Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of a hidden charge density wave liquid

Abstract

Charge density waves, electronic crystals that form within a host solid, have long been theorized to melt into a spatially textured electronic liquid. Although such liquid charge density waves have not been previously observed, they may be central to the phase diagrams of correlated electron systems, including high-temperature superconductors and quantum Hall states. In 1T-TaS2, a promising material for hosting a liquid charge density wave, a structural phase transition hinders observation. Here we use femtosecond light pulses to bypass this transition, revealing how topological defect dynamics govern hidden charge density wave correlations. Following photoexcitation, charge density wave diffraction peaks broaden azimuthally, indicating the emergence of a hexatic state. At elevated temperatures, photoexcitation fully destroys both translational and orientational orders, leaving only a ring of diffuse scattering—the hallmark of a liquid charge density wave. These findings offer compelling evidence for a defect-unbinding transition to a charge density wave liquid. More broadly, this approach demonstrates a route to uncover electronic phases obscured by intervening transitions in thermal equilibrium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defect-mediated melting of a 2D triangular lattice.
Fig. 2: Emergence of hexatic and liquid CDW states following a light-induced suppression of the equilibrium order.
Fig. 3: Evolution of solid, hexatic and liquid CDW states in the quasi-thermal regime.
Fig. 4: Molecular dynamics simulation of a solid–liquid–hexatic transition with quenched interaction strength.

Similar content being viewed by others

Data availability

The data that support the findings of this study are provided in the Article. Source data are provided with this paper. These data are also available via Zenodo at https://doi.org/10.5281/zenodo.15453892 (ref. 56). Additional data related to the paper are available from the corresponding author upon request.

Code availability

The code used to produce the figures in this work is available via Zenodo at https://doi.org/10.5281/zenodo.17383782 (ref. 57).

References

  1. Anderson, M. H. et al. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  Google Scholar 

  2. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  Google Scholar 

  3. Tenney, C. M., Croft, Z. F. & McMahon, J. M. Metallic hydrogen: a liquid superconductor? J. Phys. Chem. C 125, 23349–23355 (2021).

    Article  Google Scholar 

  4. Leggett, A. J. in PWA90: A Lifetime of Emergence (eds Chandra, P., Coleman, P., Kotliar, G., Ong, P., Stein, D. L. & Yu, C.) 97–103 (World Scientific, 2016).

  5. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  ADS  Google Scholar 

  6. Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2020).

    Article  Google Scholar 

  7. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  ADS  Google Scholar 

  8. Disa, A. S. et al. Photo-induced high-temperature ferromagnetism in YTiO3. Nature 617, 73–78 (2023).

    Article  ADS  Google Scholar 

  9. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  ADS  Google Scholar 

  10. Nova, T. F. et al. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article  ADS  Google Scholar 

  11. Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article  ADS  Google Scholar 

  12. Dai, H. & Lieber, C. M. Solid-hexatic-liquid phases in two-dimensional charge-density waves. Phys. Rev. Lett. 69, 1576–1579 (1992).

    Article  ADS  Google Scholar 

  13. Dai, H., Chen, H. & Lieber, C. M. Weak pinning and hexatic order in a doped two-dimensional charge-density-wave system. Phys. Rev. Lett. 66, 3183 (1991).

    Article  ADS  Google Scholar 

  14. Hayden, S. M. & Tranquada, J. M. Charge correlations in cuprate superconductors. Annu. Rev. Condens. Matter Phys. 15, 215 (2024).

    Article  ADS  Google Scholar 

  15. Subires, D. et al. Frustrated charge density wave and quasi-long-range bond-orientational order in the magnetic kagome FeGe. Nat. Commun. 16, 4091 (2025).

    Article  ADS  Google Scholar 

  16. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article  ADS  Google Scholar 

  17. Delacrétaz, L. V. et al. Theory of hydrodynamic transport in fluctuating electronic charge density wave states. Phys. Rev. B 96, 195128 (2017).

    Article  ADS  Google Scholar 

  18. Taraphder, A. et al. Preformed excitonic liquid route to a charge density wave in 2H-TaSe2. Phys. Rev. Lett. 106, 236405 (2011).

    Article  ADS  Google Scholar 

  19. Snow, C. S. et al. Quantum melting of the charge-density-wave state in 1T-TiSe2. Phys. Rev. Lett. 91, 136402 (2003).

    Article  ADS  Google Scholar 

  20. Ciftja, O., Lapilli, C. M. & Wexler, C. Liquid crystalline states for two-dimensional electrons in strong magnetic fields. Phys. Rev. B 69, 125320 (2004).

    Article  ADS  Google Scholar 

  21. Wexler, C. & Ciftja, O. Liquid crystalline states in quantum Hall systems. J. Phys.: Condens. Matter 14, 3705 (2002).

    ADS  Google Scholar 

  22. Fradkin, E. & Kivelson, S. A. Liquid-crystal phases of quantum Hall systems. Phys. Rev. B 59, 8065 (1999).

    Article  ADS  Google Scholar 

  23. Nie, L., Tarjus, G. & Kivelson, S. A. Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl Acad. Sci. USA 111, 7980–7985 (2014).

    Article  ADS  Google Scholar 

  24. Milward, G. C., Calderón, M. J. & Littlewood, P. B. Electronically soft phases in manganites. Nature 433, 607–610 (2005).

    Article  ADS  Google Scholar 

  25. Nelson, D. R. & Halperin, B. I. Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457–2484 (1979).

    Article  ADS  Google Scholar 

  26. Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  27. Kosterlitz, J. M. Kosterlitz–Thouless physics: a review of key issues. Rep. Prog. Phys. 79, 026001 (2016).

    Article  ADS  Google Scholar 

  28. Keim, P., Maret, G. & von Grünberg, H. H. Frank’s constant in the hexatic phase. Phys. Rev. E 75, 031402 (2007).

    Article  ADS  Google Scholar 

  29. Kusner, R. E. et al. Two-stage melting of a two-dimensional collodial lattice with dipole interactions. Phys. Rev. Lett. 73, 3113–3116 (1994).

    Article  ADS  Google Scholar 

  30. Troyanovski, A. M. et al. STM imaging of flux line arrangements in the peak effect regime. Phys. Rev. Lett. 89, 147006 (2002).

    Article  ADS  Google Scholar 

  31. Guillamón, I. et al. Direct observation of melting in a two-dimensional superconducting vortex lattice. Nat. Phys. 5, 651–655 (2009).

    Article  Google Scholar 

  32. Roy, I. et al. Melting of the vortex lattice through intermediate hexatic fluid in an a-MoGe thin film. Phys. Rev. Lett. 122, 047001 (2019).

    Article  ADS  Google Scholar 

  33. Brock, J. D. et al. Orientational and positional order in a tilted hexatic liquid-crystal phase. Phys. Rev. Lett. 57, 98–101 (1986).

    Article  ADS  Google Scholar 

  34. Cheng, M. et al. Observation of two-dimensional hexatic behavior in free-standing liquid-crystal thin films. Phys. Rev. Lett. 61, 550–553 (1988).

    Article  ADS  Google Scholar 

  35. Sharma, R. et al. Thermal melting of a vortex lattice in a quasi two-dimensional Bose gas. Phys. Rev. Lett. 133, 143401 (2024).

    Article  ADS  Google Scholar 

  36. Huang, P. et al. Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase. Nat. Nanotechnol. 15, 761–767 (2020).

    Article  ADS  Google Scholar 

  37. Gallet, F. et al. Fluctuations and shear modulus of a classical two-dimensional electron solid: experiment. Phys. Rev. Lett. 49, 212–215 (1982).

    Article  ADS  Google Scholar 

  38. Knighton, T. et al. Evidence of two-stage melting of Wigner solids. Phys. Rev. B 97, 085135 (2018).

    Article  ADS  Google Scholar 

  39. Sung, S. H. et al. Endotaxial stabilization of 2D charge density waves with long-range order. Nat. Commun. 15, 1403 (2024).

    Article  ADS  Google Scholar 

  40. Domröse, T. et al. Light-induced hexatic state in a layered quantum material. Nat. Mater. 22, 1345–1351 (2023).

    Article  ADS  Google Scholar 

  41. Givens, F. L. & Fredericks, G. E. Thermal expansion op NbSe2 and TaS2. J. Phys. Chem. Solids 38, 1363–1365 (1977).

    Article  ADS  Google Scholar 

  42. Gruner, G. Density Waves in Solids (CRC Press, 2018).

  43. Thomson, R. E. et al. Local charge-density-wave structure in 1T-TaS2 determined by scanning tunneling microscopy. Phys. Rev. B 38, 10734–10743 (1988).

    Article  ADS  Google Scholar 

  44. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys.: Condens. Matter 23, 213001 (2011).

    ADS  Google Scholar 

  45. Sutter, T. M. et al. Vector-based feedback of continuous wave radiofrequency compression cavity for ultrafast electron diffraction. Struct. Dyn. 11, 024303 (2024).

    Article  Google Scholar 

  46. Zong, A. et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 27–31 (2019).

    Article  Google Scholar 

  47. Cheng, Y. et al. Light-induced dimension crossover dictated by excitonic correlations. Nat. Commun. 13, 963 (2022).

    Article  ADS  Google Scholar 

  48. Gonzalez-Vallejo, I. et al. Time-resolved structural dynamics of the out-of-equilibrium charge density wave phase transition in GdTe3. Struct. Dyn. 9, 014502 (2022).

    Article  Google Scholar 

  49. Trigo, M. et al. Coherent order parameter dynamics in SmTe3. Phys. Rev. B 99, 104111 (2019).

    Article  ADS  Google Scholar 

  50. Han, T. R. T. et al. Structural dynamics of two-dimensional charge-density waves in CeTe3 investigated by ultrafast electron crystallography. Phys. Rev. B 86, 075145 (2012).

    Article  ADS  Google Scholar 

  51. Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005).

    Article  ADS  Google Scholar 

  52. Dziarmaga, J. Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005).

    Article  ADS  Google Scholar 

  53. Polkovnikov, A. Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201 (2005).

    Article  ADS  Google Scholar 

  54. Di Salvo, F. J. et al. Effects of doping on charge-density waves in layer compounds. Phys. Rev. B 12, 2220 (1975).

    Article  ADS  Google Scholar 

  55. Di Salvo, F. J. et al. Preparation and properties of a new polytype of tantalum disulfide (4Hb-TaS2). J. Phys. Chem. Solids 34, 1357–1362 (1973).

    Article  ADS  Google Scholar 

  56. Lee, J. S. H. Observation of a hidden charge density wave liquid. Zenodo https://doi.org/10.5281/zenodo.15453892 (2025).

  57. Sutter, T., Lee, J., Karapetrov, G., Musumeci, P. & Kogar, A. Two dimensional molecular dynamics simulation (KTHNY). Zenodo https://doi.org/10.5281/zenodo.17383782 (2025).

Download references

Acknowledgements

We thank S. E. Brown, R. Bruinsma and X. Zhang for insightful discussions regarding this work. We thank M. Rasiah, S. Wang, J. Higgins, A. Ody and A. Kulkarni for their instrumentation work in the kiloelectronvolt UED setup at University of California, Los Angeles. We acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award number DE-SC0023017 (A.K.; data taking, data analysis and manuscript writing). We also acknowledge support from STROBE: a National Science Foundation Science and Technology Center under grant number DMR-1548924 (A.K. and P.M.; instrumentation).

Author information

Authors and Affiliations

Authors

Contributions

J.S.H.L. and T.M.S. performed the diffraction measurements. J.S.H.L. and T.M.S. prepared the samples for measurements. J.S.H.L. and T.M.S. built the kiloelectronvolt UED beamline at University of California, Los Angeles, under the supervision of A.K. and P.M. G.K. grew the crystals for the experiment. J.S.H.L. performed the data analysis with theoretical input from T.M.S. and A.K. T.M.S. performed the molecular dynamics simulations. J.S.H.L., T.M.S. and A.K. wrote the paper with important input from all other authors. The work was supervised by A.K.

Corresponding author

Correspondence to Anshul Kogar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Haiyun Liu, Chih-Wei Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes I–XIV, Figs. 1–12 and references.

Supplementary Video 1

Animated version of Fig. 2e,j, but for all times t rather than only at selected times. The dynamics at the initial temperatures of 360 K and 520 K are animated side by side for comparison.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.S.H., Sutter, T.M., Karapetrov, G. et al. Observation of a hidden charge density wave liquid. Nat. Phys. 22, 68–74 (2026). https://doi.org/10.1038/s41567-025-03108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-03108-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing