Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamical simulations of many-body quantum chaos on a quantum computer

Abstract

Quantum circuits with local unitaries offer a platform to explore many-body quantum dynamics in discrete time. Their locality makes them suitable for current processors, but verification at scale is difficult for non-integrable systems. Here we study dual-unitary circuits, which are maximally chaotic yet permit exact analytical solutions for certain correlation functions. Using improved noise-learning and error-mitigation methods, we show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators. We then perturb the circuits away from the dual-unitary point and benchmark the dynamics against tensor-network simulations. These results establish error-mitigated digital quantum simulation on pre-fault-tolerant processors as a reliable tool to explore emergent quantum many-body phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulating DU circuits with TEM.
Fig. 2: Simulations at the DU point.
Fig. 3: Non-DU circuits beyond exact classical verification.

Similar content being viewed by others

Data availability

The datasets generated and analysed during this study are available via Figshare at https://doi.org/10.6084/m9.figshare.29069759 (ref. 60).

Code availability

Code for tensor-network simulations of the noiseless quantum circuits is available via Figshare at https://doi.org/10.6084/m9.figshare.29069759 (ref. 60).

References

  1. Miessen, A., Ollitrault, P. J., Tacchino, F. & Tavernelli, I. Quantum algorithms for quantum dynamics. Nat. Comput. Sci. 3, 25–37 (2023).

    Article  Google Scholar 

  2. Fisher, M. P. A., Khemani, V., Nahum, A. & Vijay, S. Random quantum circuits. Annu. Rev. Condens. Matter Phys. 14, 335–379 (2023).

    Article  ADS  Google Scholar 

  3. Hangleiter, D. & Eisert, J. Computational advantage of quantum random sampling. Rev. Modern Phys. 95, 035001 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  4. Li, Y., Chen, X. & Fisher, M. P. A. Quantum zeno effect and the many-body entanglement transition. Phys. Rev. B 98, 205136 (2018).

    Article  ADS  Google Scholar 

  5. Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).

    Google Scholar 

  6. Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    Article  ADS  Google Scholar 

  7. Sünderhauf, C., Pérez-García, D., Huse, D. A., Schuch, N. & Cirac, J. I. Localization with random time-periodic quantum circuits. Phys. Rev. B 98, 134204 (2018).

    Article  ADS  Google Scholar 

  8. Garratt, S. J. & Chalker, J. T. Many-body delocalization as symmetry breaking. Phys. Rev. Lett. 127, 026802 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  9. Morningstar, A., Colmenarez, L., Khemani, V., Luitz, D. J. & Huse, D. A. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B 105, 174205 (2022).

    Article  ADS  Google Scholar 

  10. Vanicat, M., Zadnik, L. & Prosen, T. Integrable trotterization: local conservation laws and boundary driving. Phys. Rev. Lett. 121, 030606 (2018).

    Article  ADS  Google Scholar 

  11. Chan, A., De Luca, A. & Chalker, J. T. Solution of a minimal model for many-body quantum chaos. Phys. Rev. X 8, 041019 (2018).

    Google Scholar 

  12. Bertini, B., Kos, P. & Prosen, T. Exact spectral form factor in a minimal model of many-body quantum chaos. Phys. Rev. Lett. 121, 264101 (2018).

    Article  ADS  Google Scholar 

  13. Bertini, B., Kos, P. & Prosen, T. Random matrix spectral form factor of dual-unitary quantum circuits. Commun. Math. Phys. 387, 597–620 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  14. Bertini, B., Kos, P. & Prosen, T. Exact correlation functions for dual-unitary lattice models in 1 + 1 dimensions. Phys. Rev. Lett. 123, 210601 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  15. Gopalakrishnan, S. & Lamacraft, A. Unitary circuits of finite depth and infinite width from quantum channels. Phys. Rev. B 100, 064309 (2019).

    Article  ADS  Google Scholar 

  16. Piroli, L., Bertini, B., Cirac, J. I. & Prosen, T. Exact dynamics in dual-unitary quantum circuits. Phys. Rev. B 101, 094304 (2020).

    Article  ADS  Google Scholar 

  17. Bertini, B., Kos, P. & Prosen, T. Operator entanglement in local quantum circuits I: chaotic dual-unitary circuits. SciPost Physics 8, 067 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  18. Ippoliti, M. & Khemani, V. Postselection-free entanglement dynamics via spacetime duality. Phys. Rev. Lett. 126, 060501 (2021).

    Article  ADS  Google Scholar 

  19. Suzuki, R., Mitarai, K. & Fujii, K. Computational power of one-and two-dimensional dual-unitary quantum circuits. Quantum 6, 631 (2022).

    Article  Google Scholar 

  20. Claeys, P. W. & Lamacraft, A. Maximum velocity quantum circuits. Phys. Rev. Res. 2, 033032 (2020).

    Article  Google Scholar 

  21. Bertini, B. & Piroli, L. Scrambling in random unitary circuits: exact results. Phys. Rev. B 102, 064305 (2020).

    Article  ADS  Google Scholar 

  22. Chertkov, E. et al. Holographic dynamics simulations with a trapped-ion quantum computer. Nat. Phys. 18, 1074–1079 (2022).

    Article  Google Scholar 

  23. Bertini, B., Kos, P. & Prosen, T. Entanglement spreading in a minimal model of maximal many-body quantum chaos. Phys. Rev. X 9, 021033 (2019).

    Google Scholar 

  24. Zhou, T. & Harrow, A. W. Maximal entanglement velocity implies dual unitarity. Phys. Rev. B 106, L201104 (2022).

    Article  ADS  Google Scholar 

  25. Mi, X. et al. Information scrambling in quantum circuits. Science 374, 1479–1483 (2021).

    Article  ADS  Google Scholar 

  26. Keenan, N., Robertson, N. F., Murphy, T., Zhuk, S. & Goold, J. Evidence of Kardar–Parisi–Zhang scaling on a digital quantum simulator. npj Quantum Inf. 9, 72 (2023).

    Article  ADS  Google Scholar 

  27. Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article  ADS  Google Scholar 

  28. Robledo-Moreno, J. et al. Chemistry beyond the scale of exact diagonalization on a quantum-centric supercomputer. Sci. Adv. 11, eadu9991 (2025).

    Article  ADS  Google Scholar 

  29. Shinjo, K., Seki, K., Shirakawa, T., Sun, R.-Y. & Yunoki, S. Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer. Preprint at https://arxiv.org/abs/2403.16718 (2024).

  30. Farrell, R. C., Illa, M., Ciavarella, A. N. & Savage, M. J. Quantum simulations of hadron dynamics in the schwinger model using 112 qubits. Phys. Rev. D 109, 114510 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  31. Shtanko, O. et al. Uncovering local integrability in quantum many-body dynamics. Nat. Commun. 16, 2552 (2025).

    Article  ADS  Google Scholar 

  32. Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  33. Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  34. Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    Article  ADS  Google Scholar 

  35. Van Den Berg, E., Minev, Z. K., Kandala, A. & Temme, K. Probabilistic error cancellation with sparse pauli–lindblad models on noisy quantum processors. Nat. Phys. 19, 1116–1121 (2023).

    Article  Google Scholar 

  36. Zimborás, Z. et al. Myths around quantum computation before full fault tolerance: what no-go theorems rule out and what they don’t. Preprint at https://arxiv.org/abs/2501.05694 (2025).

  37. Govia, L. et al. Bounding the systematic error in quantum error mitigation due to model violation. PRX Quantum 6, 010354 (2025).

    Article  ADS  Google Scholar 

  38. Filippov, S., Leahy, M., Rossi, M. A. C. & García-Pérez, G. Scalable tensor-network error mitigation for near-term quantum computing. Preprint at https://arxiv.org/abs/2307.11740 (2023).

  39. Filippov, S. N., Maniscalco, S. & García-Pérez, G. Scalability of quantum error mitigation techniques: from utility to advantage. Preprint at https://arxiv.org/abs/2403.13542 (2024).

  40. Prosen, T. General relation between quantum ergodicity and fidelity of quantum dynamics. Phys. Rev. E 65, 036208 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  41. Akila, M., Waltner, D., Gutkin, B. & Guhr, T. Particle-time duality in the kicked ising spin chain. J. Phys. A 49, 375101 (2016).

    Article  MathSciNet  Google Scholar 

  42. Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16, 1050–1057 (2020).

    Article  Google Scholar 

  43. Glos, A. et al. Adaptive POVM implementations and measurement error mitigation strategies for near-term quantum devices. Preprint at https://arxiv.org/abs/2208.07817 (2022).

  44. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  Google Scholar 

  45. Knill, E. Fault-tolerant postselected quantum computation: threshold analysis. Preprint at https://arxiv.org/abs/quant-ph/0404104 (2004).

  46. Wallman, J. J. & Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94, 052325 (2016).

    Article  ADS  Google Scholar 

  47. Hashim, A. et al. Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor. Phys. Rev. X 11, 041039 (2021).

    Google Scholar 

  48. Chen, S. et al. The learnability of Pauli noise. Nat. Commun. 14, 52 (2023).

    Article  ADS  Google Scholar 

  49. Chen, S., Zhang, Z., Jiang, L. & Flammia, S. T. Efficient self-consistent learning of gate set Pauli noise. Preprint at https://arxiv.org/abs/2410.03906 (2024).

  50. Kim, Y. et al. Error mitigation with stabilized noise in superconducting quantum processors. Nat. Commun. 16, 8439 (2025).

    Article  ADS  Google Scholar 

  51. Ljubotina, M., Zadnik, L. & Prosen, T. Ballistic spin transport in a periodically driven integrable quantum system. Phys. Rev. Lett. 122, 150605 (2019).

    Article  ADS  Google Scholar 

  52. Long, D. M., Crowley, P. J. D., Khemani, V. & Chandran, A. Phenomenology of the prethermal many-body localized regime. Phys. Rev. Lett. 131, 106301 (2023).

    Article  ADS  Google Scholar 

  53. Eddins, A., Tran, M. C. & Rall, P. Lightcone shading for classically accelerated quantum error mitigation. Preprint at https://arxiv.org/abs/2409.04401 (2024).

  54. Robertson, N. F. et al. Tensor network enhanced dynamic multiproduct formulas. PRX Quantum 6, 020360 (2025).

    Article  ADS  Google Scholar 

  55. Stehlik, J. et al. Tunable coupling architecture for fixed-frequency transmon superconducting qubits. Phys. Rev. Lett. 127, 080505 (2021).

    Article  ADS  Google Scholar 

  56. Wack, A. et al. Scale, quality, and speed: three key attributes to measure the performance of near-term quantum computers. Preprint at https://arxiv.org/abs/2110.14108 (2021).

  57. Rajagopala, A. D. et al. Hardware-assisted parameterized circuit execution. Preprint at https://arxiv.org/abs/2409.03725 (2024).

  58. Van Den Berg, E., Minev, Z. K. & Temme, K. Model-free readout-error mitigation for quantum expectation values. Phys. Rev. A 105, 032620 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  59. Tsubouchi, K., Sagawa, T. & Yoshioka, N. Universal cost bound of quantum error mitigation based on quantum estimation theory. Phys. Rev. Lett. 131, 210601 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  60. Data and code for: dynamical simulations of many-body quantum chaos on a quantum computer. Figshare https://doi.org/10.6084/m9.figshare.29069759 (2025).

Download references

Acknowledgements

A.E., Y.K. and A.K. thank S. Bravyi for introducing DU circuits to them. M.A.C.R., Z.Z., G.G.P. and J.G. thank L. Piroli for useful discussions. We thank R. Malik for enabling device access. We thank A. Seif, D. Layden, E. van den Berg and L. Govia for feedback on the manuscript. I.T., F.T. and L.E.F. thank S. Wörner, A. Carrera Vázquez and D. Egger for helpful discussions. M.L., D.F., M.A.C.R., F.P., B.S., Z.Z., S.M., J.G., G.G.-P. and S.N.F. are grateful to E.-M. Borrelli, D. Cavalcanti, S. Mangini, M. Cattaneo, K. Korhonen, H. Vappula and J. Malmi for helpful discussions. We acknowledge the EuroHPC Joint Undertaking for awarding us the projects EHPC-DEV-2024D04-042, providing access to Leonardo at CINECA, Italy, and EHPC-DEV-2023D08-016, providing access to Karolina at IT4Innovations, Czech Republic. L.E.F. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 955479 (MOQS – Molecular Quantum Simulations). I.T. acknowledges support from NCCR MARVEL, funded by the Swiss National Science Foundation. S.D. acknowledges support through the SFI-IRC Pathway Grant 22/PATH-S/10812. J.G. is supported by a Royal Society University Research Fellowship and thanks S. Pappalardi for inspirational discussions.

Author information

Authors and Affiliations

Authors

Contributions

The Algorithmiq team (M.L., D.F., M.A.C.R., F.P., B.S., Z.Z., S.M., J.G., G.G.P. and S.N.F.) led the design and implementation of TEM and TN simulations. The IBM Quantum team (L.E.F., A.E., N.K., Y.K., A.H., F.T., I.T. and A.K.) led the experimental implementation, noise characterization and the hardware calibrations. L.E.F. performed the experiments with support from the IBM team. M.L. implemented the TEM with support from the Algorithmiq team, D.F. implemented the tensor-network simulations with support from the Algorithmiq team. S.N.F. and G.G.-P. conceived TEM. The Algorithmiq, TCD (M.L., N.K., S.D. and J.G.) and IBM teams contributed to the design of the experiments, circuits and tensor-network simulations, as well as data analysis and paper writing.

Corresponding authors

Correspondence to John Goold, Guillermo García-Pérez or Ivano Tavernelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Bruno Bertini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementay Discussion, with Supplementary Figs. 1–19 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, L.E., Leahy, M., Eddins, A. et al. Dynamical simulations of many-body quantum chaos on a quantum computer. Nat. Phys. (2026). https://doi.org/10.1038/s41567-025-03144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41567-025-03144-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing