Abstract
Many biological bimetallic active sites exhibit unsymmetric coordination environments, allowing the two metal centres to perform distinct catalytic roles. By contrast, most synthetic homogeneous catalysts rely on symmetric ligand frameworks for ease of synthesis. This represents a considerable divergence between natural and synthetic catalysts, leaving the functional importance of unsymmetric arrangement largely underexplored. In this Review, we highlight biological examples of unsymmetric bimetallic centres and their roles in catalysis. We examine how the inherent lack of symmetry — achieved through ligand differentiation or heterobimetallic design — has been used to mimic nature’s bimetallic sites. We also discuss recent advances that show how an unsymmetric environment can lower the barriers of bond activation and outline current challenges in probing the function of unsymmetric features, along with strategies to overcome them.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Magnus, K. A., Ton-That, H. & Carpenter, J. E. Recent structural work on the oxygen transport protein hemocyanin. Chem. Rev. 94, 727–735 (1994).
Pretzler, M. & Rompel, A. Tyrosinases: a family of copper-containing metalloenzymes. ChemTexts 10, 12 (2024).
Gerdemann, C., Eicken, C. & Krebs, B. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Acc. Chem. Res. 35, 183–191 (2002).
Elwell, C. E. et al. Copper-oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem. Rev. 117, 2059–2107 (2017).
Lewis, E. A. & Tolman, W. B. Reactivity of dioxygen-copper systems. Chem. Rev. 104, 1047–1076 (2004).
Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. Structure and spectroscopy of copper−dioxygen complexes. Chem. Rev. 104, 1013–1046 (2004).
Quist, D. A., Diaz, D. E., Liu, J. J. & Karlin, K. D. Activation of dioxygen by copper metalloproteins and insights from model complexes. J. Biol. Inorg. Chem. 22, 253–288 (2017).
Kipouros, I. et al. Elucidation of the tyrosinase/O2/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis. Proc. Natl Acad. Sci. USA 119, e2205619119 (2022).
Panda, S. et al. Intramolecular phenolic H-atom abstraction by a N3ArOH ligand-supported (μ-η2:η2-peroxo)dicopper(II) species relevant to the active site function of oxy-tyrosinase. J. Am. Chem. Soc. 146, 14942–14947 (2024).
Kipouros, I. et al. Experimental evidence and mechanistic description of the phenolic H-transfer to the Cu2O2 active site of oxy-tyrosinase. J. Am. Chem. Soc. 145, 22866–22870 (2023).
Kipouros, I. & Solomon, E. I. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase. FEBS Lett. 597, 65–78 (2023).
Vendelboe, T. V. et al. The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution. Sci. Adv. 2, e1500980 (2016).
Hess, C. R., Klinman, J. P. & Blackburn, N. J. The copper centers of tyramine β-monooxygenase and its catalytic-site methionine variants: an X-ray absorption study. J. Biol. Inorg. Chem. 15, 1195–1207 (2010).
Chufán, E. E. et al. Differential reactivity between two copper sites in peptidylglycine α-hydroxylating monooxygenase. J. Am. Chem. Soc. 132, 15565–15572 (2010).
Alwan, K. B., Welch, E. F., Arias, R. J., Gambill, B. F. & Blackburn, N. J. Rational design of a histidine–methionine site modeling the M-center of copper monooxygenases in a small metallochaperone scaffold. Biochemistry 58, 3097–3108 (2019).
Chauhan, S., Kline, C. D., Mayfield, M. & Blackburn, N. J. Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers. Biochemistry 53, 1069–1080 (2014).
Alwan, K. B., Welch, E. F. & Blackburn, N. J. Catalytic M center of copper monooxygenases probed by rational design. Effects of selenomethionine and histidine substitution on structure and reactivity. Biochemistry 58, 4436–4446 (2019).
Yoshizawa, K., Kihara, N., Kamachi, T. & Shiota, Y. Catalytic mechanism of dopamine β-monooxygenase mediated by Cu(III)−oxo. Inorg. Chem. 45, 3034–3041 (2006).
Cowley, R. E., Tian, L. & Solomon, E. I. Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases. Proc. Natl Acad. Sci. USA 113, 12035–12040 (2016).
Welch, E. F., Rush, K. W., Arias, R. J. & Blackburn, N. J. Copper monooxygenase reactivity: do consensus mechanisms accurately reflect experimental observations? J. Inorg. Biochem. 231, 111780 (2022).
Wu, P. et al. Theory demonstrated a ‘coupled’ mechanism for O2 activation and substrate hydroxylation by binuclear copper monooxygenases. J. Am. Chem. Soc. 141, 19776–19789 (2019).
Welch, E. F., Rush, K. W., Eastman, K. A. S., Bandarian, V. & Blackburn, N. J. The binuclear copper state of peptidylglycine monooxygenase visualized through a selenium-substituted peptidyl-homocysteine complex. Dalton Trans. 54, 4941–4955 (2025).
Blackburn, N. J. Metal-mediated peptide processing. How copper and iron catalyze diverse peptide modifications such as amidation and crosslinking. RSC Chem. Biol. 6, 1048–1067 (2025).
Koo, C. W. et al. Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer. Science 375, 1287–1291 (2022).
Balasubramanian, R. et al. Oxidation of methane by a biological dicopper centre. Nature 465, 115–119 (2010).
Tucci, F. J. & Rosenzweig, A. C. Structures of methane and ammonia monooxygenases in native membranes. Proc. Natl Acad. Sci. USA 122, e2417993121 (2025).
Tucci, F. J. & Rosenzweig, A. C. Direct methane oxidation by copper- and iron-dependent methane monooxygenases. Chem. Rev. 124, 1288–1320 (2024).
Tucci, F. J., Jodts, R. J., Hoffman, B. M. & Rosenzweig, A. C. Product analogue binding identifies the copper active site of particulate methane monooxygenase. Nat. Catal. 6, 1194–1204 (2023).
Jasniewski, A. J. & Que, L. Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem. Rev. 118, 2554–2592 (2018).
Caldas Nogueira, M. L., Pastore, A. J. & Davidson, V. L. Diversity of structures and functions of oxo-bridged non-heme diiron proteins. Arch. Biochem. Biophys. 705, 108917 (2021).
Kitanishi, K. Bacterial hemerythrin domain-containing oxygen and redox sensors: versatile roles for oxygen and redox signaling. Front. Mol. Biosci. 9, 1–7 (2022).
Tshuva, E. Y. & Lippard, S. J. Synthetic models for non-heme carboxylate-bridged diiron metalloproteins: strategies and tactics. Chem. Rev. 104, 987–1012 (2004).
Rosenzweig, A. C. et al. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366, 537–543 (1993).
Srinivas, V. et al. High-resolution XFEL structure of the soluble methane monooxygenase hydroxylase complex with its regulatory component at ambient temperature in two oxidation states. J. Am. Chem. Soc. 142, 14249–14266 (2020).
Baik, M.-H., Newcomb, M., Friesner, R. A. & Lippard, S. J. Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev. 103, 2385–2420 (2003).
Friedle, S., Reisner, E. & Lippard, S. J. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39, 2768–2779 (2010).
Li, R.-N. & Chen, S.-L. Recent insights into the reaction mechanisms of non-heme diiron enzymes containing oxoiron(IV) complexes. ChemBioChem 26, e202400788 (2025).
Jones, J. C. et al. X-ray crystal structures of methane monooxygenase hydroxylase complexes with variants of its regulatory component: correlations with altered reaction cycle dynamics. Biochemistry 61, 21–33 (2022).
Liu, K. E. et al. Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase/hydroxylase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 116, 7465–7466 (1994).
Shu, L. et al. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275, 515–518 (1997).
Gherman, B. F., Baik, M.-H., Lippard, S. J. & Friesner, R. A. Dioxygen activation in methane monooxygenase: a theoretical study. J. Am. Chem. Soc. 126, 2978–2990 (2004).
Gherman, B. F., Lippard, S. J. & Friesner, R. A. Substrate hydroxylation in methane monooxygenase: quantitative modeling via mixed quantum mechanics/molecular mechanics techniques. J. Am. Chem. Soc. 127, 1025–1037 (2005).
Banerjee, R., Proshlyakov, Y., Lipscomb, J. D. & Proshlyakov, D. A. Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518, 431 (2015).
Jacobs, A. B. et al. Nuclear resonance vibrational spectroscopic definition of the Fe(IV)2 intermediate Q in methane monooxygenase and its reactivity. J. Am. Chem. Soc. 143, 16007–16029 (2021).
Makris, T. M. Von, Koenig, K., Schlichting, I. & Sligar, S. G. The status of high-valent metal oxo complexes in the P450 cytochromes. J. Inorg. Biochem. 100, 507–518 (2006).
Castillo, R. G. et al. High-energy-resolution fluorescence-detected X-ray absorption of the Q intermediate of soluble methane monooxygenase. J. Am. Chem. Soc. 139, 18024–18033 (2017).
Schulz, C. E., Castillo, R. G., Pantazis, D. A., DeBeer, S. & Neese, F. Structure–spectroscopy correlations for intermediate Q of soluble methane monooxygenase: insights from QM/MM calculations. J. Am. Chem. Soc. 143, 6560–6577 (2021).
Cutsail, G. E. et al. Determination of the iron(IV) local spin states of the Q intermediate of soluble methane monooxygenase by Kβ X-ray emission spectroscopy. J. Biol. Inorg. Chem. 27, 573–582 (2022).
Xue, G., De Hont, R., Münck, E. & Que, L. Million-fold activation of the [Fe2(u-O)2] diamond core for C–H bond cleavage. Nat. Chem. 2, 400–405 (2010).
Jabri, E., Carr, M. B., Hausinger, R. P. & Karplus, P. A. The crystal structure of urease from Klebsiella aerogenes. Science 268, 998–1004 (1995).
Zambelli, B., Musiani, F., Benini, S. & Ciurli, S. Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc. Chem. Res. 44, 520–530 (2011).
Righetto, R. D. et al. High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nat. Commun. 11, 5101 (2020).
Mazzei, L., Cianci, M., Benini, S. & Ciurli, S. The structure of the elusive urease–urea complex unveils the mechanism of a paradigmatic nickel-dependent enzyme. Angew. Chem. Int. Ed. 58, 7415–7419 (2019).
Mazzei, L., Musiani, F. & Ciurli, S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J. Biol. Inorg. Chem. 25, 829–845 (2020).
Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).
Wan, Q. & Lin, S. Frustrated Lewis pairs in heterogeneous catalysis: theoretical insights. Molecules 27, 3734 (2022).
Ishigami, I. et al. Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase. Proc. Natl Acad. Sci. USA 116, 3572–3577 (2019).
Ishigami, I. et al. Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature. Proc. Natl Acad. Sci. USA 114, 8011–8016 (2017).
Shinzawa-Itoh, K. et al. Monomeric structure of an active form of bovine cytochrome c oxidase. Proc. Natl Acad. Sci. USA 116, 19945–19951 (2019).
Di Trani, J. M. et al. Structural basis of mammalian complex IV inhibition by steroids. Proc. Natl Acad. Sci. USA 119, e2205228119 (2022).
Hiromoto, T. et al. New insights into the oxidation process from neutron and X-ray crystal structures of an O2-sensitive [NiFe]-hydrogenase. Chem. Sci. 14, 9306–9315 (2023).
Grinter, R. et al. Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 615, 541–547 (2023).
Schmidt, A. et al. Stepwise conversion of the Cys6[4Fe–3S] to a Cys4[4Fe–4S] cluster and its impact on the oxygen tolerance of [NiFe]-hydrogenase. Chem. Sci. 14, 11105–11120 (2023).
Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).
Richardson, J., Thomas, K. A., Rubin, B. H. & Richardson, D. C. Crystal structure of bovine Cu, Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands. Proc. Natl Acad. Sci. USA 72, 1349–1353 (1975).
Kropp, A. et al. Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria. Nat. Chem. Biol. 21, 1058–1068 (2025).
Jiang, W. et al. A manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Science 316, 1188–1191 (2007).
Basak, Y., Lorent, C., Jeoung, J. H., Zebger, I. & Dobbek, H. Metalloradical-driven enzymatic CO2 reduction by a dynamic Ni–Fe cluster. Nat. Catal. 8, 794–803 (2025).
Merrouch, M. et al. Maturation of the [Ni–4Fe–4S] active site of carbon monoxide dehydrogenases. J. Biol. Inorg. Chem. 23, 613–620 (2018).
Dobbek, H. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293, 1281–1285 (2001).
Contaldo, U. et al. Insights into the role of the d-cluster in [NiFe]-CODH from Rhodospirillum rubrum. Chem. Eur. J. 31, 1–8 (2025).
Yano, J. & Yachandra, V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).
Narzi, D. & Guidoni, L. Structural and dynamic insights into Mn4Ca cluster-depleted Photosystem II. Phys. Chem. Chem. Phys. 23, 27428–27436 (2021).
Pushkar, Y. et al. Structure and orientation of the Mn4Ca cluster in plant photosystem II membranes studied by polarized range-extended X-ray absorption spectroscopy. J. Biol. Chem. 282, 7198–7208 (2007).
Barber, J. Mn4Ca cluster of photosynthetic oxygen-evolving center: structure, function and evolution. Biochemistry 55, 5901–5906 (2016).
Biester, A., Marcano-Delgado, A. N. & Drennan, C. L. Structural insights into microbial one-carbon metabolic enzymes Ni–Fe–S-dependent carbon monoxide dehydrogenases and acetyl-CoA synthases. Biochemistry 61, 2797–2805 (2022).
Kung, Y. & Drennan, C. L. A role for nickel–iron cofactors in biological carbon monoxide and carbon dioxide utilization. Curr. Opin. Chem. Biol. 15, 276–283 (2011).
Drennan, C. L., Doukov, T. I. & Ragsdale, S. W. The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures. J. Biol. Inorg. Chem. 9, 511–515 (2004).
Can, M., Armstrong, F. A. & Ragsdale, S. W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem. Rev. 114, 4149–4174 (2014).
Huang, M., Parker, M. J. & Stubbe, J. Choosing the right metal: case studies of class I ribonucleotide reductases. J. Biol. Chem. 289, 28104–28111 (2014).
Griese, J. J. et al. Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein. Proc. Natl Acad. Sci. USA 110, 17189–17194 (2013).
Högbom, M. et al. The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. Science 305, 245–248 (2004).
Andersson, C. S. & Högbom, M. A Mycobacterium tuberculosis ligand-binding Mn/Fe protein reveals a new cofactor in a remodeled R2-protein scaffold. Proc. Natl Acad. Sci. USA 106, 5633–5638 (2009).
Shafaat, H. S. et al. Electronic structural flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J. Am. Chem. Soc. 136, 13399–13409 (2014).
Diamanti, R. et al. Comparative structural analysis provides new insights into the function of R2-like ligand-binding oxidase. FEBS Lett. 596, 1600–1610 (2022).
Maugeri, P. T. et al. Driving protein conformational changes with light: photoinduced structural rearrangement in a heterobimetallic oxidase. J. Am. Chem. Soc. 140, 1471–1480 (2018).
Kisgeropoulos, E. C. et al. Key structural motifs balance metal binding and oxidative reactivity in a heterobimetallic Mn/Fe protein. J. Am. Chem. Soc. 142, 5338–5354 (2020).
Kisgeropoulos, E. C., Gan, Y. J., Greer, S. M., Hazel, J. M. & Shafaat, H. S. Pulsed multifrequency electron paramagnetic resonance spectroscopy reveals key branch points for one- vs two-electron reactivity in Mn/Fe proteins. J. Am. Chem. Soc. 144, 11991–12006 (2022).
Kutin, Y. et al. Chemical flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J. Biol. Chem. 294, 18372–18386 (2019).
Griese, J. J., Kositzki, R., Haumann, M. & Högbom, M. Assembly of a heterodinuclear Mn/Fe cofactor is coupled to tyrosine–valine ether cross-link formation in the R2-like ligand-binding oxidase. J. Biol. Inorg. Chem. 24, 211–221 (2019).
Manley, O. M. et al. Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis. Proc. Natl Acad. Sci. USA 119, 1–7 (2022).
Liu, C., Powell, M. M., Rao, G., Britt, R. D. & Rittle, J. Bioinformatic discovery of a cambialistic monooxygenase. J. Am. Chem. Soc. 146, 1783–1788 (2024).
Powell, M. M., Rao, G., Britt, R. D. & Rittle, J. Enzymatic hydroxylation of aliphatic C–H bonds by a Mn/Fe cofactor. J. Am. Chem. Soc. 145, 16526–16537 (2023).
Martinie, R. J. et al. Structural elucidation of the reduced Mn(III)/Fe(III) intermediate of the radical-initiating metallocofactor in Chlamydia trachomatis ribonucleotide reductase. Biochemistry 64, 1157–1167 (2025).
Griese, J. J., Srinivas, V. & Högbom, M. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. J. Biol. Inorg. Chem. 19, 759–774 (2014).
Miller, E. K., Trivelas, N. E., Maugeri, P. T., Blaesi, E. J. & Shafaat, H. S. Time-resolved investigations of heterobimetallic cofactor assembly in R2lox reveal distinct Mn/Fe Intermediates. Biochemistry 56, 3369–3379 (2017).
Gan, Y. J., Hazel, J. M., Searle, B. C. & Shafaat, H. S. Selective isotope labeling probes the chemical capacity and reaction mechanism of a heterobimetallic Mn/Fe protein. J. Inorg. Biochem. 270, 112933 (2025).
Sträter, N., Klabunde, T., Tucker, P., Witzel, H. & Krebs, B. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)–Zn(II) active site. Science 268, 1489–1492 (1995).
Schenk, G. et al. Phosphate forms an unusual tripodal complex with the Fe–Mn center of sweet potato purple acid phosphatase. Proc. Natl Acad. Sci. USA 102, 273–278 (2005).
Hayman, A. R. & Cox, T. M. Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties, and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. J. Biol. Chem. 269, 1294–1300 (1994).
Eom, H. & Song, W. J. Emergence of metal selectivity and promiscuity in metalloenzymes. J. Biol. Inorg. Chem. 24, 517–531 (2019).
Alberto, M. E., Marino, T., Ramos, M. J. & Russo, N. Atomistic details of the catalytic mechanism of Fe(III)−Zn(II) purple acid phosphatase. J. Chem. Theory Comput. 6, 2424–2433 (2010).
Jayasinghe-Arachchige, V. M. et al. Elucidating the roles of distinct chemical factors in the hydrolytic activities of hetero- and homonuclear synthetic analogues of binuclear metalloenzymes. ACS Catal. 13, 3131–3147 (2023).
Zhou, X. et al. Electronic effect on bimetallic catalysts: cleavage of phosphodiester mediated by Fe(III)–Zn(II) purple acid phosphatase mimics. Inorg. Chem. 59, 12065–12074 (2020).
Suzuki, M., Furutachi, H. & Ōkawa, H. Bimetallic dioxygen complexes derived from ‘end-off’ compartmental ligands. Coord. Chem. Rev. 200–202, 105–129 (2000).
Crane, J. D., Fenton, D. E., Latour, J. M. & Smith, A. J. Unsymmetric dicopper(II) complexes of dinucleating ligands bearing chemically distinct co-ordination environments. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/DT9910002979 (1991).
Suzuki, M., Kanatomi, H. & Murase, I. Synthesis and properties of binuclear cobalt(II) oxygen adduct with 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol. Chem. Lett. 10, 1745–1748 (1981).
Hu, Q.-Q., Su, X.-J. & Zhang, M.-T. Electrocatalytic water oxidation by an unsymmetrical di-copper complex. Inorg. Chem. 57, 10481–10484 (2018).
Chen, Q.-F., Xiao, Y., Hua, K., Zhang, H.-T. & Zhang, M.-T. Bimetallic synergy in oxygen reduction: how tailored metal–metal interactions amplify cooperative catalysis. J. Am. Chem. Soc. 147, 14504–14518 (2025).
Murthy, N. N., Mahroof-Tahir, M. & Karlin, K. D. Dicopper(I) complexes of unsymmetrical binucleating ligands and their dioxygen reactivities. Inorg. Chem. 40, 628–635 (2001).
Karlin, K. D. et al. Dioxygen-copper reactivity: generation, characterization, and reactivity of a hydroperoxodicopper(II) complex. J. Am. Chem. Soc. 110, 6769–6780 (1988).
Nasir, M. S., Karlin, K. D., McGowty, D. & Zubieta, J. Unsymmetrical dicopper complexes. Direct observation of reversible O2 binding in a copper monooxygenase model system. J. Am. Chem. Soc. 113, 698–700 (1991).
Hota, P. K. et al. Dioxygenase chemistry in nucleophilic aldehyde deformylations utilizing dicopper O2-derived peroxide complexes. J. Am. Chem. Soc. 146, 23854–23871 (2024).
Nicolay, A. et al. Unsymmetrical naphthyridine-based dicopper(I) complexes: synthesis, stability, and carbon–hydrogen bond activations. Organometallics 40, 1866–1873 (2021).
Merkel, M. et al. Less symmetrical dicopper(II) complexes as catechol oxidase models — an adjacent thioether group increases catecholase activity. Chem. Eur. J. 11, 1201–1209 (2005).
Rammal, W. et al. Thiomethyl substituted dicopper complexes: attempts to reproduce the asymmetry of the active site from type 3 copper enzymes. Z. für Anorg. und Allg. Chem. 639, 1477–1482 (2013).
Gennarini, F. et al. Influence of asymmetry on the redox properties of phenoxo- and hydroxo-bridged dicopper complexes: spectroelectrochemical and theoretical studies. Inorg. Chem. 56, 7707–7719 (2017).
Sushkevich, V. L., Artsiusheuski, M., Klose, D., Jeschke, G. & van Bokhoven, J. A. Identification of kinetic and spectroscopic signatures of copper sites for direct oxidation of methane to methanol. Angew. Chem. Int. Ed. 60, 15944–15953 (2021).
Pappas, D. K. et al. Methane to methanol: structure–activity relationships for Cu-CHA. J. Am. Chem. Soc. 139, 14961–14975 (2017).
Heyer, A. J. et al. Methane activation by a mononuclear copper active site in the zeolite mordenite: effect of metal nuclearity on reactivity. J. Am. Chem. Soc. 144, 19305–19316 (2022).
Woertink, J. S. et al. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl Acad. Sci. USA 106, 18908–18913 (2009).
Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).
Bridgeman, A. J., Cavigliasso, G., Ireland, L. R. & Rothery, J. The Mayer bond order as a tool in inorganic chemistry. J. Chem. Soc. Dalton Trans. 2095–2108 (2001).
Carter, S., Tao, W., Majumder, R., Sokolov, A. Y. & Zhang, S. Two-state hydrogen atom transfer reactivity of unsymmetric [Cu2(O)(NO)]2+ complexes. J. Am. Chem. Soc. 145, 17779–17785 (2023).
Tao, W., Moore, C. E. & Zhang, S. Redox-neutral S-nitrosation mediated by a dicopper center. Angew. Chem. Int. Ed. 60, 15980–15987 (2021).
Tao, W., Bower, J. K., Moore, C. E. & Zhang, S. Dicopper μ-oxo, μ-nitrosyl complex from the activation of NO or nitrite at a dicopper center. J. Am. Chem. Soc. 141, 10159–10164 (2019).
Tao, W., Yerbulekova, A., Moore, C. E., Shafaat, H. S. & Zhang, S. Controlling the direction of S-nitrosation versus denitrosation: reversible cleavage and formation of an S–N bond within a dicopper center. J. Am. Chem. Soc. 144, 2867–2872 (2022).
Tao, W. et al. Reductive NO coupling at dicopper center via a [Cu2(NO)2]2+ diamond-core intermediate. J. Am. Chem. Soc. 144, 22633–22640 (2022).
Abe, T., Kametani, Y., Yoshizawa, K. & Shiota, Y. Mechanistic insights into the dicopper-complex-catalyzed hydroxylation of methane and benzene using nitric oxide: a DFT study. Inorg. Chem. 60, 4599–4609 (2021).
Shiota, Y. & Yoshizawa, K. Comparison of the reactivity of bis(μ-oxo)CuIICuIII and CuIIICuIII species to methane. Inorg. Chem. 48, 838–845 (2009).
Yoshizawa, K. & Shiota, Y. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. J. Am. Chem. Soc. 128, 9873–9881 (2006).
VanNatta, P. E., Ramirez, D. A., Velarde, A. R., Ali, G. & Kieber-Emmons, M. T. Exceptionally high O–H bond dissociation free energy of a dicopper(II) μ-hydroxo complex and insights into the geometric and electronic structure origins thereof. J. Am. Chem. Soc. 142, 16292–16312 (2020).
Lambert, E. et al. Synthesis, structural, magnetic, and redox properties of asymmetric diiron complexes with a single terminally bound phenolate ligand. Relevance to the purple acid phosphatase enzymes. J. Am. Chem. Soc. 119, 9424–9437 (1997).
Lee, J. L. et al. Bioinspired di-Fe complexes: correlating structure and proton transfer over four oxidation states. J. Am. Chem. Soc. 144, 4559–4571 (2022).
Norman, R. E. et al. (m-Oxo)(m-carboxylato)diiron(III) complexes with distinct iron sites. Consequences of the inequivalence and its relevance to dinuclear iron-oxo proteins. J. Am. Chem. Soc. 112, 1554–1562 (1990).
He, C. & Lippard, S. J. Synthesis and electrochemical studies of diiron complexes of 1,8-naphthyridine-based dinucleating ligands to model features of the active sites of non-heme diiron enzymes. Inorg. Chem. 40, 1414–1420 (2001).
Do, L. H. & Lippard, S. J. Toward functional carboxylate-bridged diiron protein mimics: achieving structural stability and conformational flexibility using a macrocylic ligand framework. J. Am. Chem. Soc. 133, 10568–10581 (2011).
Burger, B., Dechert, S., Große, C., Demeshko, S. & Meyer, F. Visualising the carboxylate shift at a bioinspired diiron(ii) site in the solid state. Chem. Commun. 47, 10428–10430 (2011).
Minier, M. A. & Lippard, S. J. 19F NMR study of ligand dynamics in carboxylate-bridged diiron(ii) complexes supported by a macrocyclic ligand. Dalton Trans. 44, 18111–18121 (2015).
Wang, F. et al. Tuning the diiron core geometry in carboxylate-bridged macrocyclic model complexes affects their redox properties and supports oxidation chemistry. Inorg. Chem. 56, 11050–11058 (2017).
Rohde, G. T., Xue, G. & Que, L. Explorations of the nonheme high-valent iron-oxo landscape: crystal structure of a synthetic complex with an [FeIV2(μ-O)2] diamond core relevant to the chemistry of sMMOH. Faraday Discuss. 234, 109–128 (2021).
Poptic, A. L. et al. Site-differentiated MnIIFeII complex reproducing the selective assembly of biological heterobimetallic Mn/Fe cofactors. J. Am. Chem. Soc. 145, 3491–3498 (2023).
Poptic, A. L., Klinger, J. K., Carter, S. L., Moore, C. E. & Zhang, S. Nitrite formation at a diiron dinitrosyl complex. J. Am. Chem. Soc. 145, 22993–22999 (2023).
Li, Y. et al. Opening the CoIII,IV2(μ-O)2 diamond core by Lewis bases leads to enhanced C–H bond cleaving reactivity. J. Am. Chem. Soc. 142, 21670–21678 (2020).
Barrios, A. M. & Lippard, S. J. Interaction of urea with a hydroxide-bridged dinuclear nickel center: an alternative model for the mechanism of urease. J. Am. Chem. Soc. 122, 9172–9177 (2000).
Barrios, A. M. & Lippard, S. J. Amide hydrolysis effected by a hydroxo-bridged dinickel(II) complex: insights into the mechanism of urease. J. Am. Chem. Soc. 121, 11751–11757 (1999).
Barrios, A. M. & Lippard, S. J. Decomposition of alkyl-substituted urea molecules at a hydroxide-bridged dinickel center. Inorg. Chem. 40, 1250–1255 (2001).
Kundu, B. K. et al. Unveiling the urease like intrinsic catalytic activities of two dinuclear nickel complexes towards the in situ syntheses of aminocyanopyridines. Dalton Trans. 50, 4848–4858 (2021).
Beddie, C., Webster, C. E. & Hall, M. B. Urea decomposition facilitated by a urease model complex: a theoretical investigation. Dalton Trans. https://doi.org/10.1039/B505210F (2005).
Martins, C. O. et al. Urea decomposition mechanism by dinuclear nickel complexes. Molecules 28, 1659 (2023).
Uozumi, S. et al. Dinuclear nickel(II) complexes of an unsymmetric ‘end-off’ compartmental ligand: conversion of urea into cyanate at a dinuclear nickel core. Inorg. Chem. 37, 6281–6287 (1998).
Volkmer, D., Hörstmann, A., Griesar, K., Haase, W. & Krebs, B. [Ni2(ppepO)(C6H5COO)2(CH3COOH)]ClO4·C4H10O: synthesis and characterization of an asymmetric dinuclear nickel(II) complex showing unusual coordination behavior with rel. Inorg. Chem. 35, 1132–1135 (1996).
Volkmer, D., Hommerich, B., Griesar, K., Haase, W. & Krebs, B. Dinuclear nickel(II) complexes as models for the active site of urease. Inorg. Chem. 35, 3792–3803 (1996).
Carlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. Nickel complexes of carboxylate-containing polydentate ligands as models for the active site of urease. Inorg. Chem. 43, 8252–8262 (2004).
Kerber, W. D., Goheen, J. T., Perez, K. A. & Siegler, M. A. Enhanced stability of the FeII/MnII state in a synthetic model of heterobimetallic cofactor assembly. Inorg. Chem. 55, 848–857 (2016).
Wilson, L. A., Pedroso, M. M., Peralta, R. A., Gahan, L. R. & Schenk, G. Biomimetics for purple acid phosphatases: a historical perspective. J. Inorg. Biochem. 238, 112061 (2023).
Papaefthymiou, V. et al. Heterobimetallic complexes with (μ-phenoxo)bis(μ-carboxylato) cores. J. Am. Chem. Soc. 110, 1986–1988 (1988).
Holman, T. R., Wang, Z., Hendrich, M. P. & Que, L. Structural and spectroscopic properties of antiferromagnetically coupled FeIIIMnII and FeIIMnII complexes. Inorg. Chem. 34, 134–139 (1995).
Bossek, U., Weyhermüller, T., Wieghardt, K., Bonvoisin, J. & Girerd, J. J. Synthesis, e.s.r. spectrum and magnetic properties of a heterobinuclear complex containing the {FeIII(μ-O)(μ-MeCO2)2MnIII}2+ core. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39890000633 (1989).
Hotzelmann, R. et al. Spin exchange coupling in asymmetric heterodinuclear complexes containing the μ-oxo-bis(μ-acetato)dimetal core. J. Am. Chem. Soc. 114, 1681–1696 (1992).
Karsten, P., Neves, A., Bortoluzzi, A. J., Lanznaster, M. & Drago, V. Synthesis, structure, properties, and phosphatase-like activity of the first heterodinuclear FeIIIMnII complex with the unsymmetric ligand H2BPBPMP as a model for the PAP in sweet potato. Inorg. Chem. 41, 4624–4626 (2002).
Ross, S. et al. Asymmetric heterodinuclear FeIIIMII (M = Zn, Cu, Ni, Fe, Mn), CoIIIFeII and FeIICoIII species: synthesis, structure, redox behavior, and magnetism. Eur. J. Inorg. Chem. 5, 984–997 (2004).
Carboni, M. et al. Biologically relevant heterodinuclear iron–manganese complexes. Inorg. Chem. 51, 10447–10460 (2012).
Sano, Y., Weitz, A. C., Ziller, J. W., Hendrich, M. P. & Borovik, A. S. Unsymmetrical bimetallic complexes with MII-(μ-OH)-M III cores (MIIMIII = FeIIFeIII, MnIIFeIII, MnIIMnIII): structural, magnetic, and redox properties. Inorg. Chem. 52, 10229–10231 (2013).
Sano, Y. et al. Models for unsymmetrical active sites in metalloproteins: structural, redox, and magnetic properties of bimetallic complexes with MII-(μ-OH)-FeIII cores. Inorg. Chem. 56, 14118–14128 (2017).
Tereniak, S. J. et al. Role of the metal in the bonding and properties of bimetallic complexes involving manganese, iron, and cobalt. J. Am. Chem. Soc. 136, 1842–1855 (2013).
Poptic, A. L. et al. Site-differentiated MnIIFeII complex reproducing the selective assembly of biological heterobimetallic Mn/Fe cofactors. J. Am. Chem. Soc. 145, 9 (2023).
Crossland, P. M., Guo, Y. & Que, L. Spontaneous formation of an Fe/Mn diamond core: models for the Fe/Mn sites in class 1c ribonucleotide reductases. Inorg. Chem. 60, 8710–8721 (2021).
Zhou, A. et al. Oxoiron(IV) complexes as synthons for the assembly of heterobimetallic centers such as the Fe/Mn active site of class Ic ribonucleotide reductases. J. Biol. Inorg. Chem. 23, 155–165 (2018).
Lee, J. L. et al. Accessing a synthetic FeIIIMnIV core to model biological heterobimetallic active sites. Chem. Sci. 15, 2817–2826 (2024).
Bartholomew, A. K. et al. Revealing redox isomerism in trichromium imides by anomalous diffraction. Chem. Sci. 12, 15739–15749 (2021).
Bartholomew, A. K. et al. Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters. Proc. Natl Acad. Sci. USA 116, 15836–15841 (2019).
Alayoglu, P. et al. Electronic desymmetrization of Cu3(μ3-E) clusters (E = S, Se) induced by edge-to-face π-stacking interactions in the second coordination sphere. Inorg. Chem. 63, 24501–24505 (2024).
Alayoglu, P. et al. Metal site-specific electrostatic field effects on a tricopper(I) cluster probed by resonant diffraction anomalous fine structure (DAFS). Inorg. Chem. 62, 15267–15276 (2023).
Casaday, C. E. et al. Occupancy determination from resonant X-ray diffraction. Inorg. Chem. 64, 3090–3100 (2025).
Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).
Snyder, R. A. et al. Systematic perturbations of binuclear non-heme iron sites: structure and dioxygen reactivity of de novo due ferri proteins. Biochemistry 54, 4637–4651 (2015).
Snyder, R. A., Butch, S. E., Reig, A. J., DeGrado, W. F. & Solomon, E. I. Molecular-level insight into the differential oxidase and oxygenase reactivities of de novo due ferri proteins. J. Am. Chem. Soc. 137, 9302–9314 (2015).
Chino, M. et al. A de novo heterodimeric due ferri protein minimizes the release of reactive intermediates in dioxygen-dependent oxidation. Angew. Chem. Int. Ed. 56, 15580–15583 (2017).
Makhlynets, O. V., Gosavi, P. M. & Korendovych, I. V. Short self-assembling peptides are able to bind to copper and activate oxygen. Angew. Chem. Int. Ed. 55, 9017–9020 (2016).
Lombardi, A. et al. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc. Natl Acad. Sci. USA 97, 6298–6305 (2000).
Huang, P. S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).
Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).
Acknowledgements
This work was supported by the National Science Foundation under Grant No. CHE-2246440.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mondal, S., Myers, P. & Zhang, S. Unsymmetric bimetallic centres in metalloproteins and synthetic models. Nat Rev Chem (2025). https://doi.org/10.1038/s41570-025-00781-9
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41570-025-00781-9


