Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Acute heart failure

Abstract

Acute heart failure (AHF) is a syndrome defined as the new onset (de novo heart failure (HF)) or worsening (acutely decompensated heart failure (ADHF)) of symptoms and signs of HF, mostly related to systemic congestion. In the presence of an underlying structural or functional cardiac dysfunction (whether chronic in ADHF or undiagnosed in de novo HF), one or more precipitating factors can induce AHF, although sometimes de novo HF can result directly from the onset of a new cardiac dysfunction, most frequently an acute coronary syndrome. Despite leading to similar clinical presentations, the underlying cardiac disease and precipitating factors may vary greatly and, therefore, the pathophysiology of AHF is highly heterogeneous. Left ventricular diastolic or systolic dysfunction results in increased preload and afterload, which in turn lead to pulmonary congestion. Fluid retention and redistribution result in systemic congestion, eventually causing organ dysfunction due to hypoperfusion. Current treatment of AHF is mostly symptomatic, centred on decongestive drugs, at best tailored according to the initial haemodynamic status with little regard to the underlying pathophysiological particularities. As a consequence, AHF is still associated with high mortality and hospital readmission rates. There is an unmet need for increased individualization of in-hospital management, including treatments targeting the causative factors, and continuation of treatment after hospital discharge to improve long-term outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of possible pathophysiological mechanisms in AHF.
Fig. 2: Proposed management algorithm for patients with AHF.
Fig. 3: Quality of life in patients with AHF.

Similar content being viewed by others

References

  1. Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 37, 2129–2200 (2016). The guidelines of the European Society of Cardiology provide evidence-based recommendations on diagnosis and treatment of chronic HF and AHF.

    Article  PubMed  Google Scholar 

  2. Braunwald, E. Heart failure. JACC Heart Fail. 1, 1–20 (2013).

    Article  PubMed  Google Scholar 

  3. Mebazaa, A. et al. Recommendations on pre-hospital and early hospital management of acute heart failure: a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine–short version. Eur. Heart J. 36, 1958–1966 (2015). This consensus document contains contemporary recommendations endorsed by different professional societies on the management of AHF.

    Article  PubMed  Google Scholar 

  4. Ambrosy, A. P. et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 63, 1123–1133 (2014).

    Article  PubMed  Google Scholar 

  5. Crespo-Leiro, M. G. et al. European Society of Cardiology Heart Failure long-term registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur. J. Heart Fail. 18, 613–625 (2016).

    Article  PubMed  Google Scholar 

  6. Mentz, R. J. & O’Connor, C. M. Pathophysiology and clinical evaluation of acute heart failure. Nat. Rev. Cardiol. 13, 28–35 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Ishihara, S. et al. Similar hemodynamic decongestion with vasodilators and inotropes: systematic review, meta-analysis, and meta-regression of 35 studies on acute heart failure. Clin. Res. Cardiol. 105, 971–980 (2016).

    Article  PubMed  Google Scholar 

  8. Mebazaa, A. et al. Short-term survival by treatment among patients hospitalized with acute heart failure: the global ALARM-HF registry using propensity scoring methods. Intensive Care Med. 37, 290–301 (2010).

    Article  PubMed  Google Scholar 

  9. Mebazaa, A. et al. Acute heart failure and cardiogenic shock: a multidisciplinary practical guidance. Intensive Care Med. 42, 147–163 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Mebazaa, A. et al. Management of cardiogenic shock complicating myocardial infarction. Intensive Care Med. 44, 760–773 (2018).

    Article  PubMed  Google Scholar 

  11. Follath, F. et al. Clinical presentation, management and outcomes in the acute heart failure global survey of standard treatment (ALARM-HF). Intensive Care Med. 37, 619–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Greene, S. J. et al. The vulnerable phase after hospitalization for heart failure. Nat. Rev. Cardiol. 12, 220–229 (2015). This paper reviews the topic of the vulnerable phase after an AHF episode, which is characterized by high mortality and readmission rates.

    Article  PubMed  Google Scholar 

  13. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).

    Article  Google Scholar 

  14. Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Setoguchi, S., Stevenson, L. W. & Schneeweiss, S. Repeated hospitalizations predict mortality in the community population with heart failure. Am. Heart J. 154, 260–266 (2007).

    Article  PubMed  Google Scholar 

  16. Gheorghiade, M. et al. Acute heart failure syndromes: current state and framework for future research. Circulation 112, 3958–3968 (2005).

    Article  PubMed  Google Scholar 

  17. Hamo, C. E. et al. A critical appraisal of short-term endpoints in acute heart failure clinical trials. J. Card. Fail. 24, 783–792 (2018).

    Article  PubMed  Google Scholar 

  18. Cleland, J. et al. The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe: Part 1: patient characteristics and diagnosis. Eur. Heart J. 24, 442–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Cuffe, M. S. et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA 287, 1541–1547 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Dharmarajan, K. et al. Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA 309, 355–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fudim, M. et al. Aetiology, timing and clinical predictors of early vs. late readmission following index hospitalization for acute heart failure: insights from ASCEND–HF. Eur. J. Heart Fail. 20, 304–314 (2018).

    Article  PubMed  Google Scholar 

  22. Giamouzis, G. et al. Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions. J. Card. Fail. 17, 54–75 (2011).

    Article  PubMed  Google Scholar 

  23. Sokoreli, I. et al. Prognostic value of psychosocial factors for first and recurrent hospitalizations and mortality in heart failure patients: insights from the OPERA–HF study. Eur. J. Heart Fail. 20, 689–696 (2018).

    Article  PubMed  Google Scholar 

  24. Ferreira, J. P. et al. World Heart Federation Roadmap for heart failure. Glob. Heart 14, 197–214 (2019).

    Article  PubMed  Google Scholar 

  25. Dokainish, H. et al. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob. Health 5, e665–e672 (2017). This study provides epidemiological data on mortality associated with HF across different continents.

    Article  PubMed  Google Scholar 

  26. Khatibzadeh, S., Farzadfar, F., Oliver, J., Ezzati, M. & Moran, A. Worldwide risk factors for heart failure: a systematic review and pooled analysis. Int. J. Cardiol. 168, 1186–1194 (2013).

    Article  PubMed  Google Scholar 

  27. Damasceno, A. et al. The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries. Arch. Intern. Med. 172, 1386–1394 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Parada, H., Carrasco, H. A., Añez, N., Fuenmayor, C. & Inglessis, I. Cardiac involvement is a constant finding in acute Chagas’ disease: a clinical, parasitological and histopathological study. Int. J. Cardiol. 60, 49–54 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Bocchi, E. A. et al. Long-term prospective, randomized, controlled study using repetitive education at six-month intervals and monitoring for adherence in heart failure outpatients: the REMADHE trial. Circ. Heart Fail. 1, 115–124 (2008).

    Article  PubMed  Google Scholar 

  30. Doval, H. C. et al. Randomised trial of low-dose amiodarone in severe congestive heart failure. Grupo de Estudio de la Sobrevida en la Insuficiencia Cardiaca en Argentina (GESICA). Lancet 344, 493–498 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Zühlke, L. et al. Clinical outcomes in 3343 children and adults with rheumatic heart disease from 14 low- and middle-income countries: two-year follow-up of the global rheumatic heart disease registry (the REMEDY Study). Circulation 134, 1456–1466 (2016).

    Article  PubMed  Google Scholar 

  32. Sliwa, K. et al. Incidence and characteristics of newly diagnosed rheumatic heart disease in urban African adults: insights from the Heart of Soweto study. Eur. Heart J. 31, 719–727 (2010).

    Article  PubMed  Google Scholar 

  33. Bauersachs, J. et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur. J. Heart Fail. 21, 827–843 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Abraham, W. T. et al. Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J. Am. Coll. Cardiol. 52, 347–356 (2008).

    Article  PubMed  Google Scholar 

  35. Sliwa, K. et al. Readmission and death after an acute heart failure event: predictors and outcomes in sub-Saharan Africa: results from the THESUS-HF registry. Eur. Heart J. 34, 3151–3159 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Arrigo, M., Parissis, J. T., Akiyama, E. & Mebazaa, A. Understanding acute heart failure: pathophysiology and diagnosis. Eur. Heart J. Suppl. 18, G11–G18 (2016). This review summarizes the pathophysiology and the diagnostic process in AHF with special attention to treatment-relevant aspects.

    Article  Google Scholar 

  37. Shah, A. M. Ventricular remodeling in heart failure with preserved ejection fraction. Curr. Heart Fail. Rep. 10, 341–349 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang, M. & Shah, A. M. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries. J. Mol. Cell. Cardiol. 83, 101–111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zile, M. R. et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation 118, 1433–1441 (2008). This study provides unique insights into the pathophysiology of AHF using data obtained from continuous monitoring of intracardiac pressures.

    Article  PubMed  Google Scholar 

  40. Miller, W. L. & Mullan, B. P. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation. JACC Heart Fail. 2, 298–305 (2014).

    Article  PubMed  Google Scholar 

  41. Kaye, D. M. et al. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J. Am. Coll. Cardiol. 23, 570–578 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Fallick, C., Sobotka, P. A. & Dunlap, M. E. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ. Heart Fail. 4, 669–675 (2011).

    Article  PubMed  Google Scholar 

  43. Chaudhry, S. I., Wang, Y., Concato, J., Gill, T. M. & Krumholz, H. M. Patterns of weight change preceding hospitalization for heart failure. Circulation 116, 1549–1554 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nijst, P. et al. The pathophysiological role of interstitial sodium in heart failure. J. Am. Coll. Cardiol. 65, 378–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Titze, J. et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am. J. Physiol. Heart Circ. Physiol. 287, H203–H208 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Guyton, A. C. Interstitial fluid presure. II. Pressure-volume curves of interstitial space. Circ. Res. 16, 452–460 (1965).

    Article  CAS  PubMed  Google Scholar 

  47. Hartupee, J. & Mann, D. L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 14, 30–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Mullens, W., Verbrugge, F. H., Nijst, P. & Tang, W. H. W. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur. Heart J. 38, 1872–1882 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. McKie, P. M. et al. Impaired natriuretic and renal endocrine response to acute volume expansion in pre-clinical systolic and diastolic dysfunction. J. Am. Coll. Cardiol. 58, 2095–2103 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Mullens, W. & Tang, W. H. W. The early intertwining of the heart and the kidney through an impaired natriuretic response to acute volume expansion. J. Am. Coll. Cardiol. 58, 2104–2105 (2011).

    Article  PubMed  Google Scholar 

  51. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009). This study highlights the impact of congestion (instead of reduced cardiac output) on renal function in patients with AHF.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 53, 582–588 (2009).

    Article  PubMed  Google Scholar 

  53. Nijst, P., Martens, P., Dupont, M., Tang, W. H. W. & Mullens, W. Intrarenal flow alterations during transition from euvolemia to intravascular volume expansion in heart failure patients. JACC Heart Fail. 5, 672–681 (2017).

    Article  PubMed  Google Scholar 

  54. Cotter, G., Metra, M., Milo-Cotter, O., Dittrich, H. C. & Gheorghiade, M. Fluid overload in acute heart failure – re-distribution and other mechanisms beyond fluid accumulation. Eur. J. Heart Fail. 10, 165–169 (2014).

    Article  Google Scholar 

  55. Greenway, C. V. & Lister, G. E. Capacitance effects and blood reservoir function in the splanchnic vascular bed during non-hypotensive haemorrhage and blood volume expansion in anaesthetized cats. J. Physiol. 237, 279–294 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Verbrugge, F. H. et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J. Am. Coll. Cardiol. 62, 485–495 (2013).

    Article  PubMed  Google Scholar 

  57. Fonarow, G. C. et al. Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: findings from OPTIMIZE-HF. Arch. Intern. Med. 168, 847–854 (2008).

    Article  PubMed  Google Scholar 

  58. Arrigo, M. et al. Precipitating factors and 90-day outcome of acute heart failure: a report from the intercontinental GREAT registry. Eur. J. Heart Fail. 19, 201–208 (2017). This study shows the impact of precipitating factors on prognosis of patients with AHF in a large intercontinental registry.

    Article  PubMed  Google Scholar 

  59. Arrigo, M. et al. Effect of precipitating factors of acute heart failure on readmission and long-term mortality. ESC. Heart Fail. 3, 115–121 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Platz, E. et al. Prevalence and prognostic importance of precipitating factors leading to heart failure hospitalization: recurrent hospitalizations and mortality. Eur. J. Heart Fail. 20, 295–303 (2018).

    Article  PubMed  Google Scholar 

  61. Miró, Ò. et al. Time-pattern of adverse outcomes after an infection-triggered acute heart failure decompensation and the influence of early antibiotic administration and hospitalisation: results of the PAPRICA-3 study. Clin. Res. Cardiol. 109, 34–45 (2020).

    Article  PubMed  Google Scholar 

  62. Parrinello, G. et al. Water and sodium in heart failure: a spotlight on congestion. Heart Fail. Rev. 20, 13–24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Volpe, M., Carnovali, M. & Mastromarino, V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin. Sci. 130, 57–77 (2016).

    Article  CAS  Google Scholar 

  64. MacIver, D. H., Adeniran, I., MacIver, I. R., Revell, A. & Zhang, H. Physiological mechanisms of pulmonary hypertension. Am. Heart J. 180, 1–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Borné, Y. et al. Vascular endothelial growth factor D, pulmonary congestion, and incidence of heart failure. J. Am. Coll. Cardiol. 71, 580–582 (2018).

    Article  PubMed  Google Scholar 

  66. Houston, B. A. et al. Relation of lymphangiogenic factor vascular endothelial growth factor-D to elevated pulmonary artery wedge pressure. Am. J. Cardiol. 124, 756–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. von Moos, S. et al. Vascular endothelial growth factor D is a biomarker of fluid overload in haemodialysis patients. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfz281 (2020).

    Article  Google Scholar 

  68. Ware, L. B. & Matthay, M. A. Clinical practice. Acute pulmonary edema. N. Engl. J. Med. 353, 2788–2796 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Harjola, V.-P. et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 19, 821–836 (2017). This review summarizes pathophysiology, diagnosis and management of organ dysfunction occurring in patients with AHF.

    Article  PubMed  Google Scholar 

  70. Braam, B., Cupples, W. A., Joles, J. A. & Gaillard, C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail. Rev. 17, 161–175 (2012).

    Article  PubMed  Google Scholar 

  71. Legrand, M., Mebazaa, A., Ronco, C. & Januzzi, J. L. When cardiac failure, kidney dysfunction, and kidney injury intersect in acute conditions: the case of cardiorenal syndrome. Crit. Care Med. 42, 2109–2117 (2014).

    Article  PubMed  Google Scholar 

  72. Mullens, W. et al. Elevated intra-abdominal pressure in acute decompensated heart failure. J. Am. Coll. Cardiol. 51, 300–306 (2008).

    Article  PubMed  Google Scholar 

  73. Ahmad, T. et al. Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation 137, 2016–2028 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Maisel, A. S. et al. Neutrophil gelatinase-associated lipocalin for acute kidney injury during acute heart failure hospitalizations: the AKINESIS study. J. Am. Coll. Cardiol. 68, 1420–1431 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Mullens, W. et al. The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 21, 137–155 (2019). This position statement from the Heart Failure Association of the European Society of Cardiology provides practical guidance on the use of diuretics to relieve congestion in patients with AHF.

    Article  PubMed  Google Scholar 

  76. Metra, M. et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ. Heart Fail. 5, 54–62 (2012).

    Article  PubMed  Google Scholar 

  77. Auer, J. What does the liver tell us about the failing heart? Eur. Heart J. 34, 711–714 (2013).

    Article  PubMed  Google Scholar 

  78. Møller, S. & Bernardi, M. Interactions of the heart and the liver. Eur. Heart J. 34, 2804–2811 (2013).

    Article  PubMed  Google Scholar 

  79. Samsky, M. D. et al. Cardiohepatic interactions in heart failure: an overview and clinical implications. J. Am. Coll. Cardiol. 61, 2397–2405 (2013).

    Article  PubMed  Google Scholar 

  80. Rogler, G. & Rosano, G. The heart and the gut. Eur. Heart J. 35, 426–430 (2014).

    Article  PubMed  Google Scholar 

  81. Sandek, A. et al. Altered intestinal function in patients with chronic heart failure. J. Am. Coll. Cardiol. 50, 1561–1569 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Valentova, M. et al. Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur. Heart J. 37, 1684–1691 (2016).

    Article  PubMed  Google Scholar 

  83. Colombo, P. C. et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur. Heart J. 35, 448–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Colombo, P. C. et al. Venous congestion, endothelial and neurohormonal activation in acute decompensated heart failure: cause or effect? Curr. Heart Fail. Rep. 12, 215–222 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McMurray, J. J. V. et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  PubMed  CAS  Google Scholar 

  86. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Van Aelst, L. N. L. et al. Acutely decompensated heart failure with preserved and reduced ejection fraction present with comparable haemodynamic congestion. Eur. J. Heart Fail. 20, 738–747 (2018).

    Article  PubMed  CAS  Google Scholar 

  88. Van de Werf, F. et al. Diastolic properties of the left ventricle in normal adults and in patients with third heart sounds. Circulation 69, 1070–1078 (1984).

    Article  PubMed  Google Scholar 

  89. Mebazaa, A. et al. Recommendations on pre-hospital & early hospital management of acute heart failure: a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine. Eur. J. Heart Fail. 17, 544–558 (2015).

    Article  PubMed  Google Scholar 

  90. Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 18, 891–975 (2016).

    Article  PubMed  Google Scholar 

  91. Fonarow, G. C. et al. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA 293, 572–580 (2005). This study provides one easy-to-use risk score (among many others available) to stratify patients admitted with AHF.

    Article  CAS  PubMed  Google Scholar 

  92. Peterson, P. N. et al. A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association Get With the Guidelines program. Circ. Cardiovasc. Qual. Outcomes 3, 25–32 (2010).

    Article  PubMed  Google Scholar 

  93. Miró, Ò. et al. Predicting 30-day mortality for patients with acute heart failure in the emergency department: a cohort study. Ann. Intern. Med. 167, 698–705 (2017).

    Article  PubMed  Google Scholar 

  94. Gheorghiade, M. et al. Assessing and grading congestion in acute heart failure: a scientific statement from the Acute Heart Failure Committee of the Heart Failure Association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur. J. Heart Fail. 12, 423–433 (2010). This position statement from the Heart Failure Association of the European Society of Cardiology provides a statement on the assessment and quantification of congestion in AHF.

    Article  PubMed  Google Scholar 

  95. Maisel, A. S. et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 347, 161–167 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Januzzi, J. L. Jr et al. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency Department (PRIDE) study. Am. J. Cardiol. 95, 948–954 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Maisel, A. et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea. J. Am. Coll. Cardiol. 55, 2062–2076 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. McCullough, P. A. et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) multinational study. Circulation 106, 416–422 (2002).

    Article  PubMed  Google Scholar 

  99. Arrigo, M., Nijst, P. & Rudiger, A. Optimising heart failure therapies in the acute setting. Card. Fail. Rev. 4, 38–42 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Platz, E. et al. Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients. Eur. Heart J. 37, 1244–1251 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Aras, M. A. & Teerlink, J. R. Lung ultrasound: a ‘B-line’ to the prediction of decompensated heart failure. Eur. Heart J. 37, 1252–1254 (2016).

    Article  PubMed  Google Scholar 

  102. Matsue, Y. et al. Time-to-furosemide treatment and mortality in patients hospitalized with acute heart failure. J. Am. Coll. Cardiol. 69, 3042–3051 (2017). This study shows a beneficial association between early administration of decongestive treatment (loop diuretics) and mortality in AHF.

    Article  PubMed  Google Scholar 

  103. Ledwidge, M. et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA 310, 66–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Rubio-Gracia, J. et al. Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Int. J. Cardiol. 258, 185–191 (2018).

    Article  PubMed  Google Scholar 

  105. Gayat, E. et al. Heart failure oral therapies at discharge are associated with better outcome in acute heart failure: a propensity-score matched study. Eur. J. Heart Fail. 20, 345–354 (2018). This study shows in a propensity-matched cohort a positive association between pre-discharge implementation of neuro-humoral blockers (β-adrenergic receptor blockers and renin–angiotensin inhibitors) and survival in patients with AHF.

    Article  CAS  PubMed  Google Scholar 

  106. Plaisance, P., Pirracchio, R., Berton, C., Vicaut, E. & Payen, D. A randomized study of out-of-hospital continuous positive airway pressure for acute cardiogenic pulmonary oedema: physiological and clinical effects. Eur. Heart J. 28, 2895–2901 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Arrigo, M. & Mebazaa, A. Understanding the differences among inotropes. Intensive Care Med. 41, 912–915 (2015).

    Article  PubMed  Google Scholar 

  108. Butler, J., Gheorghiade, M. & Metra, M. Moving away from symptoms-based heart failure treatment: misperceptions and real risks for patients with heart failure. Eur. J. Heart Fail. 18, 350–352 (2016).

    Article  PubMed  Google Scholar 

  109. Kula, A. J. et al. Influence of titration of neurohormonal antagonists and blood pressure reduction on renal function and decongestion in decompensated heart failure. Circ. Heart Fail. 9, e002333 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Brinkley, D. M. et al. Spot urine sodium as triage for effective diuretic infusion in an ambulatory heart failure unit. J. Card. Fail. 24, 349–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Costanzo, M. R. et al. Extracorporeal ultrafiltration for fluid overload in heart failure. J. Am. Coll. Cardiol. 69, 2428–2445 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Costanzo, M. R. et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J. Am. Coll. Cardiol. 49, 675–683 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Bart, B. A. et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N. Engl. J. Med. 367, 2296–2304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. ter Maaten, J. M. et al. Diuretic response in acute heart failure–pathophysiology, evaluation and therapy. Nat. Rev. Cardiol. 12, 184–192 (2015). This article reviews the mechanisms and the treatment of diuretic resistance occurring in AHF.

    Article  PubMed  CAS  Google Scholar 

  115. Martens, P., Nijst, P. & Mullens, W. Current approach to decongestive therapy in acute heart failure. Curr. Heart Fail. Rep. 12, 367–378 (2015).

    Article  PubMed  Google Scholar 

  116. Yancy, C. W. et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136, e137–e161 (2017).

    Article  PubMed  Google Scholar 

  117. Peacock, W. F. et al. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med. 358, 2117–2126 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Logeart, D. et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 43, 635–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Rehman, S. U., Mueller, T. & Januzzi, J. L. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 52, 1458–1465 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J. Am. Coll. Cardiol. 62, 1495–1539 (2013).

    Article  Google Scholar 

  121. Passantino, A., Monitillo, F., Iacoviello, M. & Scrutinio, D. Predicting mortality in patients with acute heart failure: role of risk scores. World J. Cardiol. 7, 902–911 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wadhera, R. K. et al. Association of the Hospital Readmissions Reduction Program with mortality among Medicare beneficiaries hospitalized for heart failure, acute myocardial infarction, and pneumonia. JAMA 320, 2542–2552 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gheorghiade, M. et al. A comprehensive, longitudinal description of the in-hospital and post-discharge clinical, laboratory, and neurohormonal course of patients with heart failure who die or are re-hospitalized within 90 days: analysis from the EVEREST trial. Heart Fail. Rev. 17, 485–509 (2012).

    Article  PubMed  Google Scholar 

  124. Grodin, J. L. et al. Prognostic implications of changes in amino-terminal Pro-B-type natriuretic peptide in acute decompensated heart failure: insights from ASCEND-HF. J. Card. Fail. 25, 703–711 (2019).

    Article  PubMed  Google Scholar 

  125. Mueller, C. et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 21, 715–731 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Simon, M. A., Schnatz, R. G., Romeo, J. D. & Pacella, J. J. Bedside ultrasound assessment of jugular venous compliance as a potential point-of-care method to predict acute decompensated heart failure 30-day readmission. J. Am. Heart Assoc. 7, e008184 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Platz, E. et al. Lung ultrasound in acute heart failure: prevalence of pulmonary congestion and short- and long-term outcomes. JACC Heart Fail. 7, 849–858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Palazzuoli, A. et al. Early readmission for heart failure: an avoidable or ineluctable debacle? Int. J. Cardiol. 277, 186–195 (2019).

    Article  PubMed  Google Scholar 

  129. Abraham, W. T. et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377, 658–666 (2011).

    Article  PubMed  Google Scholar 

  130. Adamson, P. B. et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ. Heart Fail. 7, 935–944 (2014).

    Article  PubMed  Google Scholar 

  131. Givertz, M. M. et al. Pulmonary artery pressure-guided management of patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 70, 1875–1886 (2017).

    Article  PubMed  Google Scholar 

  132. Krahnke, J. S. et al. Heart failure and respiratory hospitalizations are reduced in patients with heart failure and chronic obstructive pulmonary disease with the use of an implantable pulmonary artery pressure monitoring device. J. Card. Fail. 21, 240–249 (2015).

    Article  PubMed  Google Scholar 

  133. Loh, J. P., Barbash, I. M. & Waksman, R. Overview of the 2011 Food and Drug Administration Circulatory System Devices Panel of the Medical Devices Advisory Committee Meeting on the CardioMEMS Champion Heart Failure Monitoring System. J. Am. Coll. Cardiol. 61, 1571–1576 (2013).

    Article  PubMed  Google Scholar 

  134. Van Veldhuisen, D. J. et al. Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation 124, 1719–1726 (2011).

    Article  PubMed  Google Scholar 

  135. Chaudhry, S. I. et al. Telemonitoring in patients with heart failure. N. Engl. J. Med. 363, 2301–2309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jayaram, N. M. et al. Impact of telemonitoring on health status. Circ. Cardiovasc. Qual. Outcomes 10, e004148 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Koehler, F. et al. Telemedical Interventional Monitoring in Heart Failure (TIM-HF), a randomized, controlled intervention trial investigating the impact of telemedicine on mortality in ambulatory patients with heart failure: study design. Eur. J. Heart Fail. 12, 1354–1362 (2010).

    Article  PubMed  Google Scholar 

  138. Cleland, J. G. F. et al. Noninvasive home telemonitoring for patients with heart failure at high risk of recurrent admission and death: the Trans-European Network-Home-Care Management System (TEN-HMS) study. J. Am. Coll. Cardiol. 45, 1654–1664 (2005).

    Article  PubMed  Google Scholar 

  139. Van Spall, H. G. C. et al. Effect of patient-centered transitional care services on clinical outcomes in patients hospitalized for heart failure: the PACT-HF randomized clinical trial. JAMA 321, 753–761 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zambroski, C. H., Moser, D. K., Bhat, G. & Ziegler, C. Impact of symptom prevalence and symptom burden on quality of life in patients with heart failure. Eur. J. Cardiovasc. Nurs. 4, 198–206 (2005).

    Article  PubMed  Google Scholar 

  141. Rutledge, T., Reis, V. A., Linke, S. E., Greenberg, B. H. & Mills, P. J. Depression in heart failure: a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J. Am. Coll. Cardiol. 48, 1527–1537 (2006).

    Article  PubMed  Google Scholar 

  142. Freedland, K. E. et al. Prevalence of depression in hospitalized patients with congestive heart failure. Psychosom. Med. 65, 119–128 (2003).

    Article  PubMed  Google Scholar 

  143. Adelborg, K. et al. Mortality risk among heart failure patients with depression: a nationwide population-based cohort study. J. Am. Heart Assoc. 5, e004137 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sullivan, M., Simon, G., Spertus, J. & Russo, J. Depression-related costs in heart failure care. Arch. Intern. Med. 162, 1860–1866 (2002).

    Article  PubMed  Google Scholar 

  145. O’Connor, C. M. & Joynt, K. E. Depression: are we ignoring an important comorbidity in heart failure? J. Am. Coll. Cardiol. 43, 1550–1552 (2004).

    Article  PubMed  Google Scholar 

  146. Reeves, G. R. et al. Comparison of frequency of frailty and severely impaired physical function in patients ≥60 years hospitalized with acute decompensated heart failure versus chronic stable heart failure with reduced and preserved left ventricular ejection fraction. Am. J. Cardiol. 117, 1953–1958 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Warraich, H. J. et al. Physical function, frailty, cognition, depression, and quality of life in hospitalized adults ≥60 years with acute decompensated heart failure with preserved versus reduced ejection fraction: insights from the REHAB-HF trial. Circ. Heart Fail. 11, e005254 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Dewan, P. et al. Differential impact of heart failure with reduced ejection fraction on men and women. J. Am. Coll. Cardiol. 73, 29–40 (2019).

    Article  PubMed  Google Scholar 

  149. Allen, L. A. et al. Identifying patients hospitalized with heart failure at risk for unfavorable future quality of life. Circ. Cardiovasc. Qual. Outcomes 4, 389–398 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sidebottom, A. C., Jorgenson, A., Richards, H., Kirven, J. & Sillah, A. Inpatient palliative care for patients with acute heart failure: outcomes from a randomized trial. J. Palliat. Med. 18, 134–142 (2015).

    Article  PubMed  Google Scholar 

  151. Mebazaa, A. et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 297, 1883–1891 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Teerlink, J. R. et al. Acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure. J. Am. Coll. Cardiol. 67, 1444–1455 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Packer, M. et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N. Engl. J. Med. 376, 1956–1964 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Konstam, M. A. et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA 297, 1319–1331 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Voors, A. A. et al. Adrenomedullin in heart failure: pathophysiology and therapeutic application. Eur. J. Heart Fail. 21, 163–171 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Deniau, B. et al. Circulating dipeptidyl peptidase 3 is a myocardial depressant factor: dipeptidyl peptidase 3 inhibition rapidly and sustainably improves haemodynamics. Eur. J. Heart Fail. 14, e0220866 (2019).

    Google Scholar 

  157. Takagi, K. et al. Circulating dipeptidyl peptidase 3 and alteration in haemodynamics in cardiogenic shock: results from the OptimaCC trial. Eur. J. Heart Fail. https://doi.org/10.1002/ejhf.1600 (2019).

    Article  PubMed  Google Scholar 

  158. Troughton, R., Michael Felker, G. & Januzzi, J. L. Natriuretic peptide-guided heart failure management. Eur. Heart J. 35, 16–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Demissei, B. G. et al. A multimarker multi-time point-based risk stratification strategy in acute heart failure: results from the RELAX-AHF trial. Eur. J. Heart Fail. 19, 1001–1010 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.R. is supported by the National Institutes of Health, National Human Genome Research Institute, Ruth L. Kirschstein Institutional National Research Service T32 Award in Genomic Medicine (T32 HG009495).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.M. and M.A.); Epidemiology (K.S.); Mechanisms/pathophysiology (M.A., W.M. and A.M.S.); Diagnosis, screening and prevention (A.M. and M.A.); Management (M.J., W.M. and N.R.); Quality of life (M.J. and N.R.); Outlook (A.M.); Overview of Primer (A.M.).

Corresponding author

Correspondence to Alexandre Mebazaa.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks A. Palazzuoli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrigo, M., Jessup, M., Mullens, W. et al. Acute heart failure. Nat Rev Dis Primers 6, 16 (2020). https://doi.org/10.1038/s41572-020-0151-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-020-0151-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing