Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Reply to ‘Mechanisms of ryanodine receptor 2 dysfunction in heart failure’

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intracellular Ca2+ transients and contractions in WT and RYR2-Ser2808Ala cardiomyocytes.

References

  1. Alvarado, F. J. & Valdivia, H. H. Mechanisms of ryanodine receptor 2 dysfunction in heart failure. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-020-00443-x (2020).

  2. Dridi, H. et al. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-020-0394-8 (2020).

    Article  PubMed  Google Scholar 

  3. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  Google Scholar 

  4. Kushnir, A., Shan, J., Betzenhauser, M. J., Reiken, S. & Marks, A. R. Role of CaMKIIδ phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure. Proc. Natl Acad. Sci. USA 107, 10274–10279 (2010).

    Article  CAS  Google Scholar 

  5. Wehrens, X. H., Lehnart, S. E., Reiken, S. R. & Marks, A. R. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ. Res. 94, 61–70 (2004).

    Article  Google Scholar 

  6. Shan, J. et al. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice. J. Clin. Invest. 120, 4388–4398 (2010).

    Article  CAS  Google Scholar 

  7. Shan, J. et al. Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice. J. Clin. Invest. 120, 4375–4387 (2010).

    Article  CAS  Google Scholar 

  8. Wehrens, X. H. et al. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc. Natl Acad. Sci. USA 103, 511–518 (2006).

    Article  CAS  Google Scholar 

  9. Benkusky, N. A. et al. Intact β-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ. Res. 101, 819–829 (2007).

    Article  CAS  Google Scholar 

  10. Packer, M. et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N. Engl. J. Med. 334, 1349–1355 (1996).

    Article  CAS  Google Scholar 

  11. Xiao, B. et al. Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon β-adrenergic stimulation in normal and failing hearts. Biochem. J. 396, 7–16 (2006).

    Article  CAS  Google Scholar 

  12. Zhang, Y. et al. Cardiomyocyte PKA ablation enhances basal contractility while eliminates cardiac β-adrenergic response without adverse effects on the heart. Circ. Res. 124, 1760–1777 (2019).

    Article  CAS  Google Scholar 

  13. Potenza, D. M. et al. Phosphorylation of the ryanodine receptor 2 at serine 2030 is required for a complete β-adrenergic response. J. Gen. Physiol. 151, 131–145 (2019).

    Article  CAS  Google Scholar 

  14. Huke, S. & Bers, D. M. Ryanodine receptor phosphorylation at serine 2030,2808 and 2814 in rat cardiomyocytes. Biochem. Biophys. Res. Commun. 376, 80–85 (2008).

    Article  CAS  Google Scholar 

  15. Lehnart, S. E. et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123, 25–35 (2005).

    Article  CAS  Google Scholar 

  16. Peng, W. et al. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 354, aah5324 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Marks.

Ethics declarations

Competing interests

A.R.M. and Columbia University, USA, own shares in ARMGO Pharma, a biotechnology company developing ryanodine receptor-targeted drugs. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dridi, H., Kushnir, A., Zalk, R. et al. Reply to ‘Mechanisms of ryanodine receptor 2 dysfunction in heart failure’. Nat Rev Cardiol 17, 749–750 (2020). https://doi.org/10.1038/s41569-020-00444-w

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-020-00444-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing