Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical control of orbital magnetism in magic-angle twisted bilayer graphene

Abstract

Flat bands in twisted graphene structures host various strongly correlated and topological phenomena. Optically probing and controlling them can reveal important information such as symmetry and dynamics, but this has been challenging due to the small energy gap compared with optical wavelengths. Here we report on the near-infrared optical control of orbital magnetism and associated anomalous Hall effects in a magic-angle twisted bilayer graphene on a monolayer WSe2 device. We demonstrate control over the hysteresis and amplitude of the anomalous Hall effect near integer moiré fillings using circularly polarized light. By modulating the light helicity, we observe periodic modulation of the transverse resistance in a wide range of fillings, indicating light-induced orbital magnetization through a large inverse Faraday effect. At the transition between metallic and anomalous Hall effect regimes, we also reveal large and random switching of the Hall resistivity, which we attribute to the light-tuned percolating cluster of magnetic domains. Our results demonstrate the potential of the optical manipulation of correlation and topology in moiré structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transport characterization of the sample.
Fig. 2: Light-induced heating.
Fig. 3: AHE at ν = 1.
Fig. 4: Optical interrogation of AHE.
Fig. 5: Optical training of the AHE.
Fig. 6: Light-induced switching dynamics.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  2. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  Google Scholar 

  3. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  Google Scholar 

  4. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  ADS  Google Scholar 

  5. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article  ADS  Google Scholar 

  6. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article  ADS  Google Scholar 

  7. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  Google Scholar 

  8. Polski, R. et al. Hierarchy of symmetry breaking correlated phases in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2205.05225 (2022).

  9. He, M. et al. Strongly interacting Hofstadter states in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1380–1386 (2025).

    Article  Google Scholar 

  10. Liu, J. & Dai, X. Anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Comput. Mater. 6, 57 (2020).

    Article  ADS  Google Scholar 

  11. Liu, M., Liu, Z., Cao, J. & Wang, C. Properties of the optical response of the twisted bilayer graphene. Phys. B 675, 415609 (2024).

    Article  Google Scholar 

  12. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article  ADS  Google Scholar 

  13. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article  ADS  Google Scholar 

  14. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article  ADS  Google Scholar 

  15. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  16. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    Article  Google Scholar 

  17. Gierz, I. et al. Snapshots of non-equilibrium dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

    Article  ADS  Google Scholar 

  18. Di Battista, G. et al. Revealing the thermal properties of superconducting magic-angle twisted bilayer graphene. Nano Lett. 22, 6465–6470 (2022).

    Article  ADS  Google Scholar 

  19. Merino, R. L. et al. Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1078–1084 (2025).

    Article  Google Scholar 

  20. Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Phys. Rev. B 105, 064423 (2022).

    Article  ADS  Google Scholar 

  21. Yang, C., Esin, I., Lewandowski, C. & Refael, G. Optical control of slow topological electrons in moiré systems. Phys. Rev. Lett. 131, 026901 (2023).

    Article  ADS  Google Scholar 

  22. Krishna Kumar, R. et al. Terahertz photocurrent probe of quantum geometry and interactions in magic-angle twisted bilayer graphene. Nat. Mater. 24, 1034–1041 (2025).

    Article  ADS  Google Scholar 

  23. Lin, J.-X. et al. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).

    Article  ADS  Google Scholar 

  24. Trovatello, C. et al. Ultrafast hot carrier transfer in WS2/graphene large-area heterostructures. npj 2D Mater. Appl. 6, 24 (2022).

  25. Stepanov, P. et al. Competing zero-field Chern insulators in superconducting twisted bilayer graphene. Phys. Rev. Lett. 127, 197701 (2021).

    Article  ADS  Google Scholar 

  26. Tseng, C.-C. et al. Anomalous Hall effect at half filling in twisted bilayer graphene. Nat. Phys. 18, 1038–1042 (2022).

    Article  Google Scholar 

  27. Bhowmik, S. et al. Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2. Nat. Commun. 14, 4055 (2023).

  28. Xie, T. et al. Long-lived isospin excitations in magic-angle twisted bilayer graphene. Nature 633, 77–82 (2024).

    Article  ADS  Google Scholar 

  29. Wagner, G., Kwan, Y. H., Bultinck, N., Simon, S. H. & Parameswaran, S. A. Global phase diagram of the normal state of twisted bilayer graphene. Phys. Rev. Lett. 128, 156401 (2022).

    Article  ADS  Google Scholar 

  30. Breiø, C. N. & Andersen, B. M. Chern insulator phases and spontaneous spin and valley order in a moiré lattice model for magic-angle twisted bilayer graphene. Phys. Rev. B 107, 165114 (2023).

    Article  ADS  Google Scholar 

  31. Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  32. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  33. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  34. Gorchon, J., Yang, Y. & Bokor, J. Model for multishot all-thermal all-optical switching in ferromagnets. Phys. Rev. B 94, 020409 (2016).

    Article  ADS  Google Scholar 

  35. Fernández-Rossier, J., Piermarocchi, C., Chen, P., MacDonald, A. H. & Sham, L. J. Coherently photoinduced ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 93, 127201 (2004).

    Article  ADS  Google Scholar 

  36. Tesarová, N. et al. Experimental observation of the optical spin–orbit torque. Nat. Photon. 7, 492–498 (2013).

    Article  ADS  Google Scholar 

  37. Pitaevskii, L. P. Electric forces in a transparent dispersive medium.Sov. Phys. JETP 12, 1008–1013 (1961).

    MathSciNet  Google Scholar 

  38. van der Ziel, J. P., Pershan, P. S. & Malmstrom, L. D. Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15, 190–193 (1965).

    Article  ADS  Google Scholar 

  39. Pershan, P. S., van der Ziel, J. P. & Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 143, 574–583 (1966).

    Article  ADS  Google Scholar 

  40. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  ADS  Google Scholar 

  41. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article  ADS  Google Scholar 

  42. Zhang, P. et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 21, 1373–1378 (2022).

    Article  ADS  Google Scholar 

  43. Xie, T. et al. High-efficiency optical training of itinerant two-dimensional magnets. Nat. Phys. 21, 1118–1124 (2025).

    Article  Google Scholar 

  44. Ghosh, B. et al. Probing quantum geometry through optical conductivity and magnetic circular dichroism. Sci. Adv. 10, eado1761 (2024).

  45. Sharma, P. & Balatsky, A. V. Light-induced orbital magnetism in metals via inverse Faraday effect. Phys. Rev. B 110, 094302 (2024).

    Article  ADS  Google Scholar 

  46. Cheng, O. H.-C., Son, D. H. & Sheldon, M. Light-induced magnetism in plasmonic gold nanoparticles. Nat. Photon. 14, 365–368 (2020).

    Article  ADS  Google Scholar 

  47. Ortiz Jimenez, V. et al. Transition metal dichalcogenides: making atomic-level magnetism tunable with light at room temperature. Adv. Sci. 11, 2304792 (2024).

    Article  Google Scholar 

  48. Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).

    Article  ADS  Google Scholar 

  49. Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of Continuous Media Vol. 8 (Pergamon Press, 1984).

  50. Hertel, R. Theory of the inverse Faraday effect in metals. J. Magn. Magn. Mater. 303, L1–L4 (2006).

    Article  ADS  Google Scholar 

  51. Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

    Article  ADS  Google Scholar 

  52. Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).

    Article  Google Scholar 

  53. He, M. et al. Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene. Nat. Mater. 23, 224–229 (2024).

    Article  ADS  Google Scholar 

  54. You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

    Article  Google Scholar 

  55. He, C. et al. Nonlinear optical response in graphene/WX2 (X = S, Se, and Te) van der Waals heterostructures. J. Phys. Chem. Lett. 10, 2090–2100 (2019).

    Article  Google Scholar 

  56. Kleiner, A., Hernangómez-Pérez, D. & Refaely-Abramson, S. Designable exciton mixing through layer alignment in WS2–graphene heterostructures. npj 2D Mater. Appl. 8, 36 (2024).

  57. Stefani, F. D., Hoogenboom, J. P. & Barkai, E. Beyond quantum jumps: blinking nanoscale light emitters. Phys. Today 62, 34–39 (2009).

    Article  Google Scholar 

  58. Adhikari, S. et al. Magnetization switching of single magnetite nanoparticles monitored optically. Nano Lett. 24, 9861–9867 (2024).

    Article  ADS  Google Scholar 

  59. Fisher, D. S. Scaling and critical slowing down in random-field Ising systems. Phys. Rev. Lett. 56, 416–419 (1986).

    Article  ADS  Google Scholar 

  60. Bittel, H. Noise of ferromagnetic materials. IEEE Trans. Magn. 5, 359–365 (1969).

    Article  ADS  Google Scholar 

  61. Bonetti, J. A., Caplan, D. S., Van Harlingen, D. J. & Weissman, M. B. Electronic transport in underdoped YBa2Cu3O7−δ nanowires: evidence for fluctuating domain structures. Phys. Rev. Lett. 93, 087002 (2004).

    Article  ADS  Google Scholar 

  62. Carlson, E. W., Dahmen, K. A., Fradkin, E. & Kivelson, S. A. Hysteresis and noise from electronic nematicity in high-temperature superconductors. Phys. Rev. Lett. 96, 097003 (2006).

    Article  ADS  Google Scholar 

  63. Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

    Article  ADS  Google Scholar 

  64. Deng, B. et al. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photon. 14, 549–553 (2020).

    Article  ADS  Google Scholar 

  65. Di Battista, G. et al. Infrared single-photon detection with superconducting magic-angle twisted bilayer graphene. Sci. Adv. 10, eadp3725 (2024).

  66. Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).

    Article  ADS  Google Scholar 

  67. Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, 1999).

Download references

Acknowledgements

We thank S. Kivelson and F. Koppens for fruitful discussions. Work at Stanford University was supported by the US Department of Energy (DOE), Office of Basic Energy Science, Division of Materials Science and Engineering, Stanford, under contract number DE-AC02-76SF00515. J.M.-M. was supported by a Stanford University startup fund. E.P. was partially supported by the Koret Foundation. Work at the University of Washington is supported by NSF MRSEC DMR-1719797.

Author information

Authors and Affiliations

Authors

Contributions

E.P. and A.K. conceived the investigation and designed the experiments. E.P. and L.P. performed the experiments. X.X., M.H. and J.C. fabricated the sample. J.M.-M. performed the tight-binding calculations. T.T. and K.W. grew the hexagonal boron nitride crystals. E.P. and A.K. wrote the paper, with contributions from all authors.

Corresponding author

Correspondence to Eylon Persky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Leonardo C. Campos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Transport properties without illumination.

Rxx measured as a function of the displacement field and the electron density at 300 mK.

Source data

Extended Data Fig. 2 Displacement field dependence of the AHE.

(a,b) The amplitude of the hysteresis loops, \(\Delta {R}_{xy}={R}_{xy}^{B\uparrow }-{R}_{xy}^{B\downarrow }\), plotted as a function of the displacement field for ν = 0.89 (a) and for ν = 1.88 (b). (c,d) representative hysteresis loops at different displacement fields.

Source data

Extended Data Fig. 3 Absence of layer polarization under displacement field.

Tight binding calculation showing the spin up and down bands at valley K of MATBG, for displacement fields of -0.3, 0 and 0.3 V/nm. Spin-orbit coupling from proximity to the WSe2 layer was included, resulting in spin-split bands. The colors represent the layer polarization of the corresponding wavefunctions. For displacement fields of ± 0.3 V/nm, the layer polarization is between ~ 0.45 and ~ 0.55 along the line cut. For no displacement field, layer polarization is between ~ 0.47 and ~ 0.53.

Source data

Extended Data Fig. 4 Longitudinal transport under illumination.

(a) Measurements of Rxx before and after illuminating the sample, showing that the effect of light is not persistent. (b) Rxx measured as a function of filling for different polarization. The thermal broadening of the correlated insulators is the same for all incident polarizations.

Source data

Extended Data Fig. 5 Power dependence of the IFE.

ΔRxy as a function of the half wave-plate orientation for various incident optical power, taken at 300 mK with ν = 1.3 and D = 0 V/nm. The data show a slight increase in the oscillation amplitude as a function of the power.

Source data

Extended Data Fig. 6 Relationship between the IFE and the AHE.

(a) A hysteresis loop taken at ν = 0.95 under illumination. (b-e) ΔRxy as a function of the half wave-plate orientation, taken at different points along the hysteresis loop in a. The oscillations were smaller at fields where Rxy was saturated.

Source data

Extended Data Fig. 7 Absence of IFE far from the AHE regime.

ΔRxy as a function of the half wave-plate orientation near (a) and far away (b) from ν = 1.

Source data

Supplementary information

Supplementary Information

Supplementary Sections 1–3, equations (1)–(27) and Fig. 1.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Statistical source data for Fig. 6.

Source Data Extended Data Fig. 1

Source data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Source data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Source data for Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Source data for Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Source data for Extended Data Fig. 6.

Source Data Extended Data Fig. 7

Source data for Extended Data Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persky, E., Parisot, L., He, M. et al. Optical control of orbital magnetism in magic-angle twisted bilayer graphene. Nat. Phys. 22, 39–46 (2026). https://doi.org/10.1038/s41567-025-03117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-03117-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing