Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Helicobacter pylori infection

Abstract

Helicobacter pylori infection causes chronic gastritis, which can progress to severe gastroduodenal pathologies, including peptic ulcer, gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori is usually transmitted in childhood and persists for life if untreated. The infection affects around half of the population in the world but prevalence varies according to location and sanitation standards. H. pylori has unique properties to colonize gastric epithelium in an acidic environment. The pathophysiology of H. pylori infection is dependent on complex bacterial virulence mechanisms and their interaction with the host immune system and environmental factors, resulting in distinct gastritis phenotypes that determine possible progression to different gastroduodenal pathologies. The causative role of H. pylori infection in gastric cancer development presents the opportunity for preventive screen-and-treat strategies. Invasive, endoscopy-based and non-invasive methods, including breath, stool and serological tests, are used in the diagnosis of H. pylori infection. Their use depends on the specific individual patient history and local availability. H. pylori treatment consists of a strong acid suppressant in various combinations with antibiotics and/or bismuth. The dramatic increase in resistance to key antibiotics used in H. pylori eradication demands antibiotic susceptibility testing, surveillance of resistance and antibiotic stewardship.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key developments in H. pylori clinical research and management.
Fig. 2: Prevalence of H. pylori infection in adults and children.
Fig. 3: H. pylori infection and pathogenesis.
Fig. 4: Pathogenesis of gastric adenocarcinoma triggered by H. pylori.
Fig. 5: H. pylori diagnostic procedures.
Fig. 6: Suggested H. pylori therapy algorithm.

Similar content being viewed by others

References

  1. Sugano, K. et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 64, 1353–1367 (2015).

    Article  PubMed  Google Scholar 

  2. Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Peek, R. M. Jr & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2, 28–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Amieva, M. R. & El-Omar, E. M. Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 134, 306–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. van Amsterdam, K., van Vliet, A. H., Kusters, J. G. & van der Ende, A. Of microbe and man: determinants of Helicobacter pylori-related diseases. FEMS Microbiol. Rev. 30, 131–156 (2006).

    Article  PubMed  Google Scholar 

  6. Kidd, M. & Modlin, I. M. A century of Helicobacter pylori: paradigms lost-paradigms regained. Digestion 59, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Warren, J. R. & Marshall, B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273–1275 (1983). Discovery of H. pylori that starts worldwide research leading to the cure of peptic ulcer disease and identification of the main risk factor for gastric cancer.

    CAS  PubMed  Google Scholar 

  8. Marshall, B. J., Armstrong, J. A., McGechie, D. B. & Glancy, R. J. Attempt to fulfil Koch’s postulates for pyloric Campylobacter. Med. J. Aust. 142, 436–439 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Morris, A. & Nicholson, G. Ingestion of Campylobacter pyloridis causes gastritis and raised fasting gastric pH. Am. J. Gastroenterol. 82, 192–199 (1987).

    CAS  PubMed  Google Scholar 

  10. Malfertheiner, P., Link, A. & Selgrad, M. Helicobacter pylori: perspectives and time trends. Nat. Rev. Gastroenterol. Hepatol. 11, 628–638 (2014).

    Article  PubMed  Google Scholar 

  11. Goodwin, C. S. & Armstrong, J. A. Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur. J. Clin. Microbiol. Infect. Dis. 9, 1–13 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Rauws, E. A. & Tytgat, G. N. Cure of duodenal ulcer associated with eradication of Helicobacter pylori. Lancet 335, 1233–1235 (1990). To our knowledge, first study to provide definitive proof that H. pylori eradication cures peptic ulcer disease.

    Article  CAS  PubMed  Google Scholar 

  13. Van der Hulst, R. W. et al. Prevention of ulcer recurrence after eradication of Helicobacter pylori: a prospective long-term follow-up study. Gastroenterology 113, 1082–1086 (1997).

    Article  PubMed  Google Scholar 

  14. Malfertheiner, P., Chan, F. K. & McColl, K. E. Peptic ulcer disease. Lancet 374, 1449–1461 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Pincock, S. Nobel Prize winners Robin Warren and Barry Marshall. Lancet 366, 1429 (2005).

    Article  PubMed  Google Scholar 

  16. Hooi, J. K. Y. et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153, 420–429 (2017).

    Article  PubMed  Google Scholar 

  17. Liou, J. M. et al. Screening and eradication of Helicobacter pylori for gastric cancer prevention: the Taipei global consensus. Gut 69, 2093–2112 (2020).

    Article  PubMed  Google Scholar 

  18. Plummer, M., Franceschi, S., Vignat, J., Forman, D. & de Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori. Int. J. Cancer 136, 487–490 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Malaty, H. M. et al. Age at acquisition of Helicobacter pylori infection: a follow-up study from infancy to adulthood. Lancet 359, 931–935 (2002).

    Article  PubMed  Google Scholar 

  20. Gao, L., Weck, M. N., Nieters, A. & Brenner, H. Inverse association between a pro-inflammatory genetic profile and Helicobacter pylori seropositivity among patients with chronic atrophic gastritis: enhanced elimination of the infection during disease progression? Eur. J. Cancer 45, 2860–2866 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Parsonnet, J. et al. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127–1131 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Eusebi, L. H., Zagari, R. M. & Bazzoli, F. Epidemiology of Helicobacter pylori infection. Helicobacter 19, 1–5 (2014).

    Article  PubMed  Google Scholar 

  23. Park, J. S., Jun, J. S., Seo, J. H., Youn, H. S. & Rhee, K. H. Changing prevalence of Helicobacter pylori infection in children and adolescents. Clin. Exp. Pediatr. 64, 21–25 (2021).

    Article  PubMed  Google Scholar 

  24. Yuan, C. et al. The global prevalence of and factors associated with Helicobacter pylori infection in children: a systematic review and meta-analysis. Lancet Child. Adolesc. Health 6, 185–194 (2022).

    Article  PubMed  Google Scholar 

  25. Syam, A. F. et al. Helicobacter pylori in the Indonesian Malay’s descendants might be imported from other ethnicities. Gut Pathog. 13, 36 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liou, J. M. et al. IL-1B-511 C–>T polymorphism is associated with increased host susceptibility to Helicobacter pylori infection in Chinese. Helicobacter 12, 142–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Mayerle, J. et al. Identification of genetic loci associated with Helicobacter pylori serologic status. JAMA 309, 1912–1920 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Lam, S. Y. et al. Toll-like receptor 1 locus re-examined in a genome-wide association study update on anti-Helicobacter pylori IgG titers. Gastroenterology 162, 1705–1715 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. El-Omar, E. M. Genetic predisposition for Helicobacter pylori infection-the jury is still out! Gastroenterology 162, 1591–1593 (2022).

    Article  PubMed  Google Scholar 

  30. Kayali, S. et al. Helicobacter pylori, transmission routes and recurrence of infection: state of the art. Acta Biomed. 89, 72–76 (2018).

    PubMed  Google Scholar 

  31. Brown, L. M. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol. Rev. 22, 283–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Fox, J. G. Non-human reservoirs of Helicobacter pylori. Aliment. Pharmacol. Ther. 9, 93–103 (1995).

    PubMed  Google Scholar 

  33. Parsonnet, J., Shmuely, H. & Haggerty, T. Fecal and oral shedding of Helicobacter pylori from healthy infected adults. JAMA 282, 2240–2245 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Weyermann, M., Rothenbacher, D. & Brenner, H. Acquisition of Helicobacter pylori infection in early childhood: independent contributions of infected mothers, fathers, and siblings. Am. J. Gastroenterol. 104, 182–189 (2009).

    Article  PubMed  Google Scholar 

  35. Kivi, M. et al. Concordance of Helicobacter pylori strains within families. J. Clin. Microbiol. 41, 5604–5608 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Georgopoulos, S. D. et al. Helicobacter pylori infection in spouses of patients with duodenal ulcers and comparison of ribosomal RNA gene patterns. Gut 39, 634–638 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luman, W., Zhao, Y., Ng, H. S. & Ling, K. L. Helicobacter pylori infection is unlikely to be transmitted between partners: evidence from genotypic study in partners of infected patients. Eur. J. Gastroenterol. Hepatol. 14, 521–528 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz, S. et al. Horizontal versus familial transmission of Helicobacter pylori. PLoS Pathog. 4, e1000180 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Didelot, X. et al. Genomic evolution and transmission of Helicobacter pylori in two South African families. Proc. Natl Acad. Sci. USA 110, 13880–13885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liou, J. M. et al. Long-term changes of gut microbiota, antibiotic resistance, and metabolic parameters after Helicobacter pylori eradication: a multicentre, open-label, randomised trial. Lancet Infect. Dis. 19, 1109–1120 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, J. B. et al. Whole family-based Helicobacter pylori eradication is a superior strategy to single-infected patient treatment approach: a systematic review and meta-analysis. Helicobacter 26, e12793 (2021).

    Article  PubMed  Google Scholar 

  42. Malfertheiner, P. et al. Management of Helicobacter pylori infection — the Maastricht V/Florence consensus report. Gut 66, 6–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Kuipers, E. J., Thijs, J. C. & Festen, H. P. The prevalence of Helicobacter pylori in peptic ulcer disease. Aliment. Pharmacol. Ther. 9, 59–69 (1995).

    PubMed  Google Scholar 

  44. Lanas, A. & Chan, F. K. L. Peptic ulcer disease. Lancet 390, 613–624 (2017).

    Article  PubMed  Google Scholar 

  45. Sipponen, P. et al. Cumulative 10-year risk of symptomatic duodenal and gastric ulcer in patients with or without chronic gastritis. A clinical follow-up study of 454 outpatients. Scand. J. Gastroenterol. 25, 966–973 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Schottker, B., Adamu, M. A., Weck, M. N. & Brenner, H. Helicobacter pylori infection is strongly associated with gastric and duodenal ulcers in a large prospective study. Clin. Gastroenterol. Hepatol. 10, 487–493.e1 (2012).

    Article  PubMed  Google Scholar 

  47. Xia, B. et al. Trends in the prevalence of peptic ulcer disease and Helicobacter pylori infection in family physician-referred uninvestigated dyspeptic patients in Hong Kong. Aliment. Pharmacol. Ther. 22, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Perez-Aisa, M. A., Del Pino, D., Siles, M. & Lanas, A. Clinical trends in ulcer diagnosis in a population with high prevalence of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 21, 65–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Leow, A. H., Lim, Y. Y., Liew, W. C. & Goh, K. L. Time trends in upper gastrointestinal diseases and Helicobacter pylori infection in a multiracial Asian population — a 20-year experience over three time periods. Aliment. Pharmacol. Ther. 43, 831–837 (2016).

    Article  PubMed  Google Scholar 

  50. Azhari, H. et al. The global incidence of peptic ulcer disease is decreasing since the turn of the 21st century: a study of the Organisation for Economic Co-operation and Development (OECD). Am. J. Gastroenterol. 117, 1419–1427 (2022).

    Article  PubMed  Google Scholar 

  51. Yamamichi, N. et al. Inverse time trends of peptic ulcer and reflux esophagitis show significant association with reduced prevalence of Helicobacter pylori infection. Ann. Med. 52, 506–514 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jiang, J. X. et al. Downward trend in the prevalence of Helicobacter pylori infections and corresponding frequent upper gastrointestinal diseases profile changes in Southeastern China between 2003 and 2012. Springerplus 5, 1601 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xie, X., Ren, K., Zhou, Z., Dang, C. & Zhang, H. The global, regional and national burden of peptic ulcer disease from 1990 to 2019: a population-based study. BMC Gastroenterol. 22, 58 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Malfertheiner, P. & Schulz.C. Peptic ulcer: chapter closed? Dig. Dis. https://doi.org/10.1159/000505367 (2020).

    Article  PubMed  Google Scholar 

  55. Huang, J. Q., Sridhar, S. & Hunt, R. H. Role of Helicobacter pylori infection and non-steroidal anti-inflammatory drugs in peptic-ulcer disease: a meta-analysis. Lancet 359, 14–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Venerito, M. et al. Contribution of Helicobacter pylori infection to the risk of peptic ulcer bleeding in patients on nonsteroidal anti-inflammatory drugs, antiplatelet agents, anticoagulants, corticosteroids and selective serotonin reuptake inhibitors. Aliment. Pharmacol. Ther. 47, 1464–1471 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Rosenstock, S., Jorgensen, T., Bonnevie, O. & Andersen, L. Risk factors for peptic ulcer disease: a population based prospective cohort study comprising 2416 Danish adults. Gut 52, 186–193 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zagari, R. M. et al. Prevalence of upper gastrointestinal endoscopic findings in the community: a systematic review of studies in unselected samples of subjects. J. Gastroenterol. Hepatol. 31, 1527–1538 (2016).

    Article  PubMed  Google Scholar 

  59. Eslick, G. et al. Clinical and economic impact of “triple therapy” for Helicobacter pylori eradication on peptic ulcer disease in Australia. Helicobacter 25, e12751 (2020).

    Article  PubMed  Google Scholar 

  60. Sung, J., Kuipers, E. & El-Serag, H. Systematic review: the global incidence and prevalence of peptic ulcer disease. Aliment. Pharmacol. Ther. 29, 938–946 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Moss, S. F. The clinical evidence linking Helicobacter pylori to gastric cancer. Cell Mol. Gastroenterol. Hepatol. 3, 183–191 (2017).

    Article  PubMed  Google Scholar 

  62. de Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health 8, e180–e190 (2020).

    Article  PubMed  Google Scholar 

  63. Fann, J. C. et al. Personalized risk assessment for dynamic transition of gastric neoplasms. J. Biomed. Sci. 25, 84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Arnold, M. et al. The burden of stomach cancer in indigenous populations: a systematic review and global assessment. Gut 63, 64–71 (2014).

    Article  PubMed  Google Scholar 

  65. Kumar, S., Metz, D. C., Ellenberg, S., Kaplan, D. E. & Goldberg, D. S. Risk factors and incidence of gastric cancer after detection of Helicobacter pylori infection: a large cohort study. Gastroenterology 158, 527–536.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Gonzalez, C. A. & Lopez-Carrillo, L. Helicobacter pylori, nutrition and smoking interactions: their impact in gastric carcinogenesis. Scand. J. Gastroenterol. 45, 6–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Venneman, K. et al. The epidemiology of Helicobacter pylori infection in Europe and the impact of lifestyle on its natural evolution toward stomach cancer after infection: a systematic review. Helicobacter 23, e12483 (2018).

    Article  PubMed  Google Scholar 

  68. Wong, F., Rayner-Hartley, E. & Byrne, M. F. Extraintestinal manifestations of Helicobacter pylori: a concise review. World J. Gastroenterol. 20, 11950–11961 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Takeuchi, H. & Okamoto, A. Helicobacter pylori infection and chronic immune thrombocytopenia. J. Clin. Med. 11, 4822 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Malfertheiner, P. et al. Management of Helicobacter pylori infection — the Maastricht IV/Florence Consensus Report. Gut 61, 646–664 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Gasbarrini, A. et al. Regression of autoimmune thrombocytopenia after eradication of Helicobacter pylori. Lancet 352, 878 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Figura, N. et al. Extragastric manifestations of Helicobacter pylori infection. Helicobacter 15, 60–68 (2010).

    Article  PubMed  Google Scholar 

  73. Franceschi, F., Zuccala, G., Roccarina, D. & Gasbarrini, A. Clinical effects of Helicobacter pylori outside the stomach. Nat. Rev. Gastroenterol. Hepatol. 11, 234–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Gravina, A. G. et al. Extra-gastric manifestations of Helicobacter pylori infection. J. Clin. Med. 9, 3887 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. McCune, A. et al. Reduced risk of atopic disorders in adults with Helicobacter pylori infection. Eur. J. Gastroenterol. Hepatol. 15, 637–640 (2003).

    Article  PubMed  Google Scholar 

  76. Chen, Y. & Blaser, M. J. Inverse associations of Helicobacter pylori with asthma and allergy. Arch. Intern. Med. 167, 821–827 (2007).

    Article  PubMed  Google Scholar 

  77. Blaser, M. J., Chen, Y. & Reibman, J. Does Helicobacter pylori protect against asthma and allergy? Gut 57, 561–567 (2008).

    Article  PubMed  Google Scholar 

  78. Alvarez, C. S. et al. Associations of Helicobacter pylori and hepatitis A seropositivity with asthma in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): addressing the hygiene hypothesis. Allergy Asthma Clin. Immunol. 17, 120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rokkas, T., Pistiolas, D., Sechopoulos, P., Robotis, I. & Margantinis, G. Relationship between Helicobacter pylori infection and esophageal neoplasia: a meta-analysis. Clin. Gastroenterol. Hepatol. 5, 1413–1417 (2007).

    Article  PubMed  Google Scholar 

  80. Fischbach, L. A. et al. The association between Barrett’s esophagus and Helicobacter pylori infection: a meta-analysis. Helicobacter 17, 163–175 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rubenstein, J. H. et al. Association between Helicobacter pylori and Barrett’s esophagus, erosive esophagitis, and gastroesophageal reflux symptoms. Clin. Gastroenterol. Hepatol. 12, 239–245 (2014).

    Article  PubMed  Google Scholar 

  82. Vicari, J. J. et al. The seroprevalence of cagA-positive Helicobacter pylori strains in the spectrum of gastroesophageal reflux disease. Gastroenterology 115, 50–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Doorakkers, E., Lagergren, J., Santoni, G., Engstrand, L. & Brusselaers, N. Helicobacter pylori eradication treatment and the risk of Barrett’s esophagus and esophageal adenocarcinoma. Helicobacter 25, e12688 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, Z. et al. Helicobacter pylori infection is associated with reduced risk of Barrett’s esophagus: an analysis of the Barrett’s and esophageal adenocarcinoma consortium. Am. J. Gastroenterol. 113, 1148–1155 (2018).

    Article  PubMed  Google Scholar 

  85. Zamani, M., Alizadeh-Tabari, S., Hasanpour, A. H., Eusebi, L. H. & Ford, A. C. Systematic review with meta-analysis: association of Helicobacter pylori infection with gastro-oesophageal reflux and its complications. Aliment. Pharmacol. Ther. 54, 988–998 (2021).

    Article  PubMed  Google Scholar 

  86. Malfertheiner, P. et al. Management of Helicobacter pylori infection: the Maastricht VI/Florence consensus report. Gut https://doi.org/10.1136/gutjnl-2022-327745 (2022).

    Article  PubMed  Google Scholar 

  87. Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997); erratum 389, 412 (1997).

  88. Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999).

    Article  PubMed  Google Scholar 

  89. Gressmann, H. et al. Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS Genet. 1, e43 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Krebes, J. et al. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res. 42, 2415–2432 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Ailloud, F. et al. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat. Commun. 10, 2273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jackson, L. K. et al. Helicobacter pylori diversification during chronic infection within a single host generates sub-populations with distinct phenotypes. PLoS Pathog. 16, e1008686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Suerbaum, S. & Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat. Rev. Microbiol. 5, 441–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Kang, J. & Blaser, M. J. Bacterial populations as perfect gases: genomic integrity and diversification tensions in Helicobacter pylori. Nat. Rev. Microbiol. 4, 826–836 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Garcia-Ortiz, M. V. et al. Unexpected role for Helicobacter pylori DNA polymerase I as a source of genetic variability. PLoS Genet. 7, e1002152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hofreuter, D., Odenbreit, S. & Haas, R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41, 379–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Stingl, K., Muller, S., Scheidgen-Kleyboldt, G., Clausen, M. & Maier, B. Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc. Natl Acad. Sci. USA 107, 1184–1189 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Suerbaum, S. et al. Free recombination within Helicobacter pylori. Proc. Natl Acad. Sci. USA 95, 12619–12624 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kennemann, L. et al. Helicobacter pylori genome evolution during human infection. Proc. Natl Acad. Sci. USA 108, 5033–5038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bubendorfer, S. et al. Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat. Commun. 7, 11995 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Falush, D. et al. Traces of human migrations in Helicobacter pylori populations. Science 299, 1582–1585 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Linz, B. et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Moodley, Y. et al. Age of the association between Helicobacter pylori and man. PLoS Pathog. 8, e1002693 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ailloud, F., Estibariz, I. & Suerbaum, S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol. Rev. 45, fuaa042 (2021).

    Article  PubMed  Google Scholar 

  105. Moodley, Y. et al. The peopling of the Pacific from a bacterial perspective. Science 323, 527–530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Censini, S. et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648–14653 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Olbermann, P. et al. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6, e1001069 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Johnson, K. S. & Otteman, K. M. Colonization, localization, and inflammation: the roles of H. pylori chemotaxis in vivo. Curr. Opin. Microbiol. 41, 51–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Josenhans, C., Labigne, A. & Suerbaum, S. Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J. Bacteriol. 177, 3010–3020 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee, S. K. et al. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect. 5, 1345–1356 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Andersen-Nissen, E. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl Acad. Sci. USA 102, 9247–9252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schreiber, S. et al. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl Acad. Sci. USA 101, 5024–5029 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Suerbaum, S. et al. Identification of antimotilins, novel inhibitors of Helicobacter pylori flagellar motility that inhibit stomach colonization in a mouse model. mBio 13, e0375521 (2022).

    Article  PubMed  Google Scholar 

  114. Mobley, H. L. in Helicobacter pylori: Molecular and Cellular Biology (eds Achtman, M. & Suerbaum, S.) (Horizon Scientific Press, 2001).

  115. Weeks, D. L., Eskandari, S., Scott, D. R. & Sachs, G. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287, 482–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Eaton, K. A., Brooks, C. L., Morgan, D. R. & Krakowka, S. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 59, 2470–2475 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kirschner, D. E. & Blaser, M. J. The dynamics of Helicobacter pylori infection of the human stomach. J. Theor. Biol. 176, 281–290 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Borén, T., Falk, P., Roth, K. A., Larson, G. & Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892–1895 (1993).

    Article  PubMed  Google Scholar 

  119. Mahdavi, J. et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573–578 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Javaheri, A. et al. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat. Microbiol. 2, 16189 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Koniger, V. et al. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat. Microbiol. 2, 16188 (2016).

    Article  PubMed  Google Scholar 

  122. Senkovich, O. A. et al. Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect. Immun. 79, 3106–3116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Stein, S. C. et al. Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis. PLoS Pathog. 13, e1006514 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pfannkuch, L. et al. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB J. 33, 9087–9099 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5, 1166–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Varga, M. G. et al. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene 35, 6262–6269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Asahi, M. et al. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J. Exp. Med. 191, 593–602 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Nesic, D. et al. Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nat. Struct. Mol. Biol. 17, 130–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Buti, L. et al. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc. Natl Acad. Sci. USA 108, 9238–9243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ding, S. Z., Goldberg, J. B. & Hatakeyama, M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol. 6, 851–862 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Bauer, M. et al. The ALPK1/TIFA/NF-κB axis links a bacterial carcinogen to R-loop-induced replication stress. Nat. Commun. 11, 5117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Faass, L. et al. Contribution of heptose metabolites and the cag pathogenicity island to the activation of monocytes/macrophages by Helicobacter pylori. Front. Immunol. 12, 632154 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Coletta, S. et al. ADP-heptose enables Helicobacter pylori to exploit macrophages as a survival niche by suppressing antigen-presenting HLA-II expression. FEBS Lett. 595, 2160–2168 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Cover, T. L. & Blaser, M. J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 267, 10570–10575 (1992).

    Article  CAS  PubMed  Google Scholar 

  138. Cover, T. L. & Blanke, S. R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat. Rev. Microbiol. 3, 320–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Foegeding, N. J., Caston, R. R., McClain, M. S., Ohi, M. D. & Cover, T. L. An overview of Helicobacter pylori VacA toxin biology. Toxins 8, 173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Altobelli, A., Bauer, M., Velez, K., Cover, T. L. & Muller, A. Helicobacter pylori VacA targets myeloid cells in the gastric lamina propria to promote peripherally induced regulatory T-cell differentiation and persistent infection. mBio 10, e00261-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhang, X., Arnold, I. C. & Muller, A. Mechanisms of persistence, innate immune activation and immunomodulation by the gastric pathogen Helicobacter pylori. Curr. Opin. Microbiol. 54, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Gobert, A. P. & Wilson, K. T. Induction and regulation of the innate immune response in Helicobacter pylori infection. Cell Mol. Gastroenterol. Hepatol. 13, 1347–1363 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Faass, L., Hauke, M., Stein, S. C. & Josenhans, C. Innate immune activation and modulatory factors of Helicobacter pylori towards phagocytic and nonphagocytic cells. Curr. Opin. Immunol. 82, 102301 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. de Bernard, M. & Josenhans, C. Pathogenesis of Helicobacter pylori infection. Helicobacter 19, 11–18 (2014).

    Article  PubMed  Google Scholar 

  145. Crabtree, J. E. et al. Interleukin-8 expression in Helicobacter pylori infected, normal, and neoplastic gastroduodenal mucosa. J. Clin. Pathol. 47, 61–66 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sharma, S. A., Tummuru, M. K., Blaser, M. J. & Kerr, L. D. Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J. Immunol. 160, 2401–2407 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Maubach, G., Vieth, M., Boccellato, F. & Naumann, M. Helicobacter pylori-induced NF-κB: trailblazer for gastric pathophysiology. Trends Mol. Med. 28, 210–222 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Rugge, M., Savarino, E., Sbaraglia, M., Bricca, L. & Malfertheiner, P. Gastritis: the clinico-pathological spectrum. Dig. Liver Dis. 53, 1237–1246 (2021).

    Article  PubMed  Google Scholar 

  149. Sipponen, P., Kekki, M. & Siurala, M. The Sydney System: epidemiology and natural history of chronic gastritis. J. Gastroenterol. Hepatol. 6, 244–251 (1991).

    Article  CAS  PubMed  Google Scholar 

  150. Oertli, M. et al. DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori-specific immune tolerance, and asthma protection. J. Clin. Invest. 122, 1082–1096 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Arshad, U., Sarkar, S., Alipour Talesh, G. & Sutton, P. A lack of role for antibodies in regulating Helicobacter pylori colonization and associated gastritis. Helicobacter 25, e12681 (2020).

    Article  PubMed  Google Scholar 

  152. Ermak, T. H. et al. Immunization of mice with urease vaccine affords protection against Helicobacter pylori infection in the absence of antibodies and is mediated by MHC class II-restricted responses. J. Exp. Med. 188, 2277–2288 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. D’Elios, M. M. & Czinn, S. J. Immunity, inflammation, and vaccines for Helicobacter pylori. Helicobacter 19, 19–26 (2014).

    Article  PubMed  Google Scholar 

  154. Arnold, I. C. et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Invest. 121, 3088–3093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kyburz, A. et al. Transmaternal Helicobacter pylori exposure reduces allergic airway inflammation in offspring through regulatory T cells. J. Allergy Clin. Immunol. 143, 1496–1512.e11 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Cook, K. W. et al. CCL20/CCR6-mediated migration of regulatory T cells to the Helicobacter pylori-infected human gastric mucosa. Gut 63, 1550–1559 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Robinson, K. et al. Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut 57, 1375–1385 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Backert, S., Haas, R., Gerhard, M. & Naumann, M. The Helicobacter pylori type IV secretion system encoded by the cag pathogenicity island: architecture, function, and signaling. Curr. Top. Microbiol. Immunol. 413, 187–220 (2017).

    CAS  PubMed  Google Scholar 

  159. Correa, P. Human gastric carcinogenesis: a multistep and multifactorial process. First American Cancer Society award lecture on cancer epidemiology and prevention. Cancer Res. 52, 6735 (1992).

    CAS  PubMed  Google Scholar 

  160. Ferreira, R. M. et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67, 226–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Guo, Y. et al. Effect of Helicobacter pylori on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric cancer. Gut 69, 1598–1607 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Kwon, S. K. et al. Human gastric microbiota transplantation recapitulates premalignant lesions in germ-free mice. Gut 71, 1266–1276 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Pereira-Marques, J., Ferreira, R. M., Machado, J. C. & Figueiredo, C. The influence of the gastric microbiota in gastric cancer development. Best Pract. Res. Clin. Gastroenterol. 50–51, 101734 (2021).

    Article  PubMed  Google Scholar 

  164. Bayerdorffer, E. et al. Regression of primary gastric lymphoma of mucosa-associated lymphoid tissue type after cure of Helicobacter pylori infection. MALT Lymphoma Study Group. Lancet 345, 1591–1594 (1995).

    Article  CAS  PubMed  Google Scholar 

  165. Hunt, R. H. et al. The stomach in health and disease. Gut 64, 1650–1668 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. El-Omar, E. M. et al. Helicobacter pylori infection and chronic gastric acid hyposecretion. Gastroenterology 113, 15–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  167. Amieva, M. & Peek, R. M. Jr. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology 150, 64–78 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Kwon, S. K. et al. Human gastric microbiota transplantation recapitulates premalignant lesions in germ-free mice. Gut 71, 1266–1276 (2021).

    Article  PubMed  Google Scholar 

  169. Jones, N. L. et al. Joint ESPGHAN/NASPGHAN guidelines for the management of Helicobacter pylori in children and adolescents (Update 2016). J. Pediatr. Gastroenterol. Nutr. 64, 991–1003 (2017).

    Article  PubMed  Google Scholar 

  170. Sobala, G. M. et al. Acute Helicobacter pylori infection: clinical features, local and systemic immune response, gastric mucosal histology, and gastric juice ascorbic acid concentrations. Gut 32, 1415–1418 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Graham, D. Y. et al. Challenge model for Helicobacter pylori infection in human volunteers. Gut 53, 1235–1243 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Malfertheiner, P. et al. Efficacy, immunogenicity, and safety of a parenteral vaccine against Helicobacter pylori in healthy volunteers challenged with a Cag-positive strain: a randomised, placebo-controlled phase 1/2 study. Lancet Gastroenterol. Hepatol. 3, 698–707 (2018).

    Article  PubMed  Google Scholar 

  173. Spee, L. A., Madderom, M. B., Pijpers, M., van Leeuwen, Y. & Berger, M. Y. Association between Helicobacter pylori and gastrointestinal symptoms in children. Pediatrics 125, e651–e669 (2010).

    Article  PubMed  Google Scholar 

  174. Fischbach, W., Goebeler-Kolve, M. E., Dragosics, B., Greiner, A. & Stolte, M. Long term outcome of patients with gastric marginal zone B cell lymphoma of mucosa associated lymphoid tissue (MALT) following exclusive Helicobacter pylori eradication therapy: experience from a large prospective series. Gut 53, 34–37 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Malfertheiner, P. Diagnostic methods for H. pylori infection: choices, opportunities and pitfalls. United European Gastroenterol. J. 3, 429–431 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pilotto, A. & Franceschi, M. Helicobacter pylori infection in older people. World J. Gastroenterol. 20, 6364–6373 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Uotani, T. & Graham, D. Y. Diagnosis of Helicobacter pylori using the rapid urease test. Ann. Transl Med. 3, 9 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Smith, S. I. et al. Helicobacter pylori infection in Africa: update of the current situation and challenges. Dig. Dis. 40, 535–544 (2021).

    Article  PubMed  Google Scholar 

  179. Bordin, D. S., Voynovan, I. N. & Andreev, D. N. Maev IV. Current Helicobacter pylori diagnostics. Diagnostics 11, 1458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Miftahussurur, M. & Yamaoka, Y. Diagnostic methods of Helicobacter pylori infection for epidemiological studies: critical importance of indirect test validation. Biomed. Res. Int. 2016, 4819423 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Talebi Bezmin Abadi, A. Diagnosis of Helicobacter pylori using invasive and noninvasive approaches. J. Pathog. 2018, 9064952 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Dixon, M. F., Genta, R. M., Yardley, J. H. & Correa, P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol. 20, 1161–1181 (1996).

    Article  CAS  PubMed  Google Scholar 

  183. Rugge, M. et al. Gastritis staging in clinical practice: the OLGA staging system. Gut 56, 631–636 (2007).

    Article  PubMed  Google Scholar 

  184. Capelle, L. G. et al. The staging of gastritis with the OLGA system by using intestinal metaplasia as an accurate alternative for atrophic gastritis. Gastrointest. Endosc. 71, 1150–1158 (2010).

    Article  PubMed  Google Scholar 

  185. Ajayi, A., Jolaiya, T. & Smith, S. I. Direct detection of Helicobacter pylori from biopsies of patients in Lagos, Nigeria using real-time PCR-a pilot study. BMC Res. Notes 14, 90 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Moss, S. F. et al. Comparable results of Helicobacter pylori antibiotic resistance testing of stools vs gastric biopsies using next-generation sequencing. Gastroenterology 162, 2095–2097.e2 (2022).

    Article  PubMed  Google Scholar 

  187. Schulz, C., Kalali, B., Link, A., Gerhard, M. & Malfertheiner, P. New rapid Helicobacter pylori blood test based on dual detection of FliD and CagA antibodies for on-site testing. Clin. Gastroenterol. Hepatol. 21, 229–231.e1 (2021).

    Article  PubMed  Google Scholar 

  188. Megraud, F. et al. Helicobacter pylori resistance to antibiotics in Europe in 2018 and its relationship to antibiotic consumption in the community. Gut 70, 1815–1822 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Savoldi, A., Carrara, E., Graham, D. Y., Conti, M. & Tacconelli, E. Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization Regions. Gastroenterology 155, 1372–1382.e17 (2018).

    Article  PubMed  Google Scholar 

  190. Hulten, K. G. et al. Comparison of culture with antibiogram to next-generation sequencing using bacterial isolates and formalin-fixed, paraffin-embedded gastric biopsies. Gastroenterology 161, 1433–1442.e2 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Argueta, A. E., Alsamman, M. A., Moss, S. F. & D’Agata, E. M. C. Impact of antimicrobial resistance rates on eradication of Helicobacter pylori in a US population. Gastroenterology 160, 2181–2183.e1 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. David, Y. G. & Steven, F. M. Antimicrobial susceptibility testing for Helicobacter pylori is now widely available: when, how, why. Am. J. Gastroenterol. 117, 524–528 (2022).

    Article  Google Scholar 

  193. Hu, Y., Zhang, M., Lu, B. & Dai, J. Helicobacter pylori and antibiotic resistance, a continuing and intractable problem. Helicobacter 21, 349–363 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Egli, K. et al. Comparison of the diagnostic performance of qPCR, sanger sequencing, and whole-genome sequencing in determining clarithromycin and levofloxacin resistance in Helicobacter pylori. Front. Cell Infect. Microbiol. 10, 596371 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zamani, M., Rahbar, A. & Shokri-Shirvani, J. Resistance of Helicobacter pylori to furazolidone and levofloxacin: a viewpoint. World J. Gastroenterol. 23, 6920–6922 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Wang, Y. H. et al. A systematic review and meta-analysis of genotypic methods for detecting antibiotic resistance in Helicobacter pylori. Helicobacter 23, e12467 (2018).

    Article  PubMed  Google Scholar 

  197. Li, Y. et al. Detection of clarithromycin resistance in Helicobacter pylori following noncryogenic storage of rapid urease tests for 30 days. J. Dig. Dis. 13, 54–59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chung, W. C. et al. Dual-priming oligonucleotide-based multiplex PCR using tissue samples in rapid urease test in the detection of Helicobacter pylori infection. World J. Gastroenterol. 20, 6547–6553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Chung, W. C. et al. Dual-priming oligonucleotide-based multiplex PCR using tissue samples from the rapid urease test kit for the detection of Helicobacter pylori in bleeding peptic ulcers. Dig. Liver Dis. 48, 899–903 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Chen, T., Meng, X., Zhang, H., Tsang, R. W. & Tsang, T. K. Comparing multiplex PCR and rapid urease test in the detection of H. pylori in patients on proton pump inhibitors. Gastroenterol. Res. Pract. 2012, 898276 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Goji, S. et al. Helicobacter suis-infected nodular gastritis and a review of diagnostic sensitivity for Helicobacter heilmannii-like organisms. Case Rep. Gastroenterol. 9, 179–187 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Kobayashi, M. et al. Helicobacter heilmannii-like organisms in parietal cells: a diagnostic pitfall. Pathol. Int. 66, 120–122 (2016).

    Article  PubMed  Google Scholar 

  203. De Witte, C., Schulz, C., Smet, A., Malfertheiner, P. & Haesebrouck, F. Other Helicobacters and gastric microbiota. Helicobacter 21 (Suppl. 1), 62–68 (2016).

    Article  PubMed  Google Scholar 

  204. Seiichi, K. et al. The updated JSPGHAN guidelines for the management of Helicobacter pylori infection in childhood. Pediatr. Int. 62, 1315–1331 (2020).

    Article  Google Scholar 

  205. Moayyedi, P. et al. Guideline: management of dyspepsia. Am. J. Gastroenterol. 112, 988–1013 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Chey, W. D., Leontiadis, G. I., Howden, C. W. & Moss, S. F. ACG clinical guideline: treatment of Helicobacter pylori infection. Am. J. Gastroenterol. 112, 212–239 (2017).

    Article  PubMed  Google Scholar 

  207. Talley, N. J. How to manage the difficult-to-treat dyspeptic patient. Nat. Clin. Pract. Gastroenterol. Hepatol. 4, 35–42 (2007).

    Article  PubMed  Google Scholar 

  208. Koletzko, L., Macke, L., Schulz, C. & Malfertheiner, P. Helicobacter pylori eradication in dyspepsia: new evidence for symptomatic benefit. Best Pract. Res. Clin. Gastroenterol. 40–41, 101637 (2019).

    Article  PubMed  Google Scholar 

  209. Mahadeva, S., Chia, Y. C., Vinothini, A., Mohazmi, M. & Goh, K. L. Cost-effectiveness of and satisfaction with a Helicobacter pylori “test and treat” strategy compared with prompt endoscopy in young Asians with dyspepsia. Gut 57, 1214–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Malfertheiner, P. et al. Helicobacter pylori eradication is beneficial in the treatment of functional dyspepsia. Aliment. Pharmacol. Ther. 18, 615–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Hawkey, C. et al. Helicobacter pylori eradication for primary prevention of peptic ulcer bleeding in older patients prescribed aspirin in primary care (HEAT): a randomised, double-blind, placebo-controlled trial. Lancet 400, 1597–1606 (2022).

    Article  CAS  PubMed  Google Scholar 

  212. Ford, A. C., Yuan, Y., Forman, D., Hunt, R. & Moayyedi, P. Helicobacter pylori eradication for the prevention of gastric neoplasia. Cochrane Database Syst. Rev. 7, CD005583 (2020).

    PubMed  Google Scholar 

  213. Ford, A. C., Yuan, Y. & Moayyedi, P. Helicobacter pylori eradication therapy to prevent gastric cancer: systematic review and meta-analysis. Gut 69, 2113–2121 (2020).

    Article  PubMed  Google Scholar 

  214. Choi, I. J. et al. Family history of gastric cancer and Helicobacter pylori treatment. N. Engl. J. Med. 382, 427–436 (2020).

    Article  PubMed  Google Scholar 

  215. Rokkas, T., Rokka, A. & Portincasa, P. A systematic review and meta-analysis of the role of Helicobacter pylori eradication in preventing gastric cancer. Ann. Gastroenterol. 30, 414–423 (2017).

    PubMed  PubMed Central  Google Scholar 

  216. Khan, M. Y. et al. Effectiveness of Helicobacter pylori eradication in preventing metachronous gastric cancer and preneoplastic lesions. A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 32, 686–694 (2020).

    PubMed  Google Scholar 

  217. Zhao, B. et al. Does Helicobacter pylori eradication reduce the incidence of metachronous gastric cancer after curative endoscopic resection of early gastric cancer: a systematic review and meta-analysis. J. Clin. Gastroenterol. 54, 235–241 (2020).

    Article  PubMed  Google Scholar 

  218. Fan, F., Wang, Z., Li, B. & Zhang, H. Effects of eradicating Helicobacter pylori on metachronous gastric cancer prevention: a systematic review and meta-analysis. J. Eval. Clin. Pract. 26, 308–315 (2020).

    Article  PubMed  Google Scholar 

  219. Choi, I. J. et al. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N. Engl. J. Med. 378, 1085–1095 (2018).

    Article  CAS  PubMed  Google Scholar 

  220. Malfertheiner, P. Helicobacter pylori treatment for gastric cancer prevention. N. Engl. J. Med. 378, 1154–1156 (2018).

    Article  PubMed  Google Scholar 

  221. Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965).

    Article  CAS  PubMed  Google Scholar 

  222. Ma, J., Shen, H., Kapesa, L. & Zeng, S. Lauren classification and individualized chemotherapy in gastric cancer. Oncol. Lett. 11, 2959–2964 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Pan, K. F. et al. A large randomised controlled intervention trial to prevent gastric cancer by eradication of Helicobacter pylori in Linqu County, China: baseline results and factors affecting the eradication. Gut 65, 9–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Herrero, R., Park, J. Y. & Forman, D. The fight against gastric cancer — the IARC Working Group report. Best Pract. Res. Clin. Gastroenterol. 28, 1107–1114 (2014).

    Article  PubMed  Google Scholar 

  225. Leja, M. et al. Multicentric randomised study of Helicobacter pylori eradication and pepsinogen testing for prevention of gastric cancer mortality: the GISTAR study. BMJ Open 7, e016999 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Ford, A. C., Tsipotis, E., Yuan, Y., Leontiadis, G. I. & Moayyedi, P. Efficacy of Helicobacter pylori eradication therapy for functional dyspepsia: updated systematic review and meta-analysis. Gut https://doi.org/10.1136/gutjnl-2021-326583 (2022).

    Article  PubMed  Google Scholar 

  227. Kim, B. J., Kim, H. S., Jang, H. J. & Kim, J. H. Helicobacter pylori eradication in idiopathic thrombocytopenic purpura: a meta-analysis of randomized trials. Gastroenterol. Res. Pract. 2018, 6090878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Hudak, L., Jaraisy, A., Haj, S. & Muhsen, K. An updated systematic review and meta-analysis on the association between Helicobacter pylori infection and iron deficiency anemia. Helicobacter 22, 12330 (2017).

    Article  Google Scholar 

  229. Malfertheiner, P., Selgrad, M. & Bornschein, J. Helicobacter pylori: clinical management. Curr. Opin. Gastroenterol. 28, 608–614 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Ferreri, A. J., Govi, S. & Ponzoni, M. The role of Helicobacter pylori eradication in the treatment of diffuse large B-cell and marginal zone lymphomas of the stomach. Curr. Opin. Oncol. 25, 470–479 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Salar, A. Gastric MALT lymphoma and Helicobacter pylori. Med. Clin. 152, 65–71 (2019).

    Article  Google Scholar 

  232. Wundisch, T. et al. Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication. J. Clin. Oncol. 23, 8018–8024 (2005).

    Article  PubMed  Google Scholar 

  233. Miki, K. Gastric cancer screening using the serum pepsinogen test method. Gastric Cancer 9, 245–253 (2006).

    Article  PubMed  Google Scholar 

  234. Sui, Z. et al. Risk for gastric cancer in patients with gastric atrophy: a systematic review and meta-analysis. Transl Cancer Res. 9, 1618–1624 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Yoshida, T. et al. Cancer development based on chronic active gastritis and resulting gastric atrophy as assessed by serum levels of pepsinogen and Helicobacter pylori antibody titer. Int. J. Cancer 134, 1445–1457 (2014).

    Article  CAS  PubMed  Google Scholar 

  236. Miki, K. Gastric cancer screening by combined assay for serum anti-Helicobacter pylori IgG antibody and serum pepsinogen levels — “ABC method”. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 87, 405–414 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Miki, K., Fujishiro, M., Kodashima, S. & Yahagi, N. Long-term results of gastric cancer screening using the serum pepsinogen test method among an asymptomatic middle-aged Japanese population. Dig. Endosc. 21, 78–81 (2009).

    Article  PubMed  Google Scholar 

  238. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  239. Mabe, K. et al. Endoscopic screening for gastric cancer in Japan: current status and future perspectives. Dig. Endosc. 34, 412–419 (2022).

    Article  PubMed  Google Scholar 

  240. Ryu, J. E. et al. Trends in the performance of the Korean National Cancer Screening Program for Gastric Cancer from 2007 to 2016. Cancer Res. Treat. 54, 842–849 (2022).

    Article  PubMed  Google Scholar 

  241. Pimentel-Nunes, P. et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019. Endoscopy 51, 365–388 (2019).

    Article  PubMed  Google Scholar 

  242. Gupta, S. et al. AGA clinical practice guidelines on management of gastric intestinal metaplasia. Gastroenterology 158, 693–702 (2020).

    Article  PubMed  Google Scholar 

  243. Lee, Y. C. et al. Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology 150, 1113–1124.e5 (2016).

    Article  PubMed  Google Scholar 

  244. Fallone, C. A., Moss, S. F. & Malfertheiner, P. Reconciliation of recent Helicobacter pylori treatment guidelines in a time of increasing resistance to antibiotics. Gastroenterology 157, 44–53 (2019).

    Article  PubMed  Google Scholar 

  245. El-Serag, H. B. et al. Houston consensus conference on testing for Helicobacter pylori infection in the United States. Clin. Gastroenterol. Hepatol. 16, 992–1002.e6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Shah, S. C., Iyer, P. G. & Moss, S. F. AGA clinical practice update on the management of refractory Helicobacter pylori infection: expert review. Gastroenterology 160, 1831–1841 (2021).

    Article  PubMed  Google Scholar 

  247. Fallone, C. A. et al. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology 151, 51–69.e14 (2016).

    Article  PubMed  Google Scholar 

  248. Lind, T. et al. The MACH2 study: role of omeprazole in eradication of Helicobacter pylori with 1-week triple therapies. Gastroenterology 116, 248–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  249. Bazzoli, F. et al. Evaluation of short-term low-dose triple therapy for the eradication of Helicobacter pylori by factorial design in a randomized, double-blind, controlled study. Aliment. Pharmacol. Ther. 12, 439–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  250. Mahachai, V. et al. Helicobacter pylori management in ASEAN: the Bangkok consensus report. J. Gastroenterol. Hepatol. 33, 37–56 (2018).

    Article  PubMed  Google Scholar 

  251. Boyanova, L., Hadzhiyski, P., Gergova, R. & Markovska, R. Evolution of Helicobacter pylori resistance to antibiotics: a topic of increasing concern. Antibiotics 12, 332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Furuta, T. et al. Dual therapy with vonoprazan and amoxicillin is as effective as triple therapy with vonoprazan, amoxicillin and clarithromycin for eradication of Helicobacter pylori. Digestion 101, 743–751 (2020).

    Article  CAS  PubMed  Google Scholar 

  253. Lima, J. J. et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor dosing. Clin. Pharmacol. Ther. 109, 1417–1423 (2021).

    Article  PubMed  Google Scholar 

  254. Erah, P. O., Goddard, A. F., Barrett, D. A., Shaw, P. N. & Spiller, R. C. The stability of amoxycillin, clarithromycin and metronidazole in gastric juice: relevance to the treatment of Helicobacter pylori infection. J. Antimicrob. Chemother. 39, 5–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  255. Furuta, T. & Graham, D. Y. Pharmacologic aspects of eradication therapy for Helicobacter pylori infection. Gastroenterol. Clin. North Am. 39, 465–480 (2010).

    Article  PubMed  Google Scholar 

  256. McNicholl, A. G., Linares, P. M., Nyssen, O. P., Calvet, X. & Gisbert, J. P. Meta-analysis: esomeprazole or rabeprazole vs. first-generation pump inhibitors in the treatment of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 36, 414–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  257. Gisbert, J. P. Potent gastric acid inhibition in Helicobacter pylori eradication. Drugs 65, 83–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  258. Villoria, A., Garcia, P., Calvet, X., Gisbert, J. P. & Vergara, M. Meta-analysis: high-dose proton pump inhibitors vs. standard dose in triple therapy for Helicobacter pylori eradication. Aliment. Pharmacol. Ther. 28, 868–877 (2008).

    CAS  PubMed  Google Scholar 

  259. Miehlke, S. et al. An increasing dose of omeprazole combined with amoxycillin cures Helicobacter pylori infection more effectively. Aliment. Pharmacol. Ther. 11, 323–329 (1997).

    Article  CAS  PubMed  Google Scholar 

  260. Gao, W., Zhang, X., Yin, Y., Yu, S. & Wang, L. Different dose of new generation proton pump inhibitors for the treatment of Helicobacter pylori infection: a meta-analysis. Int. J. Immunopathol. Pharmacol. 35, 20587384211030397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Nyssen, O. P. et al. European Registry on Helicobacter pylori management (Hp-EuReg): patterns and trends in first-line empirical eradication prescription and outcomes of 5 years and 21 533 patients. Gut 70, 40–54 (2021).

    Article  CAS  PubMed  Google Scholar 

  262. Scordo, M. G., Caputi, A. P., D’Arrigo, C., Fava, G. & Spina, E. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol. Res. 50, 195–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  263. El Rouby, N., Lima, J. J. & Johnson, J. A. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine. Expert Opin. Drug Metab. Toxicol. 14, 447–460 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Strom, C. M. et al. Testing for variants in CYP2C19: population frequencies and testing experience in a clinical laboratory. Genet. Med. 14, 95–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  265. Sugimoto, K., Uno, T., Yamazaki, H. & Tateishi, T. Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br. J. Clin. Pharmacol. 65, 437–439 (2008).

    Article  CAS  PubMed  Google Scholar 

  266. Yusuf, I. et al. Ethnic and geographical distributions of CYP2C19 alleles in the populations of Southeast Asia. Adv. Exp. Med. Biol. 531, 37–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  267. Xie, H. G. Genetic variations of S-mephenytoin 4’-hydroxylase (CYP2C19) in the Chinese population. Life Sci. 66, PL175–PL181 (2000).

    Article  CAS  PubMed  Google Scholar 

  268. Morino, Y. et al. Influence of cytochrome P450 2C19 genotype on Helicobacter pylori proton pump inhibitor-amoxicillin-clarithromycin eradication therapy: a meta-analysis. Front. Pharmacol. 12, 759249 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Sugimoto, M. & Furuta, T. Efficacy of tailored Helicobacter pylori eradication therapy based on antibiotic susceptibility and CYP2C19 genotype. World J. Gastroenterol. 20, 6400–6411 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Zhang, H. J. et al. Effects of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of proton pump inhibitors. Pharmacol. Res. 152, 104606 (2020).

    Article  PubMed  Google Scholar 

  271. Sugimoto, M. et al. Rabeprazole 10 mg q.d.s. decreases 24-h intragastric acidity significantly more than rabeprazole 20 mg b.d. or 40 mg o.m., overcoming CYP2C19 genotype. Aliment. Pharmacol. Ther. 36, 627–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  272. Saitoh, T. et al. Effects of rabeprazole, lansoprazole and omeprazole on intragastric pH in CYP2C19 extensive metabolizers. Aliment. Pharmacol. Ther. 16, 1811–1817 (2002).

    Article  CAS  PubMed  Google Scholar 

  273. Sahara, S. et al. Twice-daily dosing of esomeprazole effectively inhibits acid secretion in CYP2C19 rapid metabolisers compared with twice-daily omeprazole, rabeprazole or lansoprazole. Aliment. Pharmacol. Ther. 38, 1129–1137 (2013).

    Article  CAS  PubMed  Google Scholar 

  274. Graham, D. Y. et al. Factors influencing the eradication of Helicobacter pylori with triple therapy. Gastroenterology 102, 493–496 (1992).

    Article  CAS  PubMed  Google Scholar 

  275. Zhou, B. G. et al. Effect of enhanced patient instructions on Helicobacter pylori eradication: A systematic review and meta-analysis of randomized controlled trials. Helicobacter 27, e12869 (2022).

    Article  PubMed  Google Scholar 

  276. Graham, D. Y. & Fischbach, L. Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut 59, 1143–1153 (2010).

    Article  CAS  PubMed  Google Scholar 

  277. Meyer, J. M. et al. Risk factors for Helicobacter pylori resistance in the United States: the surveillance of H. pylori antimicrobial resistance partnership (SHARP) study, 1993-1999. Ann. Intern. Med. 136, 13–24 (2002).

    Article  PubMed  Google Scholar 

  278. Bujanda, L. et al. Antibiotic resistance prevalence and trends in patients infected with Helicobacter pylori in the period 2013-2020: results of the European Registry on H. pylori management (Hp-EuReg). Antibiotics 10, 1058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Camargo, M. C. et al. The problem of Helicobacter pylori resistance to antibiotics: a systematic review in Latin America. Am. J. Gastroenterol. 109, 485–495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    Article  PubMed  Google Scholar 

  281. Molina-Infante, J. et al. Optimised empiric triple and concomitant therapy for Helicobacter pylori eradication in clinical practice: the OPTRICON study. Aliment. Pharmacol. Ther. 41, 581–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  282. Liou, J. M. et al. Concomitant, bismuth quadruple, and 14-day triple therapy in the first-line treatment of Helicobacter pylori: a multicentre, open-label, randomised trial. Lancet 388, 2355–2365 (2016).

    Article  CAS  PubMed  Google Scholar 

  283. Crowe, S. E. Helicobacter pylori infection. N. Engl. J. Med. 380, 1158–1165 (2019).

    Article  PubMed  Google Scholar 

  284. Romano, M. et al. Empirical levofloxacin-containing versus clarithromycin-containing sequential therapy for Helicobacter pylori eradication: a randomised trial. Gut 59, 1465–1470 (2010).

    Article  CAS  PubMed  Google Scholar 

  285. Federico, A. et al. Efficacy of 5-day levofloxacin-containing concomitant therapy in eradication of Helicobacter pylori infection. Gastroenterology 143, 55–61.e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  286. Gisbert, J. P. Optimization strategies aimed to increase the efficacy of Helicobacter pylori eradication therapies with quinolones. Molecules 25, 5084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Kuo, Y. T. et al. Primary antibiotic resistance in Helicobacter pylori in the Asia-Pacific region: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2, 707–715 (2017).

    Article  PubMed  Google Scholar 

  288. An, Y. et al. Fourth-generation quinolones in the treatment of Helicobacter pylori infection: a meta-analysis. World J. Gastroenterol. 24, 3302–3312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Sugimoto, M. et al. High Helicobacter pylori cure rate with sitafloxacin-based triple therapy. Aliment. Pharmacol. Ther. 42, 477–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  290. Megraud, F. Antibiotic resistance is the key element in treatment of Helicobacter pylori infection. Gastroenterology 155, 1300–1302 (2018).

    Article  PubMed  Google Scholar 

  291. Malfertheiner, P. et al. Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, phase 3 trial. Lancet 377, 905–913 (2011).

    Article  CAS  PubMed  Google Scholar 

  292. Gisbert, J. P. Rifabutin for the treatment of Helicobacter pylori infection: a review. Pathogens 10, 15 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Graham, D. Y. et al. Rifabutin-based triple therapy (RHB-105) for Helicobacter pylori eradication: a double-blind, randomized, controlled trial. Ann. Intern. Med. 172, 795–802 (2020).

    Article  PubMed  Google Scholar 

  294. FDA. TALICIA (Omeprazole Magnesium, Amoxicillin and Rifabutin) Delayed-release Capsules [Package Insert]. Raleigh, NC: RedHill Biopharma Inc. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/213004lbl.pdf (2019).

  295. Ji, C. R. et al. Safety of furazolidone-containing regimen in Helicobacter pylori infection: a systematic review and meta-analysis. BMJ Open 10, e037375 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Treiber, G., Ammon, S., Malfertheiner, P. & Klotz, U. Impact of furazolidone-based quadruple therapy for eradication of Helicobacter pylori after previous treatment failures. Helicobacter 7, 225–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  297. Tshibangu-Kabamba, E. & Yamaoka, Y. Helicobacter pylori infection and antibiotic resistance - from biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 18, 613–629 (2021).

    Article  PubMed  Google Scholar 

  298. Wang, Y. H. et al. Characteristics of Helicobacter pylori heteroresistance in gastric biopsies and its clinical Relevance. Front. Cell Infect. Microbiol. 11, 819506 (2021).

    Article  CAS  PubMed  Google Scholar 

  299. Selgrad, M. et al. Different antibiotic susceptibility between antrum and corpus of the stomach, a possible reason for treatment failure of Helicobacter pylori infection. World J. Gastroenterol. 20, 16245–16251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Malfertheiner, P. Infection: bismuth improves PPI-based triple therapy for H. pylori eradication. Nat. Rev. Gastroenterol. Hepatol. 7, 538–539 (2010).

    Article  CAS  PubMed  Google Scholar 

  301. Dore, M. P., Lu, H. & Graham, D. Y. Role of bismuth in improving Helicobacter pylori eradication with triple therapy. Gut 65, 870–878 (2016).

    Article  CAS  PubMed  Google Scholar 

  302. Marcus, E. A., Sachs, G. & Scott, D. R. Colloidal bismuth subcitrate impedes proton entry into Helicobacter pylori and increases the efficacy of growth-dependent antibiotics. Aliment. Pharmacol. Ther. 42, 922–933 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Nyssen, O. P. et al. European registry on Helicobacter pylori management: single-capsule bismuth quadruple therapy is effective in real-world clinical practice. United European Gastroenterol. J. 9, 38–46 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Zagari, R. M. et al. The “three-in-one” formulation of bismuth quadruple therapy for Helicobacter pylori eradication with or without probiotics supplementation: efficacy and safety in daily clinical practice. Helicobacter 23, e12502 (2018).

    Article  PubMed  Google Scholar 

  305. Zhang, W. et al. Bismuth, lansoprazole, amoxicillin and metronidazole or clarithromycin as first-line Helicobacter pylori therapy. Gut 64, 1715–1720 (2015).

    Article  CAS  PubMed  Google Scholar 

  306. Bang, C. S. et al. Amoxicillin or tetracycline in bismuth-containing quadruple therapy as first-line treatment for Helicobacter pylori infection. Gut Microbes 11, 1314–1323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Delchier, J. C., Malfertheiner, P. & Thieroff-Ekerdt, R. Use of a combination formulation of bismuth, metronidazole and tetracycline with omeprazole as a rescue therapy for eradication of Helicobacter pylori. Aliment. Pharmacol. Ther. 40, 171–177 (2014).

    Article  CAS  PubMed  Google Scholar 

  308. Chen, Q. et al. Rescue therapy for Helicobacter pylori eradication: a randomized non-inferiority trial of amoxicillin or tetracycline in bismuth quadruple therapy. Am. J. Gastroenterol. 111, 1736–1742 (2016).

    Article  CAS  PubMed  Google Scholar 

  309. Hunt, R. H. & Scarpignato, C. Potent acid suppression with PPIs and P-CABs: what’s new? Curr. Treat. Options Gastroenterol. 16, 570–590 (2018).

    Article  PubMed  Google Scholar 

  310. Abdel-Aziz, Y., Metz, D. C. & Howden, C. W. Review article: potassium-competitive acid blockers for the treatment of acid-related disorders. Aliment. Pharmacol. Ther. 53, 794–809 (2021).

    CAS  PubMed  Google Scholar 

  311. Murakami, K. et al. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: a phase III, randomised, double-blind study. Gut 65, 1439–1446 (2016).

    Article  CAS  PubMed  Google Scholar 

  312. Chey, W. D. et al. S1382 Vonoprazan dual and triple therapy for Helicobacter pylori eradication. J. Am. Coll. Gastroenterol. 116, S634 (2021).

    Article  Google Scholar 

  313. Rokkas, T. et al. Comparative effectiveness of multiple different first-line treatment regimens for Helicobacter pylori infection: a network meta-analysis. Gastroenterology 161, 495–507.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  314. Malfertheiner, P. et al. Potassium-competitive acid blocker and proton pump inhibitor–based regimens for first-line Helicobacter pylori eradication: a network meta-analysis. Gastro. Hep. Adv. 1, 824–834 (2022).

    Article  Google Scholar 

  315. Liou, J. M. et al. Efficacies of genotypic resistance-guided vs empirical therapy for refractory Helicobacter pylori infection. Gastroenterology 155, 1109–1119 (2018).

    Article  PubMed  Google Scholar 

  316. Yu, L. et al. Susceptibility-guided therapy for Helicobacter pylori infection treatment failures. Ther. Adv. Gastroenterol. 12, 1756284819874922 (2019).

    Article  Google Scholar 

  317. Chen, P. Y. et al. Systematic review with meta-analysis: the efficacy of levofloxacin triple therapy as the first- or second-line treatments of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 44, 427–437 (2016).

    Article  CAS  PubMed  Google Scholar 

  318. Gao, C. P. et al. PPI-amoxicillin dual therapy for Helicobacter pylori infection: an update based on a systematic review and meta-analysis. Helicobacter 25, e12692 (2020).

    Article  CAS  PubMed  Google Scholar 

  319. Gao, W. et al. Eradication rate and safety of a “simplified rescue therapy”: 14-day vonoprazan and amoxicillin dual regimen as rescue therapy on treatment of Helicobacter pylori infection previously failed in eradication: a real-world, retrospective clinical study in China. Helicobacter 27, e12918 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Shiotani, A., Roy, P., Lu, H. & Graham, D. Y. Helicobacter pylori diagnosis and therapy in the era of antimicrobial stewardship. Ther. Adv. Gastroenterol. 14, 17562848211064080 (2021).

    Article  CAS  Google Scholar 

  321. Graham, D. Y. & Liou, J. M. Primer for development of guidelines for Helicobacter pylori therapy using antimicrobial stewardship. Clin. Gastroenterol. Hepatol. 20, 973–983.e1 (2021).

    Article  PubMed  Google Scholar 

  322. McFarland, L. V., Huang, Y., Wang, L. & Malfertheiner, P. Systematic review and meta-analysis: Multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events. United European Gastroenterol. J. 4, 546–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  323. Fernandez-Salazar, L. et al. Effectiveness and safety of high-dose dual therapy: results of the European Registry on the management of Helicobacter pylori infection (Hp-EuReg). J. Clin. Med. 11, 3544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Liou, J. M. et al. Second-line levofloxacin-based quadruple therapy versus bismuth-based quadruple therapy for Helicobacter pylori eradication and long-term changes to the gut microbiota and antibiotic resistome: a multicentre, open-label, randomised controlled trial. Lancet Gastroenterol. Hepatol. 8, 228–241 (2023).

    Article  PubMed  Google Scholar 

  325. Guillemard, E. et al. A randomised, controlled trial: effect of a multi-strain fermented milk on the gut microbiota recovery after Helicobacter pylori therapy. Nutrients 13, 3171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Ford, A. C. et al. Adverse events with bismuth salts for Helicobacter pylori eradication: systematic review and meta-analysis. World J. Gastroenterol. 14, 7361–7370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Kumar, S., Metz, D. C., Kaplan, D. E. & Goldberg, D. S. Treatment of Helicobacter pylori is not associated with future clostridium difficile infection. Am. J. Gastroenterol. 115, 716–722 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  328. Lu, M. et al. Efficacy of probiotic supplementation therapy for Helicobacter pylori eradication: a meta-analysis of randomized controlled trials. PLoS ONE 11, e0163743 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Szajewska, H., Horvath, A. & Kolodziej, M. Systematic review with meta-analysis: Saccharomyces boulardii supplementation and eradication of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 41, 1237–1245 (2015).

    Article  CAS  PubMed  Google Scholar 

  330. Viazis, N. et al. A four-probiotics regimen combined with a standard Helicobacter pylori-eradication treatment reduces side effects and increases eradication rates. Nutrients 14, 632 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Zhao, Y. et al. Saccharomyces boulardii combined with quadruple therapy for Helicobacter pylori eradication decreased the duration and severity of diarrhea: a multi-center prospective randomized controlled trial. Front. Med. 8, 776955 (2021).

    Article  Google Scholar 

  332. Malfertheiner, P. et al. Helicobacter pylori eradication and gastric ulcer healing — comparison of three pantoprazole-based triple therapies. Aliment. Pharmacol. Ther. 17, 1125–1135 (2003).

    Article  CAS  PubMed  Google Scholar 

  333. Gralnek, I. M. et al. Endoscopic diagnosis and management of nonvariceal upper gastrointestinal hemorrhage (NVUGIH): European Society of Gastrointestinal Endoscopy (ESGE) Guideline — Update 2021. Endoscopy 53, 300–332 (2021).

    Article  PubMed  Google Scholar 

  334. Barkun, A. N. et al. Management of nonvariceal upper gastrointestinal bleeding: guideline recommendations from the International Consensus Group. Ann. Intern. Med. 171, 805–822 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  335. Sostres, C. et al. Peptic ulcer bleeding risk. The role of Helicobacter pylori infection in NSAID/low-dose aspirin users. Am. J. Gastroenterol. 110, 684–689 (2015).

    Article  CAS  PubMed  Google Scholar 

  336. Malfertheiner, P. et al. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut 56, 772–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  337. Ruskone-Fourmestraux, A. et al. EGILS consensus report. Gastric extranodal marginal zone B-cell lymphoma of MALT. Gut 60, 747–758 (2011).

    Article  CAS  PubMed  Google Scholar 

  338. Raderer, M., Kiesewetter, B. & Ferreri, A. J. Clinicopathologic characteristics and treatment of marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). CA Cancer J. Clin. 66, 153–171 (2016).

    Article  PubMed  Google Scholar 

  339. Jung, K., Kim, D. H., Seo, H. I., Gong, E. J. & Bang, C. S. Efficacy of eradication therapy in Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphoma: a meta-analysis. Helicobacter 26, e12774 (2021).

    Article  CAS  PubMed  Google Scholar 

  340. Laine, L. & Dhir, V. Helicobacter pylori eradication does not worsen quality of life related to reflux symptoms: a prospective trial. Aliment. Pharmacol. Ther. 16, 1143–1148 (2002).

    Article  CAS  PubMed  Google Scholar 

  341. Hirata, K. et al. Improvement of reflux symptom related quality of life after Helicobacter pylori eradication therapy. J. Clin. Biochem. Nutr. 52, 172–178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Taguchi, H. et al. Helicobacter pylori eradication improves the quality of life regardless of the treatment outcome: a multicenter prospective cohort study. Medicine 96, e9507 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Piriyapong, K., Tangaroonsanti, A., Mahachai, V. & Vilaichone, R. K. Helicobacter pylori infection impacts on functional dyspepsia in Thailand. Asian Pac. J. Cancer Prev. 15, 10887–10891 (2014).

    Article  PubMed  Google Scholar 

  344. Moayyedi, P. et al. Effect of population screening and treatment for Helicobacter pylori on dyspepsia and quality of life in the community: a randomised controlled trial. Leeds HELP Study Group. Lancet 355, 1665–1669 (2000).

    Article  CAS  PubMed  Google Scholar 

  345. Bektas, M., Soykan, I., Altan, M., Alkan, M. & Ozden, A. The effect of Helicobacter pylori eradication on dyspeptic symptoms, acid reflux and quality of life in patients with functional dyspepsia. Eur. J. Intern. Med. 20, 419–423 (2009).

    Article  PubMed  Google Scholar 

  346. Buzas, G. M. Quality of life in patients with functional dyspepsia: short- and long-term effect of Helicobacter pylori eradication with pantoprazole, amoxicillin, and clarithromycin or cisapride therapy: a prospective, parallel-group study. Curr. Ther. Res. Clin. Exp. 67, 305–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Mestrovic, A., Bozic, J., Vukojevic, K. & Tonkic, A. Impact of different Helicobacter pylori eradication therapies on gastrointestinal symptoms. Medicina 57, 803 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Bitwayiki, R. et al. Dyspepsia prevalence and impact on quality of life among Rwandan healthcare workers: a cross-sectional survey. S. Afr. Med. J. 105, 1064–1069 (2015).

    Article  CAS  PubMed  Google Scholar 

  349. Kabakambira, J. D. et al. Efficacy of Helicobacter pylori eradication regimens in Rwanda: a randomized controlled trial. BMC Gastroenterol. 18, 134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  350. Labenz, J. et al. Curing Helicobacter pylori infection in patients with duodenal ulcer may provoke reflux esophagitis. Gastroenterology 112, 1442–1447 (1997).

    Article  CAS  PubMed  Google Scholar 

  351. Zamani, M. et al. Systematic review with meta-analysis: the worldwide prevalence of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 47, 868–876 (2018).

    Article  CAS  PubMed  Google Scholar 

  352. Ding, S. Z. et al. Chinese consensus report on family-based Helicobacter pylori infection control and management (2021 edition). Gut 71, 238–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  353. Chiang, T. H. et al. Bismuth salts with versus without acid suppression for Helicobacter pylori infection: a transmission electron microscope study. Helicobacter 26, e12801 (2021).

    Article  CAS  PubMed  Google Scholar 

  354. Kafarski, P. & Talma, M. Recent advances in design of new urease inhibitors: a review. J. Adv. Res. 13, 101–112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Strugatsky, D. et al. Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 493, 255–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  356. Chu, J. K. et al. Loss of a cardiolipin synthase in Helicobacter pylori G27 blocks flagellum assembly. J. Bacteriol. 201, e00372-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  357. Doohan, D., Rezkitha, Y. A. A., Waskito, L. A., Yamaoka, Y. & Miftahussurur, M. Helicobacter pylori BabA-SabA key roles in the adherence phase: the synergic mechanism for successful colonization and disease development. Toxins 13, 485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Zhang, Y. et al. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew. Chem. Int. Ed. Engl. 58, 11404–11408 (2019).

    Article  CAS  PubMed  Google Scholar 

  359. Ensign, L. M., Cone, R. & Hanes, J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64, 557–570 (2012).

    Article  CAS  PubMed  Google Scholar 

  360. Yang, C. et al. Effects of non-viable Lactobacillus reuteri combining with 14-day standard triple therapy on Helicobacter pylori eradication: a randomized double-blind placebo-controlled trial. Helicobacter 26, e12856 (2021).

    Article  CAS  PubMed  Google Scholar 

  361. Liang, B. et al. Current and future perspectives for Helicobacter pylori treatment and management: from antibiotics to probiotics. Front. Cell Infect. Microbiol. 12, 1042070 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  362. Yang, Y. J. & Sheu, B. S. Metabolic interaction of Helicobacter pylori infection and gut microbiota. Microorganisms 4, 15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  363. Yang, I., Nell, S. & Suerbaum, S. Survival in hostile territory: the microbiota of the stomach. FEMS Microbiol. Rev. 37, 736–761 (2013).

    Article  CAS  PubMed  Google Scholar 

  364. Chen, C. C. et al. The interplay between Helicobacter pylori and gastrointestinal microbiota. Gut Microbes 13, 1–22 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  365. Schulz, C. et al. The active bacterial assemblages of the upper GI tract in individuals with and without Helicobacter infection. Gut 67, 216–225 (2018).

    Article  CAS  PubMed  Google Scholar 

  366. Sun, Q. H. et al. Microbiome changes in the gastric mucosa and gastric juice in different histological stages of Helicobacter pylori-negative gastric cancers. World J. Gastroenterol. 28, 365–380 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Sung, J. J. Y. et al. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut 69, 1572–1580 (2020).

    Article  CAS  PubMed  Google Scholar 

  368. Guo, Y., Cao, X. S., Zhou, M. G. & Yu, B. Gastric microbiota in gastric cancer: different roles of Helicobacter pylori and other microbes. Front. Cell Infect. Microbiol. 12, 1105811 (2022).

    Article  PubMed  Google Scholar 

  369. Coker, O. O. et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 67, 1024–1032 (2018).

    Article  CAS  PubMed  Google Scholar 

  370. Vaillant, L., Oster, P., McMillan, B., Orozco Fernandez, E. & Velin, D. GM-CSF is key in the efficacy of vaccine-induced reduction of Helicobacter pylori infection. Helicobacter 27, e12875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Oster, P. et al. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut 71, 457–466 (2022).

    Article  CAS  PubMed  Google Scholar 

  372. Oster, P., Vaillant, L., McMillan, B. & Velin, D. The efficacy of cancer immunotherapies is compromised by Helicobacter pylori infection. Front. Immunol. 13, 899161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Abadi, A. T. & Kusters, J. G. Management of Helicobacter pylori infections. BMC Gastroenterol. 16, 94 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  374. Celiberto, F. et al. The state of the art of molecular fecal investigations for Helicobacter pylori (H. pylori) antibiotic resistances. Int. J. Mol. Sci. 24, 4361 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Ranjbar, R., Ebrahimi, A. & Sahebkar, A. Helicobacter pylori infection: conventional and molecular strategies for bacterial diagnosis and antibiotic resistance testing. Curr. Pharm. Biotechnol. https://doi.org/10.2174/1389201023666220920094342 (2022).

    Article  Google Scholar 

  376. Best, L. M. et al. Non-invasive diagnostic tests for Helicobacter pylori infection. Cochrane Database Syst. Rev. 3, CD012080 (2018).

    PubMed  Google Scholar 

  377. No authors listed. Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr. Eval. Carcinog. Risks Hum. 61, 1–241 (1994).

    Google Scholar 

  378. Wotherspoon, A. C. et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 342, 575–577 (1993).

    Article  CAS  PubMed  Google Scholar 

  379. Rugge, M. et al. OLGA staging for gastritis: a tutorial. Dig. Liver Dis. 40, 650–658 (2008).

    Article  CAS  PubMed  Google Scholar 

  380. Chiang, T. H. et al. Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: a long-term cohort study on Matsu Islands. Gut 70, 243–250 (2021).

    CAS  PubMed  Google Scholar 

  381. Du, M. Q. & Isaccson, P. G. Gastric MALT lymphoma: from aetiology to treatment. Lancet Oncol. 3, 97–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  382. Glupczynski, Y., Megraud, F., Lopez-Brea, M. & Andersen, L. P. European multicentre survey of in vitro antimicrobial resistance in Helicobacter pylori. Eur. J. Clin. Microbiol. Infect. Dis. 20, 820–823 (2001).

    Article  CAS  PubMed  Google Scholar 

  383. Li, W. Q. et al. Effects of Helicobacter pylori treatment and vitamin and garlic supplementation on gastric cancer incidence and mortality: follow-up of a randomized intervention trial. BMJ 366, l5016 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  384. Wang, Z. et al. Changes of the gastric mucosal microbiome associated with histological stages of gastric carcinogenesis. Front. Microbiol. 11, 997 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  385. Song, P., Wu, L. & Guan, W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: a meta-analysis. Nutrients 7, 9872–9895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Lucker, S. et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl Acad. Sci. USA 107, 13479–13484 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  387. Rudnicka, K., Backert, S. & Chmiela, M. Genetic polymorphisms in inflammatory and other regulators in gastric cancer: risks and clinical consequences. Curr. Top. Microbiol. Immunol. 421, 53–76 (2019).

    CAS  PubMed  Google Scholar 

  388. Ford, A. C., Marwaha, A., Lim, A. & Moayyedi, P. What is the prevalence of clinically significant endoscopic findings in subjects with dyspepsia? Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 8, 830–837 (2010).

    Article  PubMed  Google Scholar 

  389. Gisbert, J. P. & Calvet, X. Helicobacter pylori “test-and-treat” strategy for management of dyspepsia: a comprehensive review. Clin. Transl Gastroenterol. 4, e32 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  390. Beresniak, A. et al. Helicobacter pylori “test-and-treat” strategy with urea breath test: a cost-effective strategy for the management of dyspepsia and the prevention of ulcer and gastric cancer in Spain — results of the Hp-Breath initiative. Helicobacter 25, e12693 (2020).

    Article  PubMed  Google Scholar 

  391. Pritchard, D. M. et al. Cost-effectiveness modelling of use of urea breath test for the management of Helicobacter pylori-related dyspepsia and peptic ulcer in the UK. BMJ Open Gastroenterol. 8, e000685 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  392. Kawasaki, K. et al. Low-dose aspirin and non-steroidal anti-inflammatory drugs increase the risk of bleeding in patients with gastroduodenal ulcer. Dig. Dis. Sci. 60, 1010–1015 (2015).

    Article  CAS  PubMed  Google Scholar 

  393. Eusebi, L. H., Black, C. J., Howden, C. W. & Ford, A. C. Effectiveness of management strategies for uninvestigated dyspepsia: systematic review and network meta-analysis. BMJ 367, l6483 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  394. Wu, R. et al. Prevalence of gastric cancer precursors in gastroscopy-screened adults by family history of gastric cancer and of cancers other than gastric. BMC Cancer 20, 1110 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  395. De, R. V. et al. Pepsinogens to distinguish patients with gastric intestinal metaplasia and Helicobacter pylori infection among populations at risk for gastric cancer. Clin. Transl Gastroenterol. 7, e183 (2016).

    Article  Google Scholar 

  396. Zagari, R. M. et al. Systematic review with meta-analysis: diagnostic performance of the combination of pepsinogen, gastrin-17 and anti-Helicobacter pylori antibodies serum assays for the diagnosis of atrophic gastritis. Aliment. Pharmacol. Ther. 46, 657–667 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Y.-C. Chen and H.-T. Yu for help with figure design.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.M.); Epidemiology (M.C.C., J.-M.L. and S.S.); Mechanisms/pathophysiology (S.S., E.E.-O. and S.S.); Diagnosis, screening and prevention (M.C.C., R.P., C.S. and S.I.S.); Management (P.M., E.E.-O. and J.-M.L.); Quality of life (M.C.C., R.P. and S.I.S.); Outlook (P.M. and J.-M.L.); Overview of the Primer (P.M.).

Corresponding author

Correspondence to Peter Malfertheiner.

Ethics declarations

Competing interests

P.M. has consulted for Aboca, Bayer Healthcare, Cinclus, Imevax, Menarini Foundation and Phatom. P.M. has received honoraria for lectures from Allergosan, Biohit, Biocodex and Malesci. S.I.S. has received scientific support from Richen. C.S. has received speaker fees from Imevax, Falk Foundation and Lilly. S.S. is listed as an inventor on a patent application related to the use of bacterial motility inhibitors as potential treatment for Helicobacter pylori infection.

Peer review

Peer review information

Nature Reviews Disease Primers thanks F. Carneiro, K. McColl, Y. Yamaoka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malfertheiner, P., Camargo, M.C., El-Omar, E. et al. Helicobacter pylori infection. Nat Rev Dis Primers 9, 19 (2023). https://doi.org/10.1038/s41572-023-00431-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-023-00431-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology