Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unsymmetric bimetallic centres in metalloproteins and synthetic models

Abstract

Many biological bimetallic active sites exhibit unsymmetric coordination environments, allowing the two metal centres to perform distinct catalytic roles. By contrast, most synthetic homogeneous catalysts rely on symmetric ligand frameworks for ease of synthesis. This represents a considerable divergence between natural and synthetic catalysts, leaving the functional importance of unsymmetric arrangement largely underexplored. In this Review, we highlight biological examples of unsymmetric bimetallic centres and their roles in catalysis. We examine how the inherent lack of symmetry — achieved through ligand differentiation or heterobimetallic design — has been used to mimic nature’s bimetallic sites. We also discuss recent advances that show how an unsymmetric environment can lower the barriers of bond activation and outline current challenges in probing the function of unsymmetric features, along with strategies to overcome them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples and classification of unsymmetric bimetallic centres.
Fig. 2: Comparison of O2 activation at symmetric versus unsymmetric bimetallic sites.
Fig. 3: Structures of unsymmetric bimetallic sites and the proposed reaction mechanisms.
Fig. 4: Examples of heterobimetallic cofactors.
Fig. 5: Examples of unsymmetric di-Cu complexes.
Fig. 6: Examples of unsymmetric di-Cu complexes.
Fig. 7: Examples of unsymmetric di-Fe complexes.
Fig. 8: Examples of unsymmetric di-Ni and heterobimetallic FeMn complexes.

Similar content being viewed by others

References

  1. Magnus, K. A., Ton-That, H. & Carpenter, J. E. Recent structural work on the oxygen transport protein hemocyanin. Chem. Rev. 94, 727–735 (1994).

    Article  CAS  Google Scholar 

  2. Pretzler, M. & Rompel, A. Tyrosinases: a family of copper-containing metalloenzymes. ChemTexts 10, 12 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Gerdemann, C., Eicken, C. & Krebs, B. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Acc. Chem. Res. 35, 183–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Elwell, C. E. et al. Copper-oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem. Rev. 117, 2059–2107 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lewis, E. A. & Tolman, W. B. Reactivity of dioxygen-copper systems. Chem. Rev. 104, 1047–1076 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. Structure and spectroscopy of copper−dioxygen complexes. Chem. Rev. 104, 1013–1046 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Quist, D. A., Diaz, D. E., Liu, J. J. & Karlin, K. D. Activation of dioxygen by copper metalloproteins and insights from model complexes. J. Biol. Inorg. Chem. 22, 253–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Kipouros, I. et al. Elucidation of the tyrosinase/O2/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis. Proc. Natl Acad. Sci. USA 119, e2205619119 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Panda, S. et al. Intramolecular phenolic H-atom abstraction by a N3ArOH ligand-supported (μ-η22-peroxo)dicopper(II) species relevant to the active site function of oxy-tyrosinase. J. Am. Chem. Soc. 146, 14942–14947 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kipouros, I. et al. Experimental evidence and mechanistic description of the phenolic H-transfer to the Cu2O2 active site of oxy-tyrosinase. J. Am. Chem. Soc. 145, 22866–22870 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kipouros, I. & Solomon, E. I. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase. FEBS Lett. 597, 65–78 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Vendelboe, T. V. et al. The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution. Sci. Adv. 2, e1500980 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hess, C. R., Klinman, J. P. & Blackburn, N. J. The copper centers of tyramine β-monooxygenase and its catalytic-site methionine variants: an X-ray absorption study. J. Biol. Inorg. Chem. 15, 1195–1207 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chufán, E. E. et al. Differential reactivity between two copper sites in peptidylglycine α-hydroxylating monooxygenase. J. Am. Chem. Soc. 132, 15565–15572 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Alwan, K. B., Welch, E. F., Arias, R. J., Gambill, B. F. & Blackburn, N. J. Rational design of a histidine–methionine site modeling the M-center of copper monooxygenases in a small metallochaperone scaffold. Biochemistry 58, 3097–3108 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Chauhan, S., Kline, C. D., Mayfield, M. & Blackburn, N. J. Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers. Biochemistry 53, 1069–1080 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Alwan, K. B., Welch, E. F. & Blackburn, N. J. Catalytic M center of copper monooxygenases probed by rational design. Effects of selenomethionine and histidine substitution on structure and reactivity. Biochemistry 58, 4436–4446 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Yoshizawa, K., Kihara, N., Kamachi, T. & Shiota, Y. Catalytic mechanism of dopamine β-monooxygenase mediated by Cu(III)−oxo. Inorg. Chem. 45, 3034–3041 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Cowley, R. E., Tian, L. & Solomon, E. I. Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases. Proc. Natl Acad. Sci. USA 113, 12035–12040 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Welch, E. F., Rush, K. W., Arias, R. J. & Blackburn, N. J. Copper monooxygenase reactivity: do consensus mechanisms accurately reflect experimental observations? J. Inorg. Biochem. 231, 111780 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wu, P. et al. Theory demonstrated a ‘coupled’ mechanism for O2 activation and substrate hydroxylation by binuclear copper monooxygenases. J. Am. Chem. Soc. 141, 19776–19789 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Welch, E. F., Rush, K. W., Eastman, K. A. S., Bandarian, V. & Blackburn, N. J. The binuclear copper state of peptidylglycine monooxygenase visualized through a selenium-substituted peptidyl-homocysteine complex. Dalton Trans. 54, 4941–4955 (2025).

    Article  CAS  PubMed  Google Scholar 

  23. Blackburn, N. J. Metal-mediated peptide processing. How copper and iron catalyze diverse peptide modifications such as amidation and crosslinking. RSC Chem. Biol. 6, 1048–1067 (2025).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Koo, C. W. et al. Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer. Science 375, 1287–1291 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Balasubramanian, R. et al. Oxidation of methane by a biological dicopper centre. Nature 465, 115–119 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tucci, F. J. & Rosenzweig, A. C. Structures of methane and ammonia monooxygenases in native membranes. Proc. Natl Acad. Sci. USA 122, e2417993121 (2025).

    Article  CAS  PubMed  Google Scholar 

  27. Tucci, F. J. & Rosenzweig, A. C. Direct methane oxidation by copper- and iron-dependent methane monooxygenases. Chem. Rev. 124, 1288–1320 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tucci, F. J., Jodts, R. J., Hoffman, B. M. & Rosenzweig, A. C. Product analogue binding identifies the copper active site of particulate methane monooxygenase. Nat. Catal. 6, 1194–1204 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jasniewski, A. J. & Que, L. Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem. Rev. 118, 2554–2592 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Caldas Nogueira, M. L., Pastore, A. J. & Davidson, V. L. Diversity of structures and functions of oxo-bridged non-heme diiron proteins. Arch. Biochem. Biophys. 705, 108917 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Kitanishi, K. Bacterial hemerythrin domain-containing oxygen and redox sensors: versatile roles for oxygen and redox signaling. Front. Mol. Biosci. 9, 1–7 (2022).

    Article  Google Scholar 

  32. Tshuva, E. Y. & Lippard, S. J. Synthetic models for non-heme carboxylate-bridged diiron metalloproteins: strategies and tactics. Chem. Rev. 104, 987–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Rosenzweig, A. C. et al. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366, 537–543 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Srinivas, V. et al. High-resolution XFEL structure of the soluble methane monooxygenase hydroxylase complex with its regulatory component at ambient temperature in two oxidation states. J. Am. Chem. Soc. 142, 14249–14266 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Baik, M.-H., Newcomb, M., Friesner, R. A. & Lippard, S. J. Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev. 103, 2385–2420 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Friedle, S., Reisner, E. & Lippard, S. J. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39, 2768–2779 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Li, R.-N. & Chen, S.-L. Recent insights into the reaction mechanisms of non-heme diiron enzymes containing oxoiron(IV) complexes. ChemBioChem 26, e202400788 (2025).

    Article  CAS  PubMed  Google Scholar 

  38. Jones, J. C. et al. X-ray crystal structures of methane monooxygenase hydroxylase complexes with variants of its regulatory component: correlations with altered reaction cycle dynamics. Biochemistry 61, 21–33 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, K. E. et al. Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase/hydroxylase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 116, 7465–7466 (1994).

    Article  CAS  Google Scholar 

  40. Shu, L. et al. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275, 515–518 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Gherman, B. F., Baik, M.-H., Lippard, S. J. & Friesner, R. A. Dioxygen activation in methane monooxygenase: a theoretical study. J. Am. Chem. Soc. 126, 2978–2990 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Gherman, B. F., Lippard, S. J. & Friesner, R. A. Substrate hydroxylation in methane monooxygenase:  quantitative modeling via mixed quantum mechanics/molecular mechanics techniques. J. Am. Chem. Soc. 127, 1025–1037 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Banerjee, R., Proshlyakov, Y., Lipscomb, J. D. & Proshlyakov, D. A. Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518, 431 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jacobs, A. B. et al. Nuclear resonance vibrational spectroscopic definition of the Fe(IV)2 intermediate Q in methane monooxygenase and its reactivity. J. Am. Chem. Soc. 143, 16007–16029 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Makris, T. M. Von, Koenig, K., Schlichting, I. & Sligar, S. G. The status of high-valent metal oxo complexes in the P450 cytochromes. J. Inorg. Biochem. 100, 507–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Castillo, R. G. et al. High-energy-resolution fluorescence-detected X-ray absorption of the Q intermediate of soluble methane monooxygenase. J. Am. Chem. Soc. 139, 18024–18033 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Schulz, C. E., Castillo, R. G., Pantazis, D. A., DeBeer, S. & Neese, F. Structure–spectroscopy correlations for intermediate Q of soluble methane monooxygenase: insights from QM/MM calculations. J. Am. Chem. Soc. 143, 6560–6577 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Cutsail, G. E. et al. Determination of the iron(IV) local spin states of the Q intermediate of soluble methane monooxygenase by Kβ X-ray emission spectroscopy. J. Biol. Inorg. Chem. 27, 573–582 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  49. Xue, G., De Hont, R., Münck, E. & Que, L. Million-fold activation of the [Fe2(u-O)2] diamond core for C–H bond cleavage. Nat. Chem. 2, 400–405 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Jabri, E., Carr, M. B., Hausinger, R. P. & Karplus, P. A. The crystal structure of urease from Klebsiella aerogenes. Science 268, 998–1004 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Zambelli, B., Musiani, F., Benini, S. & Ciurli, S. Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc. Chem. Res. 44, 520–530 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Righetto, R. D. et al. High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nat. Commun. 11, 5101 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Mazzei, L., Cianci, M., Benini, S. & Ciurli, S. The structure of the elusive urease–urea complex unveils the mechanism of a paradigmatic nickel-dependent enzyme. Angew. Chem. Int. Ed. 58, 7415–7419 (2019).

    Article  CAS  Google Scholar 

  54. Mazzei, L., Musiani, F. & Ciurli, S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J. Biol. Inorg. Chem. 25, 829–845 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    Article  PubMed  Google Scholar 

  56. Wan, Q. & Lin, S. Frustrated Lewis pairs in heterogeneous catalysis: theoretical insights. Molecules 27, 3734 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ishigami, I. et al. Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase. Proc. Natl Acad. Sci. USA 116, 3572–3577 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Ishigami, I. et al. Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature. Proc. Natl Acad. Sci. USA 114, 8011–8016 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Shinzawa-Itoh, K. et al. Monomeric structure of an active form of bovine cytochrome c oxidase. Proc. Natl Acad. Sci. USA 116, 19945–19951 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Di Trani, J. M. et al. Structural basis of mammalian complex IV inhibition by steroids. Proc. Natl Acad. Sci. USA 119, e2205228119 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hiromoto, T. et al. New insights into the oxidation process from neutron and X-ray crystal structures of an O2-sensitive [NiFe]-hydrogenase. Chem. Sci. 14, 9306–9315 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Grinter, R. et al. Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 615, 541–547 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Schmidt, A. et al. Stepwise conversion of the Cys6[4Fe–3S] to a Cys4[4Fe–4S] cluster and its impact on the oxygen tolerance of [NiFe]-hydrogenase. Chem. Sci. 14, 11105–11120 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Richardson, J., Thomas, K. A., Rubin, B. H. & Richardson, D. C. Crystal structure of bovine Cu, Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands. Proc. Natl Acad. Sci. USA 72, 1349–1353 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kropp, A. et al. Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria. Nat. Chem. Biol. 21, 1058–1068 (2025).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Jiang, W. et al. A manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Science 316, 1188–1191 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Basak, Y., Lorent, C., Jeoung, J. H., Zebger, I. & Dobbek, H. Metalloradical-driven enzymatic CO2 reduction by a dynamic Ni–Fe cluster. Nat. Catal. 8, 794–803 (2025).

    Article  CAS  Google Scholar 

  69. Merrouch, M. et al. Maturation of the [Ni–4Fe–4S] active site of carbon monoxide dehydrogenases. J. Biol. Inorg. Chem. 23, 613–620 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Dobbek, H. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293, 1281–1285 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Contaldo, U. et al. Insights into the role of the d-cluster in [NiFe]-CODH from Rhodospirillum rubrum. Chem. Eur. J. 31, 1–8 (2025).

    Article  Google Scholar 

  72. Yano, J. & Yachandra, V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Narzi, D. & Guidoni, L. Structural and dynamic insights into Mn4Ca cluster-depleted Photosystem II. Phys. Chem. Chem. Phys. 23, 27428–27436 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Pushkar, Y. et al. Structure and orientation of the Mn4Ca cluster in plant photosystem II membranes studied by polarized range-extended X-ray absorption spectroscopy. J. Biol. Chem. 282, 7198–7208 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Barber, J. Mn4Ca cluster of photosynthetic oxygen-evolving center: structure, function and evolution. Biochemistry 55, 5901–5906 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Biester, A., Marcano-Delgado, A. N. & Drennan, C. L. Structural insights into microbial one-carbon metabolic enzymes Ni–Fe–S-dependent carbon monoxide dehydrogenases and acetyl-CoA synthases. Biochemistry 61, 2797–2805 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Kung, Y. & Drennan, C. L. A role for nickel–iron cofactors in biological carbon monoxide and carbon dioxide utilization. Curr. Opin. Chem. Biol. 15, 276–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Drennan, C. L., Doukov, T. I. & Ragsdale, S. W. The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures. J. Biol. Inorg. Chem. 9, 511–515 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Can, M., Armstrong, F. A. & Ragsdale, S. W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem. Rev. 114, 4149–4174 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Huang, M., Parker, M. J. & Stubbe, J. Choosing the right metal: case studies of class I ribonucleotide reductases. J. Biol. Chem. 289, 28104–28111 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Griese, J. J. et al. Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein. Proc. Natl Acad. Sci. USA 110, 17189–17194 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Högbom, M. et al. The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. Science 305, 245–248 (2004).

    Article  PubMed  Google Scholar 

  83. Andersson, C. S. & Högbom, M. A Mycobacterium tuberculosis ligand-binding Mn/Fe protein reveals a new cofactor in a remodeled R2-protein scaffold. Proc. Natl Acad. Sci. USA 106, 5633–5638 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Shafaat, H. S. et al. Electronic structural flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J. Am. Chem. Soc. 136, 13399–13409 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Diamanti, R. et al. Comparative structural analysis provides new insights into the function of R2-like ligand-binding oxidase. FEBS Lett. 596, 1600–1610 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Maugeri, P. T. et al. Driving protein conformational changes with light: photoinduced structural rearrangement in a heterobimetallic oxidase. J. Am. Chem. Soc. 140, 1471–1480 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Kisgeropoulos, E. C. et al. Key structural motifs balance metal binding and oxidative reactivity in a heterobimetallic Mn/Fe protein. J. Am. Chem. Soc. 142, 5338–5354 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Kisgeropoulos, E. C., Gan, Y. J., Greer, S. M., Hazel, J. M. & Shafaat, H. S. Pulsed multifrequency electron paramagnetic resonance spectroscopy reveals key branch points for one- vs two-electron reactivity in Mn/Fe proteins. J. Am. Chem. Soc. 144, 11991–12006 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Kutin, Y. et al. Chemical flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J. Biol. Chem. 294, 18372–18386 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Griese, J. J., Kositzki, R., Haumann, M. & Högbom, M. Assembly of a heterodinuclear Mn/Fe cofactor is coupled to tyrosine–valine ether cross-link formation in the R2-like ligand-binding oxidase. J. Biol. Inorg. Chem. 24, 211–221 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Manley, O. M. et al. Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis. Proc. Natl Acad. Sci. USA 119, 1–7 (2022).

    Article  Google Scholar 

  92. Liu, C., Powell, M. M., Rao, G., Britt, R. D. & Rittle, J. Bioinformatic discovery of a cambialistic monooxygenase. J. Am. Chem. Soc. 146, 1783–1788 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Powell, M. M., Rao, G., Britt, R. D. & Rittle, J. Enzymatic hydroxylation of aliphatic C–H bonds by a Mn/Fe cofactor. J. Am. Chem. Soc. 145, 16526–16537 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Martinie, R. J. et al. Structural elucidation of the reduced Mn(III)/Fe(III) intermediate of the radical-initiating metallocofactor in Chlamydia trachomatis ribonucleotide reductase. Biochemistry 64, 1157–1167 (2025).

    Article  CAS  PubMed  Google Scholar 

  95. Griese, J. J., Srinivas, V. & Högbom, M. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. J. Biol. Inorg. Chem. 19, 759–774 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Miller, E. K., Trivelas, N. E., Maugeri, P. T., Blaesi, E. J. & Shafaat, H. S. Time-resolved investigations of heterobimetallic cofactor assembly in R2lox reveal distinct Mn/Fe Intermediates. Biochemistry 56, 3369–3379 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Gan, Y. J., Hazel, J. M., Searle, B. C. & Shafaat, H. S. Selective isotope labeling probes the chemical capacity and reaction mechanism of a heterobimetallic Mn/Fe protein. J. Inorg. Biochem. 270, 112933 (2025).

    Article  CAS  PubMed  Google Scholar 

  98. Sträter, N., Klabunde, T., Tucker, P., Witzel, H. & Krebs, B. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)–Zn(II) active site. Science 268, 1489–1492 (1995).

    Article  PubMed  Google Scholar 

  99. Schenk, G. et al. Phosphate forms an unusual tripodal complex with the Fe–Mn center of sweet potato purple acid phosphatase. Proc. Natl Acad. Sci. USA 102, 273–278 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Hayman, A. R. & Cox, T. M. Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties, and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. J. Biol. Chem. 269, 1294–1300 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Eom, H. & Song, W. J. Emergence of metal selectivity and promiscuity in metalloenzymes. J. Biol. Inorg. Chem. 24, 517–531 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Alberto, M. E., Marino, T., Ramos, M. J. & Russo, N. Atomistic details of the catalytic mechanism of Fe(III)−Zn(II) purple acid phosphatase. J. Chem. Theory Comput. 6, 2424–2433 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Jayasinghe-Arachchige, V. M. et al. Elucidating the roles of distinct chemical factors in the hydrolytic activities of hetero- and homonuclear synthetic analogues of binuclear metalloenzymes. ACS Catal. 13, 3131–3147 (2023).

    Article  CAS  Google Scholar 

  104. Zhou, X. et al. Electronic effect on bimetallic catalysts: cleavage of phosphodiester mediated by Fe(III)–Zn(II) purple acid phosphatase mimics. Inorg. Chem. 59, 12065–12074 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Suzuki, M., Furutachi, H. & Ōkawa, H. Bimetallic dioxygen complexes derived from ‘end-off’ compartmental ligands. Coord. Chem. Rev. 200–202, 105–129 (2000).

    Article  Google Scholar 

  106. Crane, J. D., Fenton, D. E., Latour, J. M. & Smith, A. J. Unsymmetric dicopper(II) complexes of dinucleating ligands bearing chemically distinct co-ordination environments. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/DT9910002979 (1991).

    Article  Google Scholar 

  107. Suzuki, M., Kanatomi, H. & Murase, I. Synthesis and properties of binuclear cobalt(II) oxygen adduct with 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol. Chem. Lett. 10, 1745–1748 (1981).

    Article  Google Scholar 

  108. Hu, Q.-Q., Su, X.-J. & Zhang, M.-T. Electrocatalytic water oxidation by an unsymmetrical di-copper complex. Inorg. Chem. 57, 10481–10484 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, Q.-F., Xiao, Y., Hua, K., Zhang, H.-T. & Zhang, M.-T. Bimetallic synergy in oxygen reduction: how tailored metal–metal interactions amplify cooperative catalysis. J. Am. Chem. Soc. 147, 14504–14518 (2025).

    Article  CAS  PubMed  Google Scholar 

  110. Murthy, N. N., Mahroof-Tahir, M. & Karlin, K. D. Dicopper(I) complexes of unsymmetrical binucleating ligands and their dioxygen reactivities. Inorg. Chem. 40, 628–635 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Karlin, K. D. et al. Dioxygen-copper reactivity: generation, characterization, and reactivity of a hydroperoxodicopper(II) complex. J. Am. Chem. Soc. 110, 6769–6780 (1988).

    Article  CAS  Google Scholar 

  112. Nasir, M. S., Karlin, K. D., McGowty, D. & Zubieta, J. Unsymmetrical dicopper complexes. Direct observation of reversible O2 binding in a copper monooxygenase model system. J. Am. Chem. Soc. 113, 698–700 (1991).

    Article  CAS  Google Scholar 

  113. Hota, P. K. et al. Dioxygenase chemistry in nucleophilic aldehyde deformylations utilizing dicopper O2-derived peroxide complexes. J. Am. Chem. Soc. 146, 23854–23871 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Nicolay, A. et al. Unsymmetrical naphthyridine-based dicopper(I) complexes: synthesis, stability, and carbon–hydrogen bond activations. Organometallics 40, 1866–1873 (2021).

    Article  CAS  Google Scholar 

  115. Merkel, M. et al. Less symmetrical dicopper(II) complexes as catechol oxidase models — an adjacent thioether group increases catecholase activity. Chem. Eur. J. 11, 1201–1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Rammal, W. et al. Thiomethyl substituted dicopper complexes: attempts to reproduce the asymmetry of the active site from type 3 copper enzymes. Z. für Anorg. und Allg. Chem. 639, 1477–1482 (2013).

    Article  CAS  Google Scholar 

  117. Gennarini, F. et al. Influence of asymmetry on the redox properties of phenoxo- and hydroxo-bridged dicopper complexes: spectroelectrochemical and theoretical studies. Inorg. Chem. 56, 7707–7719 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Sushkevich, V. L., Artsiusheuski, M., Klose, D., Jeschke, G. & van Bokhoven, J. A. Identification of kinetic and spectroscopic signatures of copper sites for direct oxidation of methane to methanol. Angew. Chem. Int. Ed. 60, 15944–15953 (2021).

    Article  CAS  Google Scholar 

  119. Pappas, D. K. et al. Methane to methanol: structure–activity relationships for Cu-CHA. J. Am. Chem. Soc. 139, 14961–14975 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Heyer, A. J. et al. Methane activation by a mononuclear copper active site in the zeolite mordenite: effect of metal nuclearity on reactivity. J. Am. Chem. Soc. 144, 19305–19316 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Woertink, J. S. et al. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl Acad. Sci. USA 106, 18908–18913 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Bridgeman, A. J., Cavigliasso, G., Ireland, L. R. & Rothery, J. The Mayer bond order as a tool in inorganic chemistry. J. Chem. Soc. Dalton Trans. 2095–2108 (2001).

  124. Carter, S., Tao, W., Majumder, R., Sokolov, A. Y. & Zhang, S. Two-state hydrogen atom transfer reactivity of unsymmetric [Cu2(O)(NO)]2+ complexes. J. Am. Chem. Soc. 145, 17779–17785 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Tao, W., Moore, C. E. & Zhang, S. Redox-neutral S-nitrosation mediated by a dicopper center. Angew. Chem. Int. Ed. 60, 15980–15987 (2021).

    Article  CAS  Google Scholar 

  126. Tao, W., Bower, J. K., Moore, C. E. & Zhang, S. Dicopper μ-oxo, μ-nitrosyl complex from the activation of NO or nitrite at a dicopper center. J. Am. Chem. Soc. 141, 10159–10164 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Tao, W., Yerbulekova, A., Moore, C. E., Shafaat, H. S. & Zhang, S. Controlling the direction of S-nitrosation versus denitrosation: reversible cleavage and formation of an S–N bond within a dicopper center. J. Am. Chem. Soc. 144, 2867–2872 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Tao, W. et al. Reductive NO coupling at dicopper center via a [Cu2(NO)2]2+ diamond-core intermediate. J. Am. Chem. Soc. 144, 22633–22640 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Abe, T., Kametani, Y., Yoshizawa, K. & Shiota, Y. Mechanistic insights into the dicopper-complex-catalyzed hydroxylation of methane and benzene using nitric oxide: a DFT study. Inorg. Chem. 60, 4599–4609 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Shiota, Y. & Yoshizawa, K. Comparison of the reactivity of bis(μ-oxo)CuIICuIII and CuIIICuIII species to methane. Inorg. Chem. 48, 838–845 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Yoshizawa, K. & Shiota, Y. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. J. Am. Chem. Soc. 128, 9873–9881 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. VanNatta, P. E., Ramirez, D. A., Velarde, A. R., Ali, G. & Kieber-Emmons, M. T. Exceptionally high O–H bond dissociation free energy of a dicopper(II) μ-hydroxo complex and insights into the geometric and electronic structure origins thereof. J. Am. Chem. Soc. 142, 16292–16312 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Lambert, E. et al. Synthesis, structural, magnetic, and redox properties of asymmetric diiron complexes with a single terminally bound phenolate ligand. Relevance to the purple acid phosphatase enzymes. J. Am. Chem. Soc. 119, 9424–9437 (1997).

    Article  CAS  Google Scholar 

  134. Lee, J. L. et al. Bioinspired di-Fe complexes: correlating structure and proton transfer over four oxidation states. J. Am. Chem. Soc. 144, 4559–4571 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Norman, R. E. et al. (m-Oxo)(m-carboxylato)diiron(III) complexes with distinct iron sites. Consequences of the inequivalence and its relevance to dinuclear iron-oxo proteins. J. Am. Chem. Soc. 112, 1554–1562 (1990).

    Article  CAS  Google Scholar 

  136. He, C. & Lippard, S. J. Synthesis and electrochemical studies of diiron complexes of 1,8-naphthyridine-based dinucleating ligands to model features of the active sites of non-heme diiron enzymes. Inorg. Chem. 40, 1414–1420 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Do, L. H. & Lippard, S. J. Toward functional carboxylate-bridged diiron protein mimics: achieving structural stability and conformational flexibility using a macrocylic ligand framework. J. Am. Chem. Soc. 133, 10568–10581 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Burger, B., Dechert, S., Große, C., Demeshko, S. & Meyer, F. Visualising the carboxylate shift at a bioinspired diiron(ii) site in the solid state. Chem. Commun. 47, 10428–10430 (2011).

    Article  CAS  Google Scholar 

  139. Minier, M. A. & Lippard, S. J. 19F NMR study of ligand dynamics in carboxylate-bridged diiron(ii) complexes supported by a macrocyclic ligand. Dalton Trans. 44, 18111–18121 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Wang, F. et al. Tuning the diiron core geometry in carboxylate-bridged macrocyclic model complexes affects their redox properties and supports oxidation chemistry. Inorg. Chem. 56, 11050–11058 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Rohde, G. T., Xue, G. & Que, L. Explorations of the nonheme high-valent iron-oxo landscape: crystal structure of a synthetic complex with an [FeIV2(μ-O)2] diamond core relevant to the chemistry of sMMOH. Faraday Discuss. 234, 109–128 (2021).

    Article  Google Scholar 

  142. Poptic, A. L. et al. Site-differentiated MnIIFeII complex reproducing the selective assembly of biological heterobimetallic Mn/Fe cofactors. J. Am. Chem. Soc. 145, 3491–3498 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Poptic, A. L., Klinger, J. K., Carter, S. L., Moore, C. E. & Zhang, S. Nitrite formation at a diiron dinitrosyl complex. J. Am. Chem. Soc. 145, 22993–22999 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Li, Y. et al. Opening the CoIII,IV2(μ-O)2 diamond core by Lewis bases leads to enhanced C–H bond cleaving reactivity. J. Am. Chem. Soc. 142, 21670–21678 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Barrios, A. M. & Lippard, S. J. Interaction of urea with a hydroxide-bridged dinuclear nickel center:  an alternative model for the mechanism of urease. J. Am. Chem. Soc. 122, 9172–9177 (2000).

    Article  CAS  Google Scholar 

  146. Barrios, A. M. & Lippard, S. J. Amide hydrolysis effected by a hydroxo-bridged dinickel(II) complex:  insights into the mechanism of urease. J. Am. Chem. Soc. 121, 11751–11757 (1999).

    Article  CAS  Google Scholar 

  147. Barrios, A. M. & Lippard, S. J. Decomposition of alkyl-substituted urea molecules at a hydroxide-bridged dinickel center. Inorg. Chem. 40, 1250–1255 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Kundu, B. K. et al. Unveiling the urease like intrinsic catalytic activities of two dinuclear nickel complexes towards the in situ syntheses of aminocyanopyridines. Dalton Trans. 50, 4848–4858 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Beddie, C., Webster, C. E. & Hall, M. B. Urea decomposition facilitated by a urease model complex: a theoretical investigation. Dalton Trans. https://doi.org/10.1039/B505210F (2005).

  150. Martins, C. O. et al. Urea decomposition mechanism by dinuclear nickel complexes. Molecules 28, 1659 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Uozumi, S. et al. Dinuclear nickel(II) complexes of an unsymmetric ‘end-off’ compartmental ligand:  conversion of urea into cyanate at a dinuclear nickel core. Inorg. Chem. 37, 6281–6287 (1998).

    Article  CAS  Google Scholar 

  152. Volkmer, D., Hörstmann, A., Griesar, K., Haase, W. & Krebs, B. [Ni2(ppepO)(C6H5COO)2(CH3COOH)]ClO4·C4H10O: synthesis and characterization of an asymmetric dinuclear nickel(II) complex showing unusual coordination behavior with rel. Inorg. Chem. 35, 1132–1135 (1996).

    Article  CAS  PubMed  Google Scholar 

  153. Volkmer, D., Hommerich, B., Griesar, K., Haase, W. & Krebs, B. Dinuclear nickel(II) complexes as models for the active site of urease. Inorg. Chem. 35, 3792–3803 (1996).

    Article  CAS  PubMed  Google Scholar 

  154. Carlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. Nickel complexes of carboxylate-containing polydentate ligands as models for the active site of urease. Inorg. Chem. 43, 8252–8262 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Kerber, W. D., Goheen, J. T., Perez, K. A. & Siegler, M. A. Enhanced stability of the FeII/MnII state in a synthetic model of heterobimetallic cofactor assembly. Inorg. Chem. 55, 848–857 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Wilson, L. A., Pedroso, M. M., Peralta, R. A., Gahan, L. R. & Schenk, G. Biomimetics for purple acid phosphatases: a historical perspective. J. Inorg. Biochem. 238, 112061 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Papaefthymiou, V. et al. Heterobimetallic complexes with (μ-phenoxo)bis(μ-carboxylato) cores. J. Am. Chem. Soc. 110, 1986–1988 (1988).

    Article  Google Scholar 

  158. Holman, T. R., Wang, Z., Hendrich, M. P. & Que, L. Structural and spectroscopic properties of antiferromagnetically coupled FeIIIMnII and FeIIMnII complexes. Inorg. Chem. 34, 134–139 (1995).

    Article  CAS  Google Scholar 

  159. Bossek, U., Weyhermüller, T., Wieghardt, K., Bonvoisin, J. & Girerd, J. J. Synthesis, e.s.r. spectrum and magnetic properties of a heterobinuclear complex containing the {FeIII(μ-O)(μ-MeCO2)2MnIII}2+ core. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39890000633 (1989).

  160. Hotzelmann, R. et al. Spin exchange coupling in asymmetric heterodinuclear complexes containing the μ-oxo-bis(μ-acetato)dimetal core. J. Am. Chem. Soc. 114, 1681–1696 (1992).

    Article  CAS  Google Scholar 

  161. Karsten, P., Neves, A., Bortoluzzi, A. J., Lanznaster, M. & Drago, V. Synthesis, structure, properties, and phosphatase-like activity of the first heterodinuclear FeIIIMnII complex with the unsymmetric ligand H2BPBPMP as a model for the PAP in sweet potato. Inorg. Chem. 41, 4624–4626 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Ross, S. et al. Asymmetric heterodinuclear FeIIIMII (M = Zn, Cu, Ni, Fe, Mn), CoIIIFeII and FeIICoIII species: synthesis, structure, redox behavior, and magnetism. Eur. J. Inorg. Chem. 5, 984–997 (2004).

    Article  Google Scholar 

  163. Carboni, M. et al. Biologically relevant heterodinuclear iron–manganese complexes. Inorg. Chem. 51, 10447–10460 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Sano, Y., Weitz, A. C., Ziller, J. W., Hendrich, M. P. & Borovik, A. S. Unsymmetrical bimetallic complexes with MII-(μ-OH)-M III cores (MIIMIII = FeIIFeIII, MnIIFeIII, MnIIMnIII): structural, magnetic, and redox properties. Inorg. Chem. 52, 10229–10231 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Sano, Y. et al. Models for unsymmetrical active sites in metalloproteins: structural, redox, and magnetic properties of bimetallic complexes with MII-(μ-OH)-FeIII cores. Inorg. Chem. 56, 14118–14128 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Tereniak, S. J. et al. Role of the metal in the bonding and properties of bimetallic complexes involving manganese, iron, and cobalt. J. Am. Chem. Soc. 136, 1842–1855 (2013).

    Article  PubMed  Google Scholar 

  167. Poptic, A. L. et al. Site-differentiated MnIIFeII complex reproducing the selective assembly of biological heterobimetallic Mn/Fe cofactors. J. Am. Chem. Soc. 145, 9 (2023).

    Article  Google Scholar 

  168. Crossland, P. M., Guo, Y. & Que, L. Spontaneous formation of an Fe/Mn diamond core: models for the Fe/Mn sites in class 1c ribonucleotide reductases. Inorg. Chem. 60, 8710–8721 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Zhou, A. et al. Oxoiron(IV) complexes as synthons for the assembly of heterobimetallic centers such as the Fe/Mn active site of class Ic ribonucleotide reductases. J. Biol. Inorg. Chem. 23, 155–165 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Lee, J. L. et al. Accessing a synthetic FeIIIMnIV core to model biological heterobimetallic active sites. Chem. Sci. 15, 2817–2826 (2024).

    Article  CAS  PubMed  Google Scholar 

  171. Bartholomew, A. K. et al. Revealing redox isomerism in trichromium imides by anomalous diffraction. Chem. Sci. 12, 15739–15749 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Bartholomew, A. K. et al. Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters. Proc. Natl Acad. Sci. USA 116, 15836–15841 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Alayoglu, P. et al. Electronic desymmetrization of Cu33-E) clusters (E = S, Se) induced by edge-to-face π-stacking interactions in the second coordination sphere. Inorg. Chem. 63, 24501–24505 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Alayoglu, P. et al. Metal site-specific electrostatic field effects on a tricopper(I) cluster probed by resonant diffraction anomalous fine structure (DAFS). Inorg. Chem. 62, 15267–15276 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Casaday, C. E. et al. Occupancy determination from resonant X-ray diffraction. Inorg. Chem. 64, 3090–3100 (2025).

    Article  CAS  PubMed  Google Scholar 

  176. Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Snyder, R. A. et al. Systematic perturbations of binuclear non-heme iron sites: structure and dioxygen reactivity of de novo due ferri proteins. Biochemistry 54, 4637–4651 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Snyder, R. A., Butch, S. E., Reig, A. J., DeGrado, W. F. & Solomon, E. I. Molecular-level insight into the differential oxidase and oxygenase reactivities of de novo due ferri proteins. J. Am. Chem. Soc. 137, 9302–9314 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Chino, M. et al. A de novo heterodimeric due ferri protein minimizes the release of reactive intermediates in dioxygen-dependent oxidation. Angew. Chem. Int. Ed. 56, 15580–15583 (2017).

    Article  CAS  Google Scholar 

  180. Makhlynets, O. V., Gosavi, P. M. & Korendovych, I. V. Short self-assembling peptides are able to bind to copper and activate oxygen. Angew. Chem. Int. Ed. 55, 9017–9020 (2016).

    Article  CAS  Google Scholar 

  181. Lombardi, A. et al. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc. Natl Acad. Sci. USA 97, 6298–6305 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Huang, P. S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant No. CHE-2246440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Myers, P. & Zhang, S. Unsymmetric bimetallic centres in metalloproteins and synthetic models. Nat Rev Chem (2025). https://doi.org/10.1038/s41570-025-00781-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41570-025-00781-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing