Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A charge transfer mechanism for optically addressable solid-state spin pairs

Abstract

Bright point-defect emitters in hexagonal boron nitride have potential applications in quantum sensing and other technologies. However, it can be difficult to correctly identify the microscopic nature of observed defects, creating challenges for further development. A class of bright emitters exhibiting optically detected magnetic resonance with no resolvable zero-field splitting has been observed in hexagonal boron nitride across a broad range of wavelengths. However, the microscopic structure of the defects and the physical origin of their optically detected magnetic resonance signal have still not been identified. Here we describe a model that accounts for and provides a physical explanation for all key experimental features of the spin-resolved photodynamics of ensembles and single emitters. The model, inspired by the radical-pair mechanism from spin chemistry, assumes a pair of nearby point defects, one of which is optically active. Using first-principles calculations, we show that simple defect pairs made of common carbon defects provide a plausible realization of our model. As well as addressing open questions about defects in hexagonal boron nitride, our model may also explain similar phenomena observed in other wide-bandgap semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin-active visible-band emitters in hBN.
Fig. 2: Spin-resolved photodynamics.
Fig. 3: Optical read-out of spin dynamics.
Fig. 4: PL settling-recovery dynamics.
Fig. 5: Proposed electronic structure.
Fig. 6: Microscopic modelling.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540 (2020).

    Article  ADS  Google Scholar 

  2. Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

    Article  ADS  Google Scholar 

  3. Liu, W. et al. Coherent dynamics of multi-spin \({\rm V_{\rm{B}}^{-}}\) center in hexagonal boron nitride. Nat. Commun. 13, 5713 (2022).

    Article  ADS  Google Scholar 

  4. Gao, X. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 21, 1024 (2022).

    Article  ADS  Google Scholar 

  5. Gong, R. et al. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. Nat. Commun. 14, 3299 (2023).

    Article  ADS  Google Scholar 

  6. Healey, A. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87 (2023).

    Article  Google Scholar 

  7. Ramsay, A. J. et al. Coherence protection of spin qubits in hexagonal boron nitride. Nat. Commun. 14, 461 (2023).

    Article  ADS  Google Scholar 

  8. Rizzato, R. et al. Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing. Nat. Commun. 14, 5089 (2023).

    Article  ADS  Google Scholar 

  9. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38 (2018).

    Article  ADS  Google Scholar 

  10. Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906 (2021).

    Article  ADS  Google Scholar 

  11. Durand, A. et al. Optically active spin defects in few-layer thick hexagonal boron nitride. Phys. Rev. Lett. 131, 116902 (2023).

    Article  ADS  Google Scholar 

  12. Robertson, I. O. et al. Detection of paramagnetic spins with an ultrathin van der Waals quantum sensor. ACS Nano 17, 13408 (2023).

    Article  Google Scholar 

  13. Gao, X. et al. Quantum sensing of paramagnetic spins in liquids with spin qubits in hexagonal boron nitride. ACS Photonics 10, 2894 (2023).

    Article  Google Scholar 

  14. Zhou, J. et al. Sensing spin wave excitations by spin defects in few-layer-thick hexagonal boron nitride. Sci. Adv. 10, eadk8495 (2024).

    Article  Google Scholar 

  15. Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405 (2018).

    Article  Google Scholar 

  16. Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836 (2023).

    Article  Google Scholar 

  17. Ivády, V. et al. Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride. npj Comput. Mater. 6, 41 (2020).

    Article  ADS  Google Scholar 

  18. Reimers, J. R. et al. Photoluminescence, photophysics, and photochemistry of the \({\rm V_{\rm{B}}^{-}}\) defect in hexagonal boron nitride. Phys. Rev. B 102, 144105 (2020).

    Article  ADS  Google Scholar 

  19. Kianinia, M., White, S., Fröch, J. E., Bradac, C. & Aharonovich, I. Generation of spin defects in hexagonal boron nitride. ACS Photonics 7, 2147 (2020).

    Article  Google Scholar 

  20. Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708 (2021).

    Article  ADS  Google Scholar 

  21. Liu, W. et al. Temperature-dependent energy-level shifts of spin defects in hexagonal boron nitride. ACS Photonics 8, 1889 (2021).

    Article  Google Scholar 

  22. Mathur, N. et al. Excited-state spin-resonance spectroscopy of \({\rm V_{\rm{B}}^{-}}\) defect centers in hexagonal boron nitride. Nat. Commun. 13, 3233 (2022).

    Article  ADS  Google Scholar 

  23. Haykal, A. et al. Decoherence of \({\rm V_{\rm{B}}^{-}}\) spin defects in monoisotopic hexagonal boron nitride. Nat. Commun. 13, 4347 (2022).

    Article  ADS  Google Scholar 

  24. Mendelson, N. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321 (2021).

    Article  ADS  Google Scholar 

  25. Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079 (2021).

    Article  ADS  Google Scholar 

  26. Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

    Article  ADS  Google Scholar 

  27. Guo, N.-J. et al. Coherent control of an ultrabright single spin in hexagonal boron nitride at room temperature. Nat. Commun. 14, 2893 (2023).

    Article  ADS  Google Scholar 

  28. Yang, Y.-Z. et al. Laser direct writing of visible spin defects in hexagonal boron nitride for applications in spin-based technologies. ACS Appl. Nano Mater. 6, 6407 (2023).

    Article  Google Scholar 

  29. Scholten, S. C. et al. Multi-species optically addressable spin defects in a van der Waals material. Nat. Commun. 15, 6727 (2024).

    Article  Google Scholar 

  30. Patel, R. N. et al. Room temperature dynamics of an optically addressable single spin in hexagonal boron nitride. Nano Lett. 24, 7623 (2024).

    Article  ADS  Google Scholar 

  31. Singh, P. et al. Violet to near-infrared optical addressing of spin pairs in hexagonal boron nitride. Adv. Mater. 37, 2414846 (2025).

    Article  Google Scholar 

  32. Auburger, P. & Gali, A. Towards ab initio identification of paramagnetic substitutional carbon defects in hexagonal boron nitride acting as quantum bits. Phys. Rev. B 104, 075410 (2021).

    Article  ADS  Google Scholar 

  33. Pinilla, F. et al. Spin-active single photon emitters in hexagonal boron nitride from carbon-based defects. Phys. Scr. 98, 095505 (2023).

    Article  ADS  Google Scholar 

  34. Golami, O. et al. Ab initio and group theoretical study of properties of a carbon trimer defect in hexagonal boron nitride. Phys. Rev. B 105, 184101 (2022).

    Article  ADS  Google Scholar 

  35. Tan, Q. et al. Donor-acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331 (2022).

    Article  ADS  Google Scholar 

  36. Benedek, Z. et al. Symmetric carbon tetramers forming spin qubits in hexagonal boron nitride. npj Comput. Mater. 9, 187 (2023).

    Article  ADS  Google Scholar 

  37. Hunter, D., Hoff, A. & Hore, P. Theoretical calculations of RYDMR effects in photosynthetic bacteria. Chem. Phys. Lett. 134, 6 (1987).

    Article  ADS  Google Scholar 

  38. Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51 (1989).

    Article  Google Scholar 

  39. Woodward, J. R. Radical pairs in solution. Prog. React. Kinet. Mech. 27, 165 (2002).

    Article  Google Scholar 

  40. Evans, E. W. et al. Magnetic field effects in flavoproteins and related systems. Interface Focus 3, 20130037 (2013).

    Article  Google Scholar 

  41. Luo, J., Geng, Y., Rana, F. & Fuchs, G. D. Room temperature optically detected magnetic resonance of single spins in GaN. Nat. Mater. 23, 512 (2024).

    Article  ADS  Google Scholar 

  42. McCamey, D. R. et al. Hyperfine-field-mediated spin beating in electrostatically bound charge carrier pairs. Phys. Rev. Lett. 104, 017601 (2010).

    Article  ADS  Google Scholar 

  43. Lee, S.-Y. et al. Tuning hyperfine fields in conjugated polymers for coherent organic spintronics. J. Am. Chem. Soc. 133, 2019 (2011).

    Article  ADS  Google Scholar 

  44. Kosugi, N., Matsuo, S., Konno, K. & Hatakenaka, N. Theory of damped Rabi oscillations. Phys. Rev. B 72, 172509 (2005).

    Article  ADS  Google Scholar 

  45. Davies, J. Optically-detected magnetic resonance studies of II-VI compounds. J. Cryst. Growth 86, 599 (1988).

    Article  ADS  Google Scholar 

  46. Boehme, C. & Lips, K. Theory of time-domain measurement of spin-dependent recombination with pulsed electrically detected magnetic resonance. Phys. Rev. B 68, 245105 (2003).

    Article  ADS  Google Scholar 

  47. Dean, P. Inter-impurity recombinations in semiconductors. Prog. Solid State Chem. 8, 1–126 (1973).

    Article  Google Scholar 

  48. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37 (2016).

    Article  ADS  Google Scholar 

  49. Kumar, A. et al. Localized creation of yellow single photon emitting carbon complexes in hexagonal boron nitride. APL Mater. 11, 071108 (2023).

    Article  ADS  Google Scholar 

  50. Pelliciari, J. et al. Elementary excitations of single-photon emitters in hexagonal boron nitride. Nat. Mater. 23, 1230–1236 (2024).

    Article  ADS  Google Scholar 

  51. Liu, W. et al. Experimental observation of spin defects in van der Waals material GeS2. Preprint at https://arxiv.org/abs/2410.18892 (2024).

  52. Stern, H. L. et al. A quantum coherent spin in hexagonal boron nitride at ambient conditions. Nat. Mater. 23, 1379–1385 (2024).

    Article  ADS  Google Scholar 

  53. Gao, X. et al. Single nuclear spin detection and control in a van der Waals material. Nature 643, 943–949 (2025).

    Article  ADS  Google Scholar 

  54. Onodera, M. et al. Carbon-rich domain in hexagonal boron nitride: carrier mobility degradation and anomalous bending of the Landau fan diagram in adjacent graphene. Nano Lett. 19, 7282 (2019).

    Article  ADS  Google Scholar 

  55. Jara, C. et al. First-principles identification of single photon emitters based on carbon clusters in hexagonal boron nitride. J. Phys. Chem. A 125, 1325 (2021).

    Article  Google Scholar 

  56. Linderälv, C., Wieczorek, W. & Erhart, P. Vibrational signatures for the identification of single-photon emitters in hexagonal boron nitride. Phys. Rev. B 103, 115421 (2021).

    Article  ADS  Google Scholar 

  57. Lillie, S. E. et al. Laser modulation of superconductivity in a cryogenic wide-field nitrogen-vacancy microscope. Nano Lett. 20, 1855 (2020).

    Article  ADS  Google Scholar 

  58. Bluvstein, D., Zhang, Z. & Jayich, A. C. B. Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers. Phys. Rev. Lett. 122, 076101 (2019).

    Article  ADS  Google Scholar 

  59. Johnston, D. C. Stretched exponential relaxation arising from a continuous sum of exponential decays. Phys. Rev. B 74, 184430 (2006).

    Article  ADS  Google Scholar 

  60. Campaioli, F., Cole, J. H. & Hapuarachchi, H. Quantum master equations: tips and tricks for quantum optics, quantum computing, and beyond. PRX Quantum 5, 020202 (2024).

    Article  ADS  Google Scholar 

  61. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  62. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  63. Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & Van de Walle, C. G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).

    Article  ADS  Google Scholar 

  64. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011).

    Article  ADS  Google Scholar 

  65. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  66. Jones, R. O. & Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  67. Szász, K., Hornos, T., Marsman, M. & Gali, A. Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: the role of core spin polarization. Phys. Rev. B 88, 075202 (2013).

    Article  ADS  Google Scholar 

  68. Runge, E. & Gross, E. K. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984).

    Article  ADS  Google Scholar 

  69. Casida, M. E. in Recent Advances in Density Functional Methods, Part I (ed. Chong, D. P.) 155–192 (World Scientific, 1995).

  70. Dreuw, A. & Head-Gordon, M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105, 4009 (2005).

    Article  Google Scholar 

  71. Neese, F. Software update: the ORCA program system–version 5.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 12, e1606 (2022).

    Google Scholar 

  72. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).

    Article  Google Scholar 

  73. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996).

    Article  ADS  Google Scholar 

  74. Benedek, Z., Ganyecz, Á., Pershin, A., Ivády, V. & Barcza, G. Accurate and convergent energetics of color centers by wavefunction theory. Preprint at https://arxiv.org/abs/2406.05092 (2024).

Download references

Acknowledgements

This work was supported by the Australian Research Council (grant nos. CE200100010, FT200100073, FT220100053, DE200100279, DP220100178, DE230100192 and DP250100973), the Office of Naval Research Global (grant no. N62909-22-1-2028) and the Air Force Office of Scientific Research (grant no. FA2386-25-1-4044). I.O.R. is supported by an Australian Government Research Training Program Scholarship. P.R. acknowledges support through an RMIT University Vice-Chancellor’s Research Fellowship. V.I. acknowledges support from the National Research, Development and Innovation Office of Hungary within the Quantum Information National Laboratory of Hungary (grant nos. 2022-2.1.1-NL-2022-00004 and FK145395). This project is funded by the European Union under Horizon Europe (projects 101156088 and 101129663). First-principles calculations were enabled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden at the Swedish National Infrastructure for Computing at Tetralith, partially funded by the Swedish Research Council (grant agreement no. 2022-06725) and KIFÜ high-performance computation units in Hungary.

Author information

Authors and Affiliations

Authors

Contributions

I.O.R., I.A. and J.-P.T. conceived of the project. I.O.R. and B.W. prepared the samples with assistance from A.J.H. and P.S. I.O.R., B.W. and P.R. built and performed the experiments with assistance from S.C.S., A.J.H. and M.K. I.O.R., S.C.S. and J.-P.T. performed the numerical simulations. G.B. and V.I. performed the ab initio calculations. D.A.B., I.A. and J.-P.T. supervised the project. All authors analysed the results and contributed to the writing of the paper.

Corresponding authors

Correspondence to Igor Aharonovich or Jean-Philippe Tetienne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Yuan Ping, Chong Zu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Example PL images.

(a) Widefield PL image of the dense powder sample used for ensemble measurements. (b) Confocal PL map of the dilute powder sample used for measurements of single emitters. Grey circle indicates a single emitter.

Source data

Extended Data Fig. 2 Spin dynamics measurements.

(a) Rabi measurement pulse sequence indicating the front (F1, F2) and back (B1, B2) gated regions for PL averaging. (b) F1, F2 and B1, B2 plotted against τ. (c) T1 pulse sequence similarly with F1, F2 and B1, B2 marked on the laser pulses which are plotted against τ in (d). (e) Hahn echo pulse sequence with F1, F2 and B1, B2 marked on the laser pulses which are plotted against τ in (f). Inset: Normalised Hahn echo data fit with a single exponential.

Source data

Extended Data Fig. 3 Stretched exponential function.

Distribution G(u) of the monoexponential components of a stretched exponential function for selected values of the stretch exponent β.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1–7 and discussion.

Source data

Source Data Fig. 1

Data for all plots in Fig. 1.

Source Data Fig. 2

Data for all plots in Fig. 2.

Source Data Fig. 3

Data for all plots in Fig. 3.

Source Data Fig. 4

Data for all plots in Fig. 4.

Source Data Fig. 6

Data for all plots in Fig. 6.

Source Data Extended Data Fig. 1

Data for all plots in Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Data for all plots in Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Data for Extended Data Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, I.O., Whitefield, B., Scholten, S.C. et al. A charge transfer mechanism for optically addressable solid-state spin pairs. Nat. Phys. 21, 1981–1987 (2025). https://doi.org/10.1038/s41567-025-03091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-03091-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing