Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Reply to ‘Heterogeneity of TP53 mutations necessitates differentiation with p53-rescue therapies’

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Peuget, S., Zhou, X. & Selivanova, G. Translating p53-based therapies for cancer into the clinic. Nat. Rev. Cancer 24, 192–215 (2024).

    Article  CAS  PubMed  Google Scholar 

  2. Wu, J., Song, H., Xiao, S. & Lu, M. Heterogeneity of p53 mutations necessitates differentiation with p53-rescue therapies. Nat. Rev. Cancer https://doi.org/10.1038/s41568-025-00826-7 (2025).

    Article  PubMed  Google Scholar 

  3. Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 15, 13–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Lambert, J. M. R. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Degtjarik, O. et al. Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nat. Commun. 12, 7057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Funk, J. S. et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 57, 140–153 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palomar-Siles, M. et al. Translational readthrough of nonsense mutant TP53 by mRNA incorporation of 5-Fluorouridine. Cell Death Dis. 13, 997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao, S. et al. Characterization of the generic mutant p53-rescue compounds in a broad range of assays. Cancer Cell 42, 325–327 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, H. S. et al. Direct measurement of engineered cancer mutations and their transcriptional phenotypes in single cells. Nat. Biotechnol. 42, 1254–1262 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Redman-Rivera, L. N. et al. Acquisition of aneuploidy drives mutant p53-associated gain-of-function phenotypes. Nat. Commun. 12, 5184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weissmueller, S. et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell 157, 382–394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujihara, K. M. et al. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci. Adv. 8, eabm9427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sylvain Peuget or Galina Selivanova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Related links

PANDA (p53 and arsenic) project: www.rescuep53.net

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peuget, S., Selivanova, G. Reply to ‘Heterogeneity of TP53 mutations necessitates differentiation with p53-rescue therapies’. Nat Rev Cancer 25, 564–565 (2025). https://doi.org/10.1038/s41568-025-00825-8

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00825-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer