Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Autoimmune haemolytic anaemias

Subjects

Abstract

Adult autoimmune haemolytic anaemias (AIHAs) include different subtypes of a rare autoimmune disease in which autoantibodies targeting autoantigens expressed on the membrane of autologous red blood cells (RBCs) are produced, leading to their accelerated destruction. In the presence of haemolytic anaemia, the direct antiglobulin test is the cornerstone of AIHA diagnosis. AIHAs are classified according to the isotype and the thermal optimum of the autoantibody into warm (wAIHAs), cold and mixed AIHAs. wAIHAs, the most frequent type of AIHAs, are associated with underlying conditions in ~50% of cases. In wAIHA, IgG autoantibody reacts with autologous RBCs at 37 °C, leading to antibody-dependent cell-mediated cytotoxicity and increased phagocytosis of RBCs in the spleen. Cold AIHAs include cold agglutinin disease (CAD) and cold agglutinin syndrome (CAS) when there is an underlying condition. CAD and cold agglutinin syndrome are IgM cold antibody-driven AIHAs characterized by classical complement pathway-mediated haemolysis. The management of wAIHAs has long been based around corticosteroids and splenectomy and on symptomatic measures and non-specific cytotoxic agents for CAD. Rituximab and the development of complement inhibitors, such as the anti-C1s antibody sutimlimab, have changed the therapeutic landscape of AIHAs, and new promising targeted therapies are under investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of warm adult autoimmune haemolytic anaemias.
Fig. 2: Pathophysiology of CAD.
Fig. 3: Diagnostic procedure for AIHA.
Fig. 4: Treatment algorithm for primary wAIHA and CAD.

Similar content being viewed by others

References

  1. Jäger, U. et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: recommendations from the First International Consensus Meeting. Blood Rev. 41, 1006–1048 (2020). This article by a panel of experts provides recommendations for the diagnosis and management of AIHAs.

    Article  Google Scholar 

  2. Barcellini, W. et al. Strategies to overcome the diagnostic challenges of autoimmune hemolytic anemias. Expert Rev. Hematol. 16, 515–524 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Michel, M. Classification and therapeutic approaches in autoimmune hemolytic anemia. Expert Rev. Hematol. 4, 607–618 (2011). This review article presents the classification and the subsequent therapeutic approaches in AIHA.

    Article  PubMed  Google Scholar 

  4. Barcellini, W. et al. Clinical heterogeneity and predictors of outcome in primary autoimmune hemolytic anemia: a GIMEMA study of 308 patients. Blood 124, 2930–2936 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Berentsen, S. & Barcellini, W. Autoimmune hemolytic anemias. N. Engl. J. Med. 385, 1407–1419 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Hansen, D. L. et al. Increasing incidence and prevalence of acquired hemolytic anemias in Denmark, 1980-2016. Clin. Epidemiol. 12, 497–508 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maquet, J. et al. Epidemiology of autoimmune hemolytic anemia: a nationwide population-based study in France. Am. J. Hematol. 96, E291–E293 (2021).

    Article  PubMed  Google Scholar 

  8. Bylsma, L. C. et al. Occurrence, thromboembolic risk, and mortality in Danish patients with cold agglutinin disease. Blood Adv. 3, 2980–2985 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Berentsen, S. et al. Cold agglutinin disease revisited: a multinational, observational study of 232 patients. Blood 136, 480–488 (2020).

    Article  PubMed  Google Scholar 

  10. Hansen, D. L. et al. Mortality in cold agglutinin disease shows seasonal pattern. Transfusion 62, 1460–1461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barcellini, W. et al. Comparison of traditional methods and mitogen-stimulated direct antiglobulin test for detection of anti-red blood cell autoimmunity. Int. J. Hematol. 91, 763–769 (2010).

    Article  Google Scholar 

  12. Hodgson, K. et al. Autoimmune cytopenia in chronic lymphocytic leukemia: diagnosis and treatment. Br. J. Haematol. 154, 14–22 (2011).

    Article  PubMed  Google Scholar 

  13. Zaninoni, A. et al. Detection of erythroblast antibodies in mitogen-stimulated bone marrow cultures from patients with myelodysplastic syndromes. Transfusion 56, 2037–2041 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Barcellini, W. Autoimmune complications in hematologic neoplasms. Cancers 13, 1532 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naithani, R. et al. Autoimmune hemolytic anemia in India: clinico-hematological spectrum of 79 cases. Hematology 11, 73–76 (2006).

    Article  PubMed  Google Scholar 

  16. Das, S. S. et al. Clinical and serological characterization of autoimmune hemolytic anemia in a tertiary care hospital in North India. Ann. Hematol. 88, 727–732 (2009).

    Article  PubMed  Google Scholar 

  17. Kamesaki, T. Demographic characteristics, thromboembolism risk, and treatment patterns for patients with cold agglutinin disease in Japan. Int. J. Hematol. 112, 307–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Kruatachue, M. S. et al. Autoimmune haemolytic anaemias in Thailand. Scand. J. Haematol. 19, 61–67 (1977).

    Article  Google Scholar 

  19. Missoum, H. et al. Prevalence of autoimmune diseases and clinical significance of autoantibody profile: data from National Institute of Hygiene in Rabat, Morocco. Hum. Immunol. 80, 523–532 (2019).

    Article  PubMed  Google Scholar 

  20. Salawu, L. & Durosinmi, M. A. Autoimmune haemolytic anaemia: pattern of presentation and management outcome in a Nigerian population: a ten-year experience. Afr. J. Med. Med. Sci. 31, 97–100 (2002).

    CAS  PubMed  Google Scholar 

  21. Hadjadj, J. et al. Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood 134, 9–21 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Fattizzo, B. & Barcellini, W. Autoimmune hemolytic anemia: causes and consequences. Expert Rev. Clin. Immunol. 18, 731–745 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Tranekær, S. et al. Epidemiology of secondary warm autoimmune haemolytic anaemia — a systematic review and meta-analysis. J. Clin. Med. 10, 1244 (2022).

    Article  Google Scholar 

  24. Roumier, M. et al. Characteristics and outcome of warm autoimmune hemolytic anemia in adults: new insights based on a single-center experience with 60 patients. Am. J. Hematol. 89, E150–E155 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Barcellini, W. et al. Autoimmune hemolytic anemia in adults: primary risk factors and diagnostic procedures. Expert Rev. Hematol. 13, 585–597 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Lazarian, G. et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br. J. Haematol. 190, 29–31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stein, B. et al. Evaluation of the direct antiglobulin test (DAT) in the setting of Mycoplasma pneumoniae infection. JAMA 319, 1377–1378 (2018).

    Article  PubMed  Google Scholar 

  28. Ramagopalan, S. V. et al. Associations between selected immune-mediated diseases and tuberculosis: record-linkage studies. BMC Med. 11, 97 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Garratty, G. Drug-induced immune hemolytic anemia. Hematol. Am. Soc. Hematol. Educ. Program 2009, 73–79 (2009).

    Article  Google Scholar 

  30. Maquet, J. et al. Drug-induced immune hemolytic anemia: detection of new signals and risk assessment in a nationwide cohort study. Blood Adv. 8, 817–826 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Delanoy, N. et al. Haematological immune-related adverse events induced by anti-PD-1 or anti-PD-L1 immunotherapy: a descriptive observational study. Lancet Haematol. 6, e48–e57 (2019).

    Article  PubMed  Google Scholar 

  32. Barcellini, W. et al. Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers. Am. J. Hematol. 93, E243–E246 (2018).

    Article  PubMed  Google Scholar 

  33. Arndt, P. A. et al. Serologic findings in autoimmune hemolytic anemia associated with immunoglobulin M warm autoantibodies. Transfusion 49, 235–242 (2009).

    Article  PubMed  Google Scholar 

  34. Hansen, D. L. Survival in autoimmune hemolytic anemia remains poor, results from a nationwide cohort with 37 years of follow-up. Eur. J. Haematol. 109, 10–20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lafarge, A. et al. Prognosis of autoimmune hemolytic anemia in critically ill patients. Ann. Hematol. 98, 589–594 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Pouchelon, C. et al. Characteristics and outcome of adults with severe autoimmune hemolytic anemia admitted to the intensive care unit: results from a large French observational study. Am. J. Hematol. 97, E371–E373 (2022).

    Article  PubMed  Google Scholar 

  37. Mille, P. D. E. et al. Autoimmune cytopenias (AIC) following allogeneic haematopoietic stem cell transplant for acquired aplastic anaemia: a joint study of the Autoimmune Diseases and Severe Aplastic Anaemia Working Parties (ADWP/SAAWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transpl. 55, 441–451 (2020).

    Article  Google Scholar 

  38. Fattizzo, B. et al. Autoimmune hemolytic anemia during pregnancy and puerperium: an international multicenter experience. Blood 141, 2016–2021 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barcellini, W. et al. New insights in autoimmune hemolytic anemia: from pathogenesis to therapy. J. Clin. Med. 9, 3859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Howie, H. L. & Hudson, K. E. Murine models of autoimmune hemolytic anemia. Curr. Opin. Hematol. 25, 473–481 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fischer, A. et al. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J. Allergy Clin. Immunol. 140, 1388–1393 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Rieux-Lecat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  Google Scholar 

  43. Kuehn, Y. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hadjadj, J. et al. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat. Commun. 11, 5341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tipton, C. M. et al. Understanding B-cell activation and autoantibody repertoire selection in systemic lupus erythematosus: a B-cell immunomics approach. Immunol. Rev. 284, 120–131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Potter, K. N. et al. Molecular characterization of a cross-reactive idiotope on human immunoglobulins utilizing the VH4-21 gene segment. J. Exp. Med. 178, 1419–1428 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Garratty, G. & Arndt, P. A. Drugs that have been shown to cause drug-induced immune hemolytic anemia or positive direct antiglobulin tests: some interesting findings since 2007. Immunohematology 30, 66–79 (2014).

    Article  PubMed  Google Scholar 

  48. Klei, T. R. L. et al. Hemolysis in the spleen drives erythrocyte turnover. Blood 136, 1579–1589 (2020).

    CAS  PubMed  Google Scholar 

  49. Mahevas, M. et al. Spleen of primary warm auto-immune hemolytic anemia patients treated with rituximab. J. Autoimmun. 62, 22–30 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Barker, R. N. & Elson, C. J. Multiple self epitopes on the Rhesus polypeptides stimulate immunologically ignorant human T cells in vitro. Eur. J. Immunol. 24, 1578–1582 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Barker, R. N. Identification of T-cell epitopes on the Rhesus polypeptides in autoimmune hemolytic anemia. Blood 90, 2701–2715 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Petz, L.D. & Garraty, G. Immune Haemolytic Anemias 2nd edn (Churchill Livingstone, 2004).

  53. Leddy, J. P. Erythrocyte membrane proteins reactive with human (warm-reacting) anti-red cell autoantibodies. J. Clin. Invest. 91, 672–680 (1993).

    Article  Google Scholar 

  54. Iwamoto, S. et al. Reactivity of autoantibodies of autoimmune hemolytic anemia with recombinant rhesus blood group antigens or anion transporter band3. Am. J. Hematol. 68, 106–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Lin, X. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp. Hematol. 40, 994–1004 (2012).

    Article  Google Scholar 

  56. Ciudad, M. et al. Regulatory T-cell dysfunctions are associated with increase in tumor necrosis factor α in autoimmune hemolytic anemia and participate in Th17 polarization. Haematologica 109, 444–457 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Ward, F. J. et al. Clonal regulatory T cells specific for a red blood cell autoantigen in human autoimmune hemolytic anemia. Blood 111, 680–687 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahmad, E. et al. Naturally occurring regulatory T cells and interleukins 10 and 12 in the pathogenesis of idiopathic warm autoimmune hemolytic anemia. J. Investig. Allergol. Clin. Immunol. 21, 297–304 (2011).

    CAS  PubMed  Google Scholar 

  59. Park, J. H. et al. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome: a systematic review. Autoimmun. Rev. 19, 102526 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Barcellini, W. et al. In vitro quantification of anti-red blood cell antibody production in idiopathic autoimmune haemolytic anaemia: effect of mitogen and cytokine stimulation. Br. J. Haematol. 111, 452–460 (2000).

    CAS  PubMed  Google Scholar 

  61. Zaninoni, A. et al. Cytokine polymorphisms in patients with autoimmune hemolytic anemia. Front. Immunol. 14, 2980–2985 (2023).

    Article  Google Scholar 

  62. Gilsanz, F. et al. Hemolytic anemia in chronic large granular lymphocytic leukemia of natural killer cells: cytotoxicity of natural killer cells against autologous red cells is associated with hemolysis. Transfusion 36, 463–466 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Smirnova, C. J. et al. Expansion of CD8+ cells in autoimmune hemolytic anemia. Autoimmunity 49, 147–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Rosse, W. F. & Adams, J. The variability of hemolysis in the cold agglutinin syndrome. Blood 56, 409–416 (1980).

    Article  CAS  PubMed  Google Scholar 

  65. Berentsen, S. New insights in the pathogenesis and therapy of cold agglutinin-mediated autoimmune hemolytic anemia. Front. Immunol. 11, 590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Randen, U. et al. Primary cold agglutinin-associated lymphoproliferative disease: a B-cell lymphoma of the bone marrow disting from lymphoplasmactytic lymphoma. Haematologica 99, 497–504 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Michaux, L. et al. Trisomy 3 is a consistent chromosome change in malignant lymphoproliferative disorders preceded by cold agglutinin disease. Br. J. Haematol. 91, 421–424 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Malecka, A. et al. Cold agglutinin-associated B-cell lymphoproliferative disease shows highly recurrent gains of chromosome 3 and 12 or 18. Blood Adv. 4, 993–996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pascual, V. et al. VH restriction among human cold agglutinins. The VH4-21 gene segment is required to encode anti-I and anti-i specificities. J. Immunol. 149, 2337–2344 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Malecka, A. et al. Immunoglobulin heavy and light chain gene features are correlated with primary cold agglutinin disease onset and activity. Haematologica 101, e361–e364 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Reed, J. H. et al. Clonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunization. J. Exp. Med. 213, 1255–1265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Linz, D. H. et al. Mycoplasma pneumoniae pneumonia. Experience at a referral center. West. J. Med. 140, 895–900 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Khan, F. Y. et al. Mycoplasma pneumoniae associated with severe autoimmune hemolytic anemia: case report and literature review. Infect. Dis. 13, 77–79 (2009).

    Google Scholar 

  74. Berentsen, S., Hill, A., Hill, Q. A., Anderson Tvedt, T. R. & Michel, M. et al. Novel insights into the treatment of complement-mediated hemolytic anemias. Ther. Adv. Hematol. 10, 2040620719873321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abramson, M. et al. The interaction between human monocytes and red cells. Specificity for IgG subclasses and IgG fragments. J. Exp. Med. 132, 1207–1215 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Merrill, S. A. & Brodsky, R. A. Complement-driven anemia: more than just paroxysmal nocturnal hemoglobinuria. Hematol. Am. Soc. Hematol. Educ. Program 2018, 371–376 (2018).

    Article  Google Scholar 

  77. Fattizzo, B. et al. Intravascular hemolysis and multitreatment predict thrombosis in patients with autoimmune hemolytic anemia. J. Thromb. Haemost. 8, 1852–1858 (2022).

    Article  Google Scholar 

  78. Barcellini, W. et al. Circulating extracellular vesicles and cytokines in congenital and acquired hemolytic anemias. Am. J. Hematol. 96, E129–E132 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Mulder, F. V. M. et al. Severe autoimmune hemolytic anemia; epidemiology, clinical management, outcomes and knowledge gaps. Front. Immunol. 14, 1228142 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gertz, M. A. Cold hemolytic syndrome. Hematol. Am. Soc. Hematol. Educ. Program 2006, 19–23 (2006).

    Article  Google Scholar 

  81. Jacobs, J. W. et al. Clinical and epidemiological features of paroxysmal cold hemoglobinuria: a systematic review. Blood Adv. 7, 2520–2527 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barcellini, W. & Fattizzo, B. Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis. Markers 2015, e635–e670 (2015).

    Article  Google Scholar 

  83. Bartolmas, T. et al. A dual antiglobulin test for the detection of weak or non-agglutinating immunoglobulin M warm autoantibodies. Transfusion 50, 1131–1134 (2010).

    Article  PubMed  Google Scholar 

  84. Barcellini, W. & Fattizzo, B. Diagnosis and management of autoimmune hemolytic anemias. J. Clin. Med. 11, 6029 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Barcellini, W. et al. Novel pharmacotherapy for drug-induced immune hemolytic anemia. Expert Opin. Pharmacother. 24, 1927–1931 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Röth, A. et al. Sutimlimab in cold agglutinin disease. N. Engl. J. Med 384, 1323–1334 (2021).

    Article  PubMed  Google Scholar 

  87. Barbara, D. W. et al. Cold agglutinins in patients undergoing cardiac surgery requiring cardiopulmonary bypass. Thorac. Cardiovasc. Surg. 146, 668–680 (2013).

    Article  CAS  Google Scholar 

  88. Audia, S. et al. Venous thromboembolic events during warm autoimmune hemolytic anemia. PLoS ONE 13, e0207218 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Petz, L. D. A physician’s guide to transfusion in autoimmune haemolytic anaemia. Br. J. Haematol. 124, 712–716 (2004).

    Article  PubMed  Google Scholar 

  90. Sekhar Das, S. et al. Immunohematological evaluation of red cell alloimmunization and statistical assessment of various adsorption techniques in warm autoimmune hemolytic anemia. Transfus. Apher. Sci. 62, 10376 (2023).

    Article  Google Scholar 

  91. Chen, C. et al. Autoimmune hemolytic anemia in hospitalized patients: 450 patients and their red blood cell transfusions. Medicine 99, e18739 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Johnson, S. T. & Puca, K. E. Evaluating patients with autoimmune hemolytic anemia in the transfusion service and immunohematology reference laboratory: pretransfusion testing challenges and best transfusion-management strategies. Hematol. Am. Soc. Hematol. Educ. Program. 1, 96–104 (2022).

    Article  Google Scholar 

  93. Park, S. H. et al. Red blood cell transfusion in patients with autoantibodies: is it effective and safe without increasing hemolysis risk? Ann. Lab. Med. 35, 436–444 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Versino, F. et al. Transfusions in autoimmune hemolytic anemias: frequency and clinical significance of alloimmunization. J. Intern. Med. 295, 369–374 (2024).

    Article  CAS  PubMed  Google Scholar 

  95. Fattizzo, B. et al. Recombinant erythropoietin in autoimmune hemolytic anemia with inadequate bone marrow response: a prospective analysis. Blood Adv. 8, 1322–1327 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Fattizzo, B. et al. Efficacy of recombinant erythropoietin in autoimmune hemolytic anemia: a multicenter international study. Haematologica 106, 622–625 (2021).

    Article  PubMed  Google Scholar 

  97. Salama, A. et al. The effect of erythropoiesis-stimulating agents in patients with therapy-refractory autoimmune hemolytic anemia. Transfus. Med. Hemother. 41, 462–465 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Flores, G. et al. Efficacy of intravenous immunoglobulin in the treatment of autoimmune hemolytic anemia: results in 73 patients. Am. J. Hematol. 44, 237–242 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Michel, M. et al. Intravenous immunoglobulin as a rescue therapy for severe adult’ autoimmune haemolytic anemia: results from a French multicentre observational study. Am. J. Hematol. 99, 1616–1619 (2024).

    Article  CAS  PubMed  Google Scholar 

  100. McLeod, B. C. Evidence based therapeutic apheresis in autoimmune and other hemolytic anemias. Curr. Opin. Hematol. 14, 647–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Fattizzo, B. et al. Lessons from very severe, refractory, and fatal primary autoimmune hemolytic anemias: severe, refractory and fatal autoimmune hemolytic anemias. Am. J. Hematol. 90, E149–E151 (2015).

    Article  PubMed  Google Scholar 

  102. Connelly-Smith, L. et al. Guidelines on the use of therapeutic apheresis in clinical practice — evidence-based approach from the Writing Committee of the American Society for Apheresis: the Ninth Special Issue. J. Clin. Apher. 38, 77–278 (2023).

    Article  PubMed  Google Scholar 

  103. Abdallah, G. E. M. et al. Systemic corticosteroids in the treatment of warm autoimmune hemolytic anemia: a clinical setting perspective. Blood Cell Mol. Dis. 92, 102621 (2021).

    Article  CAS  Google Scholar 

  104. Meyer, O. et al. Pulsed high-dose dexamethasone in chronic autoimmune haemolytic anaemia of warm type. Br. J. Haematol. 98, 860–862 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Michel, M. et al. A randomized and double-blind controlled trial evaluating the safety and efficacy of rituximab for warm auto-immune hemolytic anemia in adults (the RAIHA study). Am. J. Hematol. 92, 23–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Birgens, H. et al. A phase III randomized trial comparing glucocorticoid monotherapy versus glucocorticoid and rituximab in patients with autoimmune haemolytic anaemia. Br. J. Haematol. 163, 393–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Barcellini, W. & Fattizzo, B. How I treat warm autoimmune hemolytic anemia. Blood 137, 1283–1294 (2020).

    Article  Google Scholar 

  108. Barcellini, W. et al. Sustained response to low-dose rituximab in idiopathic autoimmune hemolytic anemia. Eur. J. Haematol. 91, 546–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Herishanu, Y. et al. Obinutuzumab in the treatment of autoimmune haemolytic anaemia and immune thrombocytopenia in patients with chronic lymphocytic leukaemia/small lymphocytic lymphoma. Br. J. Haematol. 192, e1–e4 (2021).

    Article  PubMed  Google Scholar 

  110. Howard, J. et al. Mycophenolate mofetil for the treatment of refractory auto-immune haemolytic anaemia and auto-immune thrombocytopenia purpura. Br. J. Haematol. 117, 712–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Kotb, R. et al. Efficacy of mycophenolate mofetil in adult refractory auto-immune cytopenias: a single center preliminary study. Eur. J. Haematol. 75, 60–64 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Emilia, G., Messora, C., Longo, G. & Bertesi, M. Long-term salvage treatment by cyclosporin in refractory autoimmune haematological disorders. Br. J. Haematol. 93, 341–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Maskal, S. et al. Clinical and surgical outcomes of splenectomy for autoimmune hemolytic anemia. Surg. Endosc. 36, 5863–5872 (2022).

    Article  PubMed  Google Scholar 

  114. Patel, N. Y. et al. Outcomes and complications after splenectomy for hematologic disorders. Am. J. Surg. 204, 1014–1020 (2012).

    Article  PubMed  Google Scholar 

  115. Pasquale, R. et al. Bortezomib in autoimmune hemolytic anemia and beyond. Ther. Adv. Hematol. 12, 20406207211046428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yaoh, M. et al. Combination of low-dose rituximab, bortezomib and dexamethasone for the treatment of autoimmune hemolytic anemia. Medicine 101, e28679 (2022).

    Article  Google Scholar 

  117. Fadlallah, J. et al. Bortezomib and dexamethasone, an original approach for treating multi-refractory warm autoimmune haemolytic anaemia. Br. J. Haematol. 187, 124–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Michallet, A. S. et al. Rituximab-cyclophosphamide-dexamethasone combination in management of autoimmune cytopenias associated with chronic lymphocytic leukemia. Leuk. Lymphoma 52, 1401–1403 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Quinquenel, A. et al. Bendamustine and rituximab combination in the management of chronic lymphocytic leukemia-associated autoimmune hemolytic anemia: a multicentric retrospective study of the French CLL intergroup (GCFLLC/MW and GOELAMS). Am. J. Hematol. 90, 204–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Rogers, K. A. et al. Incidence and description of autoimmune cytopenias during treatment with ibrutinib for chronic lymphocytic leukemia. Leukemia 30, 346–350 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Serris, A. Efficacy and safety of rituximab for systemic lupus erythematosus-associated immune cytopenias: a multicenter retrospective cohort study of 71 adults. Am. J. Hematol. 93, 424–429 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Gobert, D. et al. Efficacy and safety of rituximab in common variable immunodeficiency-associated immune cytopenias: a retrospective multicentre study on 33 patients. Br. J. Haematol. 155, 498–508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Berentsen, S. et al. Rituximab for primary chronic cold agglutinin disease: a prospective study of 37 courses of therapy in 27 patients. Blood 103, 2925–2928 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Berentsen, S. et al. Bendamustine plus rituximab for chronic cold agglutinin disease: results of a Nordic prospective multicenter trial. Blood 130, 537–541 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Jalink, M. et al. Effect of ibrutinib treatment on hemolytic anemia and acrocyanosis in cold agglutinin disease/cold agglutinin syndrome. Blood 138, 2002–2005 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Rossi, G. et al. Short course of bortezomib in anemic patients with relapsed cold agglutinin disease: a phase 2 prospective GIMEMA study. Blood 132, 547–550 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Röth, A. et al. Eculizumab in cold agglutinin disease (DECADE): an open-label, prospective, bicentric, nonrandomized phase 2 trial. Blood Adv. 2, 2543–2549 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Röth, A. et al. Sutimlimab in patients with cold agglutinin disease: results of the randomized placebo-controlled phase 3 CADENZA trial. Blood 140, 980–991 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Röth, A. et al. Complement C1s inhibition with sutimlimab results in durable response in cold agglutinin disease: CARDINAL study 1-year interim follow-up results. Haematologica 107, 1698–1702 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Röth, A. et al. Sustained inhibition of complement C1s with sutimlimab over 2 years in patients with cold agglutinin disease. Am. J. Hematol. 98, 1246–1253 (2023).

    Article  PubMed  Google Scholar 

  131. Röth, A. et al. Long-term sutimlimab improves quality of life for patients with cold agglutinin disease: CARDINAL 2-year follow-up. Blood Adv. 10, 5890–5897 (2023).

    Article  Google Scholar 

  132. D’Sa, S. et al. Safety, tolerability, and activity of the active C1s antibody riliprubart in cold agglutinin disease: a phase 1b study. Blood 143, 713–720 (2024).

    Article  PubMed  Google Scholar 

  133. Dörner, T. et al. Treatment of primary Sjögren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann. Rheum. Dis. 78, 641–647 (2019).

    Article  PubMed  Google Scholar 

  134. Evans, L. S. et al. Povetacicept, an enhanced dual APRIL/BAFF antagonist that modulates B lymphocytes and pathogenic autoantibodies for the treatment of lupus and other B cell-related autoimmune diseases. Arthritis Rheumatol. 75, 1187–1202 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Fattizzo, B. & Barcellini, W. New therapies for the treatment of warm autoimmune hemolytic anemia. Transfus. Med. Rev. 36, 175–180 (2022). This review discusses new therapies for wAIHAs and future directions.

    Article  PubMed  Google Scholar 

  136. Perugino, C. A. et al. Evaluation of the safety, efficacy, and mechanism of action of obexelimab for the treatment of patients with IgG4-related disease: an open-label, single-arm, single centre, phase 2 pilot trial. Lancet Rheumatol. 5, e442–e450 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Kuter, D. J. et al. Rilzabrutinib, an oral BTK inhibitor, in immune thrombocytopenia. N. Engl. J. Med. 386, 1421–1431 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Zaninoni, A. et al. The immunomodulatory effect and clinical efficacy of daratumumab in a patient with cold agglutinin disease. Front. Immunol. 12, 64944 (2021).

    Article  Google Scholar 

  139. Crickx, E. et al. Daratumumab, an original approach for treating multi-refractory autoimmune cytopenia. Haematologica 106, 3198–3201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Schuetz, C. et al. Daratumumab in life-threatening autoimmune hemolytic anemia following hematopoietic stem cell transplantation. Blood Adv. 2, 2550–2553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jalink, M. et al. Daratumumab monotherapy in refractory warm autoimmune hemolytic anemia and cold agglutinin disease. Blood Adv. 8, 2622–2634 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu, X. et al. Sovleplenib (HMPL-523), a novel Syk inhibitor, for patients with primary immune thrombocytopenia in China: a randomised, double-blind, placebo-controlled, phase 1b/2 study. Lancet Haematol. 10, e406–e418 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Antozzi, C. et al. Safety and efficacy of nipocalimab in patients with generalized myasthenia gravis: results from the randomized phase 2 Vivacity-MG study. Neurology 102, e207937 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Eng. J. Med. 390, 687–700 (2021).

    Article  Google Scholar 

  146. Hilmenn, P. et al. Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 384, 1028–1103 (2021).

    Article  Google Scholar 

  147. Hill, Q. A. et al. Developing the evidence base for the management of autoimmune haemolytic anaemia (AIHA): the UK experience. Br. J. Haematol. 192, e54–e57 (2012).

    Google Scholar 

  148. Brome, C. et al. Medically-attended anxiety and depression is increased among newly diagnosed patients with cold agglutinin disease: analysis of an integrated claim-clinical cohort in the United States. PLoS ONE 17, e0276617 (2022).

    Article  Google Scholar 

  149. Joly, F. et al. Development of the Cold Agglutinin Disease Symptoms and Impact Questionnaire (CAD-SIQ). Eur. J. Haematol. 111, 211–219 (2023).

    Article  PubMed  Google Scholar 

  150. Röth, A. et al. Sutimlimab improves quality of life in patients with cold agglutinin disease: results of patient-reported outcomes from the CARDINAL study. Ann. Hematol. 101, 2169–2177 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Röth, A. et al. Sutimlimab provides clinically meaningful improvements in patient-reported outcomes in patients with cold agglutinin disease: results from the randomised, placebo-controlled, phase 3 CADENZA study. Eur. J. Haematol. 110, 280–288 (2023).

    Article  PubMed  Google Scholar 

  152. Datta, S. & Berentsen, S. Management of autoimmune haemolytic anaemia in low-to-middle income countries: current challenges and the way forward. Lancet Reg. Health Southeast Asia 23, 100343 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Das, S. et al. A national survey of current immunohematologic testing practices for the diagnosis of autoimmune hemolytic anemia in India. Immunohematology 40, 65–72 (2024).

    Article  PubMed  Google Scholar 

  154. Aladjidi, N. et al. Reliable assessment of the incidence of childhood autoimmune hemolytic anemia. Pediatr. Blood Cancer https://doi.org/10.1002/pbc.26683 (2017).

  155. Aladjidi, N. et al. New insights into childhood autoimmune hemolytic anemia: a French national observational study of 265 children. Haematologica 96, 655–663 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ducassou, L. et al. Benefits of rituximab as a second-line treatment for autoimmune haemolytic anaemia in children: a prospective French cohort study. Br. J. Haematol. 177, 751–758 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Garbe, E. et al. Drug induced immune haemolytic anaemia in the Berlin case-control surveillance study. Br. J. Haematol. 154, 644–653 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.M.); Epidemiology (B.F.); Mechanisms/pathophysiology (E.C.); Diagnosis, screening and prevention (W.B.); Management (M.M.); Quality of life (B.F.); Outlook (M.M.).

Corresponding author

Correspondence to Marc Michel.

Ethics declarations

Competing interests

M.M. has received consultancy or advisory board honoraria and speaker’s bureau from Alexion, Amgen, Grifols, Johnson and Johnson Novartis, Sanofi, Sobi and UCB. E.C. has received honoraria (advisory boards, speaker fees) from Novartis, UCB and Sanofi. W.B. has received consultancy or  advisory board honoraria for Agios, Alexion, Amgen, Incyte, Novartis, Roche, Sanofi and SOBI; has received lecture fees or congress support from Alexion, Amgen, Novartis and Sanofi; and has received research support from Alexion. B.F. has received consultancy or advisory board honoraria and speaker’s bureau from Agios, Alexion, Apellis, Janssen, Novartis, Roche, Samsung, Sanofi and Sobi.

Peer review

Peer review information

Nature Reviews Disease Primers thanks J. W. Jacobs, D. L. Hansen, S. S. Datta, M. Miano and B. Mayer for their contribution to the peer review of this work.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 2.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NCT03075878: https://clinicaltrials.gov/study/NCT03075878

NCT03827603: https://clinicaltrials.gov/study/NCT03827603

NCT05757570: https://clinicaltrials.gov/study/NCT05757570

NCT05922839: https://clinicaltrials.gov/study/NCT05922839

NCT06231368: https://clinicaltrials.gov/study/NCT06231368

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, M., Crickx, E., Fattizzo, B. et al. Autoimmune haemolytic anaemias. Nat Rev Dis Primers 10, 82 (2024). https://doi.org/10.1038/s41572-024-00566-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-024-00566-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing