Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electron‒phonon‒photon excitation in steady nonlinear lasing

Abstract

Electrons, phonons and photons are three particles or quasiparticles whose interactions and related elementary excitations are essential for understanding complex phenomena in condensed-matter physics. Paradigmatic examples include polarons arising from electron–phonon interactions and polaritons, from photon–phonon interactions. However, the overall excitation of direct coupling among the three has not been explored in experiments owing to significant mismatches in their energy and momentum scales. Here we realize steady-state electron‒phonon‒photon excitation via integrated lasing radiation and nonlinear conversion within a single crystal. Via our cavity design, we suppress strong spontaneous emission oscillation and realize weak multiphonon-coupled lasing, in which coherent phonons are created as energy offsets between electrons and photons. These dynamic phonons can self-adaptively heterodyne to generate the momentum required for the intracavity photon nonlinearity by selectively blocking the fundamental-wave laser. As evidence, we observe not only efficient and ultrabroadband continuous-wave second-harmonic generation in arbitrary directions but also flexible micrometre periodic lattice modulations induced by the heterodyning of inherent phonons with nanometre-scale wavelengths. This case represents simultaneous energy and momentum matching in a steady nonlinear lasing process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the electron‒phonon‒photon coupling mechanism in the laser cavity.
Fig. 2: Experimental setup for lattice modulation measurement.
Fig. 3: PHM photon frequency doubling with lattice modulation in an Yb:YCOB crystal.
Fig. 4: Dynamic lattice modulations and broadband frequency doubling in the Yb:YCOB crystal.
Fig. 5: High-efficiency frequency-doubling laser in the Yb:YCOB crystal.

Similar content being viewed by others

Data availability

Data that support the findings of this study are provided in the Article. Source data are provided with this paper.

References

  1. Anantharaman, S. B. et al. Ultrastrong light–matter coupling in two-dimensional metal–organic chalcogenolates. Nat. Photon. 19, 322–328 (2025).

    Article  ADS  Google Scholar 

  2. Pan, Z. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature 623, 307–312 (2023).

    Article  ADS  Google Scholar 

  3. Huang, K. Lattice vibrations and optical waves in ionic crystals. Nature 167, 779–780 (1951).

    Article  ADS  Google Scholar 

  4. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  5. Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).

    Article  ADS  Google Scholar 

  6. Galiffi, E. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2023).

    Article  ADS  Google Scholar 

  7. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  ADS  Google Scholar 

  8. Zhang, K. et al. Thickness-dependent polaron crossover in tellurene. Sci. Adv. 11, eads4763 (2025).

    Article  ADS  Google Scholar 

  9. Sio, W. H. & Giustino, F. Polarons in two-dimensional atomic crystals. Nat. Phys. 19, 629–636 (2023).

    Article  Google Scholar 

  10. Disa, A. S., Nova, T. F. & Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 17, 1087–1092 (2021).

    Article  Google Scholar 

  11. Ilyas, B. et al. Terahertz field-induced metastable magnetization near criticality in FePS3. Nature 636, 609–614 (2024).

    Article  ADS  Google Scholar 

  12. Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article  ADS  Google Scholar 

  13. Tan, L. B. et al. Interacting polaron-polaritons. Phys. Rev. X 10, 021011 (2020).

    Google Scholar 

  14. Sidler, M. et al. Fermi polaron–polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2016).

    Article  Google Scholar 

  15. Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).

    Article  ADS  Google Scholar 

  16. Datta, B. et al. Highly nonlinear dipolar exciton–polaritons in bilayer MoS2. Nat. Commun. 13, 6341 (2022).

    Article  ADS  Google Scholar 

  17. Latini, S. et al. Phonoritons as hybridized exciton–photon–phonon excitations in a monolayer h-BN optical cavity. Phys. Rev. Lett. 126, 227401 (2021).

    Article  ADS  Google Scholar 

  18. Kuznetsov, A. S., Biermann, K., Reynoso, A. A., Fainstein, A. & Santos, P. V. Microcavity phonoritons—a coherent optical-to-microwave interface. Nat. Commun. 14, 5470 (2023).

    Article  ADS  Google Scholar 

  19. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  20. Song, J. et al. Room-temperature continuous-wave pumped exciton polariton condensation in a perovskite microcavity. Sci. Adv. 11, eadr1652 (2025).

    Article  Google Scholar 

  21. Wu, X. et al. Exciton polariton condensation from bound states in the continuum at room temperature. Nat. Commun. 15, 3345 (2024).

    Article  ADS  Google Scholar 

  22. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  23. Liang, F. et al. Multiphonon-assisted lasing beyond the fluorescence spectrum. Nat. Phys. 18, 1312–1316 (2022).

    Article  Google Scholar 

  24. Yu, F., Duan, X., Zhang, S., Lu, Q. & Zhao, X. Rare-earth calcium oxyborate piezoelectric crystals ReCa4O(BO3)3: growth and piezoelectric characterizations. Crystals 4, 241–261 (2014).

    Article  Google Scholar 

  25. Khaled, F., Loiseau, P., Aka, G. & Gheorghe, L. Rise in power of Yb:YCOB for green light generation by self-frequency doubling. Opt. Lett. 41, 3607–3610 (2016).

    Article  ADS  Google Scholar 

  26. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article  ADS  Google Scholar 

  27. Zhu, S. N., Zhu, Y. Y. & Ming, N. B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article  ADS  Google Scholar 

  28. Xie, Z. D. et al. Cavity phase matching via an optical parametric oscillator consisting of a dielectric nonlinear crystal sheet. Phys. Rev. Lett. 106, 083901 (2011).

    Article  ADS  Google Scholar 

  29. Eremeev, V., Molinares, H., Correa, L. A. & He, B. Simultaneous photon and phonon lasing from pumping optomechanical systems with a two-tone field. Adv. Quantum Technol. 8, 2400497 (2024).

    Article  Google Scholar 

  30. Kuang, T. et al. Nonlinear multi-frequency phonon lasers with active levitated optomechanics. Nat. Phys. 19, 414–419 (2023).

    Article  Google Scholar 

  31. Sung, J. et al. Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photon. 16, 792–799 (2022).

    Article  ADS  Google Scholar 

  32. Liu, J. X. et al. Observation of self-frequency doubling in diode-pumped mode-locked Nd-doped La3Ga5SiO14 laser. Chin. Phys. Lett. 32, 014206 (2015).

    Article  ADS  Google Scholar 

  33. Dekker, P. et al. Widely tunable yellow-green lasers based on the self-frequency-doubling material Yb:YAB. J. Opt. Soc. Am. B 20, 706–712 (2003).

    Article  ADS  Google Scholar 

  34. Zeng, H. J. et al. 56-fs diode-pumped SESAM mode-locked Yb:YAl3(BO3)4 laser. Opt. Express 31, 10617–10624 (2023).

    Article  ADS  Google Scholar 

  35. Xiao, H. et al. Continuous-wave and passively Q-switched pulse Yb:Ca3TaGa3Si2O14 lasers at 1.0 µm. Opt. Mater. Express 12, 4183–4190 (2022).

    Article  ADS  Google Scholar 

  36. Zeng, H. et al. Diode-pumped sub-50-fs Kerr-lens mode-locked Yb:GdYCOB laser. Opt. Express 29, 13496–13503 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China via grant numbers 52422201 (F.L.), 52025021 (H.Y.), 92463304 (H.Z.), 92163207 (H.Z.), U23A20558 (H.Y.), 52372010 (F.L.) and 92363001 (Y.-F.C.); National Key Research and Development Program of China via grant numbers 2021YFB3601504 (H.Z.), 2023YFF0718801 (F.L.) and 2021YFA0717800 (F.L.); Natural Science Foundation of Shandong Province via grant number ZR2023ZD53 (F.L.). F.L. acknowledges H. Si and Y. Zhou for support with the laser experiments. F.L. acknowledges D. Lu and Y. Fu for support with the fluorescence measurements. F.L. acknowledges Y. Zhao and K. Wu for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and H.Z. conceived and supervised the project. F.L. and C.H. performed the crystal design, cavity coating and laser experiments. Y.-F.C. provided the theoretical analysis for electron–phonon–photon-coupled nonlinear laser. All authors contributed to the discussion and preparation of the paper.

Corresponding authors

Correspondence to Haohai Yu, Huaijin Zhang or Yan-Feng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Anton Husakou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Tables 1–4 and Discussion.

Reporting Summary

Source data

Source Data Fig. 3

Source data for the laser spectrum and piezoelectric measurements.

Source Data Fig. 4

Source data for the laser spectrum.

Source Data Fig. 5

Source data for the fluorescence spectrum and laser powers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., He, C., Yu, H. et al. Electron‒phonon‒photon excitation in steady nonlinear lasing. Nat. Phys. 21, 1905–1910 (2025). https://doi.org/10.1038/s41567-025-03079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-03079-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing