rev. Condens. Matter Phys. 11, 441–466 (2020).

    Article  ADS  Google Scholar 

  36. Peruani, F. et al. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Phys. Rev. Lett. 108, 098102 (2012).

    Article  ADS  Google Scholar 

  37. Starruß, J. et al. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus. Interface Focus 2, 774–785 (2012).

    Article  Google Scholar 

  38. Thutupalli, S., Sun, M., Bunyak, F., Palaniappan, K. & Shaevitz, J. W. Directional reversals enable Myxococcus xanthus cells to produce collective one-dimensional streams during fruiting-body formation. J. R. Soc. Interface 12, 20150049 (2015).

    Article  Google Scholar 

  39. Balagam, R. & Igoshin, O. A. Mechanism for collective cell alignment in Myxococcus xanthus bacteria. PLoS Comput. Biol. 11, e1004474 (2015).

    Article  ADS  Google Scholar 

  40. Balagam, R. et al. Emergent myxobacterial behaviors arise from reversal suppression induced by kin contacts. mSystems 6, e0072021 (2021).

    Article  Google Scholar 

  41. Janulevicius, A., van Loosdrecht, M. & Picioreanu, C. Short-range guiding can result in the formation of circular aggregates in Myxobacteria populations. PLoS Comput. Biol. 11, e1004213 (2015).

    Article  Google Scholar 

  42. Anderson, R. L. & Ordal, E. J. Cytophaga succinicans sp. n., a facultatively anaerobic, aquatic myxobacterium. J. Bacteriol. 81, 130–138 (1961).

    Article  Google Scholar 

  43. Liu, G. et al. Self-driven phase transitions drive Myxococcus xanthus fruiting body formation. Phys. Rev. Lett. 122, 248102 (2019).

    Article  ADS  Google Scholar 

  44. Han, E. et al. Local polar order controls mechanical stress and triggers layer formation in Myxococcus xanthus colonies. Nat. Commun. 16, 952 (2025).

    Article  ADS  Google Scholar 

  45. Muñoz-Dorado, J., Marcos-Torres, F. J., García-Bravo, E., Moraleda-Muñoz, A. & Pérez, J. Myxobacteria: moving, killing, feeding, and surviving together. Front. Microbiol. 7, 781 (2016).

    Article  Google Scholar 

  46. Curtis, P. D., Taylor, R. G., Welch, R. D. & Shimkets, L. J. Spatial organization of Myxococcus xanthus during fruiting body formation. J. Bacteriol. 189, 9126–9130 (2007).

    Article  Google Scholar 

  47. Jose, A. et al. Immobility of isolated swarmer cells due to local liquid depletion. Commun. Phys. 8, 88 (2025).

    Article  Google Scholar 

  48. Søgaard-Andersen, L. et al. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Mol. Microbiol. 48, 1–8 (2003).

    Article  Google Scholar 

  49. Kaiser, D. & Welch, R. Dynamics of fruiting body morphogenesis. J. Bacteriol. 186, 919–927 (2004).

    Article  Google Scholar 

  50. Jelsbak, L. & Søgaard-Andersen, L. Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. Curr. Opin. Microbiol. 3, 637–642 (2000).

    Article  Google Scholar 

  51. Sozinova, O., Jiang, Y., Kaiser, D. & Alber, M. A three-dimensional model of myxobacterial aggregation by contact-mediated interactions. Proc. Natl Acad. Sci. USA 102, 11308–11312 (2005).

    Article  ADS  Google Scholar 

  52. Kearns, D. B. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8, 634–644 (2010).

    Article  Google Scholar 

  53. Islam, S. T. et al. Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion. PLoS Biol. 46, 143–154 (2020).

    Google Scholar 

  54. Angelini, T. E., Roper, M., Kolter, R., Weitz, D. A. & Brenner, M. P. Bacillus subtilis spreads by surfing on waves of surfactant. Proc. Natl Acad. Sci. USA 106, 18109–18113 (2009).

    Article  ADS  Google Scholar 

  55. Warren, M. R. et al. Spatiotemporal establishment of dense bacterial colonies growing on hard agar. eLife 8, e41093 (2019).

    Article  Google Scholar 

  56. Alnæs, M. et al. The FEniCS project version 1.5. Arch. Num. Softw. 3, 9–23 (2015).

    Google Scholar 

  57. Lin, C. J. & More, J. J. Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9, 1100–1127 (1999).

    Article  MathSciNet  Google Scholar 

  58. Kumar, A. Isotropic finite-differences. J. Comput. Phys. 21, 109–118 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  59. Black, M. & Fei, C. Code for: capillary interactions drive the self-organization of bacterial colonies. Zenodo https://doi.org/10.5281/zenodo.12745141 (2024).

Download references

Acknowledgements

We thank members of the Shaevitz and Wingreen groups for helpful discussions. We thank M. McBride for the gift of F. johnsoniae strains and for helpful discussions. We thank L. Søgaard-Andersen for the gift of M. xanthus strain SA3985. We thank S. González-LaCorte, S. Jena and J. D. McEnany for their valuable contributions to the early stage of this project. This work was supported in part by the National Science Foundation through the Center for the Physics of Biological Function (PHY-1734030), and awards PHY-1806501 and PHY-2210346, and in part by NIH grant GM082938 (N.S.W.).

Author information

Authors and Affiliations

Authors

Contributions

M.E.B., C.F., R.A., N.S.W. and J.W.S. designed research; M.E.B. and J.W.S. designed experiments; M.E.B. conducted experiments; C.F., R.A. and N.S.W. performed modelling; C.F. performed simulation; M.E.B., C.F., R.A., N.S.W. and J.W.S. analysed data; and M.E.B., C.F., R.A., N.S.W. and J.W.S. wrote the paper.

Corresponding authors

Correspondence to Ned S. Wingreen or Joshua W. Shaevitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–VII, Tables 1–3 and Figs. 1–27.

Reporting Summary

Supplementary Video 1

Movie for the time series shown in Fig. 2d, showing the merger of non-motile M. xanthus cells due to capillary attraction.

Supplementary Video 2

Movie showing merging and splitting of motile M. xanthus groups. Coloured regions are groups of cells marked as single groups. Overlaid numbers are the detected number of cells in that group.

Supplementary Video 3

Movie showing an example of simulated cells in the gas phase. Simulation parameters are \(\widetilde{l}={10}^{3.5}\), \(\widetilde{F}=10\) and \(\widetilde{\tau }=10\). The colour bar is the same as in Fig. 3.

Supplementary Video 4

Movie showing an example of simulated cells in the droplets phase. Simulation parameters are \(\widetilde{l}={10}^{2}\), \(\widetilde{F}=0.3\) and \(\widetilde{\tau }=3\). The colour bar is the same as in Fig. 3.

Supplementary Video 5

Movie showing an example of simulated cells in the polar clusters phase. Simulation parameters are \(\widetilde{l}={10}^{2.5}\), \(\widetilde{F}=1\) and \(\widetilde{\tau }={10}^{2}\). The colour bar is the same as in Fig. 3.

Supplementary Video 6

Movie showing an example of simulated cells in the “streams” phase. Simulation parameters are \(\widetilde{l}={10}^{2.5}\), \(\widetilde{F}=1\) and \(\widetilde{\tau }=1\). The colour bar is the same as in Fig. 3.

Supplementary Video 7

Movie showing an example of M. xanthus cells in the gas phase.

Supplementary Video 8

Movie showing an example of M. xanthus cells in the droplets phase.

Supplementary Video 9

Movie showing an example of M. xanthus cells in the polar clusters phase.

Supplementary Video 10

Movie showing an example of M. xanthus cells in the streams phase.

Supplementary Video 11

Movie for the time series in Fig. 3f, showing neighbour exchange in the streams phase.

Supplementary Video 12

Movie for the time series shown in Fig. 4a, showing the large-scale morphologies of M. xanthus cells upon changes in water availability.

Supplementary Video 13

Movie showing the large-scale morphologies of F. johnsoniae cells upon changes in water availability.

Supplementary Video 14

Example movie showing how the motility of M. xanthus may be faster in groups compared with individual cells, possibly due to lower normal capillary forces, and thus lower substrate friction, when cells move in groups relative to when they move individually.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, M.E., Fei, C., Alert, R. et al. Capillary interactions drive the self-organization of bacterial colonies. Nat. Phys. 21, 1444–1450 (2025). https://doi.org/10.1038/s41567-025-02965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02965-y

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology