Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

COVID-19-associated neurological and psychological manifestations

Abstract

Long COVID is an infection-associated chronic condition that typically occurs within 3 months of acute COVID-19 infection in which symptoms are intermittently or continuously present for at least 3 months. Long COVID is estimated to affect between 80 and 400 million people globally, with an incidence of 5–20% in the community and up to 50% among hospitalized patients following acute SARS-CoV-2 infection. Common neuropsychiatric and mental health symptoms of long COVID include memory deficits, executive dysfunction, anxiety, depression, recurring headaches, sleep disturbances, neuropathies, problems with taste and smell, and dizziness that accompanies erratic heart rates and severe post-exertional malaise. Underlying pathophysiological mechanisms includes SARS-CoV-2 viral persistence, herpesvirus reactivation, microbiota dysbiosis, autoimmunity, clotting and endothelial abnormalities, and chronic immune activation. Owing to the variability in the clinical presentation, management must be tailored based on a patient’s presenting symptoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Risk factors and clinical manifestations of neurocognitive and psychiatric manifestations of COVID-19.
Fig. 2: Proposed pathobiological mechanisms of long COVID.
Fig. 3: Change in functional, cognitive and emotional behaviour with long COVID.

Similar content being viewed by others

References

  1. Yong, S. J. & Liu, S. Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies. Rev. Med. Virol. 32, e2315 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Sivan, M. & Taylor, S. NICE guideline on long covid. BMJ 371, m4938 (2020).

    Article  PubMed  Google Scholar 

  3. Soriano, J. B. et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Ballering, A. V., van Zon, S. K. R., Olde Hartman, T. C., Rosmalen, J. G. M. & Lifelines Corona Research, I. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet 400, 452–461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Aly, Z. et al. Long COVID science, research and policy. Nat. Med. 30, 2148–2164 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Altmann, D. M., Whettlock, E. M., Liu, S., Arachchillage, D. J. & Boyton, R. J. The immunology of long COVID. Nat. Rev. Immunol. 23, 618–634 (2023). This study reviews the immunology of long COVID.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 28, 1461–1467 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whitaker, M. et al. Persistent COVID-19 symptoms in a community study of 606,434 people in England. Nat. Commun. 13, 1957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Office for National Statistics. Self-reported long COVID after two doses of a coronavirus (COVID-19) vaccine in the UK: 26 January 2022 (Office for National Statistics, 2022).

  10. Fernandez-de-Las-Penas, C. et al. Long-COVID symptoms in individuals infected with different SARS-CoV-2 variants of concern: a systematic review of the literature. Viruses 14, 2629 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023). This study reviews mechanisms of long COVID.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woldegiorgis, M. et al. Long COVID in a highly vaccinated but largely unexposed Australian population following the 2022 SARS-CoV-2 Omicron wave: a cross-sectional survey. Med. J. Aust. 220, 323–330 (2024).

    Article  PubMed  Google Scholar 

  13. Nguyen, K. H. et al. Prevalence and factors associated with long COVID symptoms among U.S. adults, 2022. Vaccines 12, 99 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ayoubkhani, D. et al. Trajectory of long covid symptoms after covid-19 vaccination: community based cohort study. BMJ 377, e069676 (2022).

    Article  PubMed  Google Scholar 

  15. Rogers, J. P. et al. Neurology and neuropsychiatry of COVID-19: a systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key emerging narratives. J. Neurol. Neurosurg. Psychiatry 92, 932–941 (2021).

    PubMed  Google Scholar 

  16. Nepal, G. et al. Neurological manifestations of COVID-19: a systematic review. Crit. Care 24, 421 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Han, Y. et al. Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions. Transl. Psychiatry 11, 499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chou, S. H. et al. Global incidence of neurological manifestations among patients hospitalized with COVID-19-a report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw. Open. 4, e2112131 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Palaiodimou, L. et al. Prevalence, clinical characteristics and outcomes of Guillain–Barré syndrome spectrum associated with COVID-19: a systematic review and meta-analysis. Eur. J. Neurol. 28, 3517–3529 (2021).

    Article  PubMed  Google Scholar 

  20. Graham, E. L. et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann. Clin. Transl. Neurol. 8, 1073–1085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahmet’yanov, M. A., Reikhert, L. I., Kicherova, O. A., Veeva, D. M. & Makarova, D. V. Sleep disorders in patients after COVID-19. Neurosci. Behav. Physiol. 52, 645–648 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tedjasukmana, R., Budikayanti, A., Islamiyah, W. R., Witjaksono, A. & Hakim, M. Sleep disturbance in post COVID-19 conditions: prevalence and quality of life. Front. Neurol. 13, 1095606 (2022).

    Article  PubMed  Google Scholar 

  23. Stefanou, M. I. et al. Neurological manifestations of long-COVID syndrome: a narrative review. Ther. Adv. Chronic Dis. 13, 20406223221076890 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ceban, F. et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: a systematic review and meta-analysis. Brain Behav. Immun. 101, 93–135 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Nasserie, T., Hittle, M. & Goodman, S. N. Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: a systematic review. JAMA Netw. Open. 4, e2111417 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hampshire, A. et al. Cognition and memory after covid-19 in a large community sample. N. Engl. J. Med. 390, 806–818 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taquet, M. et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 9, 815–827 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 29, 2347–2357 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ziauddeen, N. et al. Characteristics and impact of long covid: findings from an online survey. PLoS ONE 17, e0264331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kromydas, T. et al. Occupational differences in the prevalence and severity of long-COVID: analysis of the coronavirus (COVID-19) infection survey. Occup. Env. Med. 80, 545–552 (2023).

    Article  Google Scholar 

  31. Leone, M. A. et al. Outcome predictors of post-COVID conditions in the European academy of neurology COVID-19 registry. J. Neurol. https://doi.org/10.1007/s00415-024-12212-8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bosworth, M. L. et al. Risk of new-onset long COVID following reinfection with severe acute respiratory syndrome coronavirus 2: a community-based cohort study. Open. Forum Infect. Dis. 10, ofad493 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davis, H. E. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 38, 101019 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ballouz, T. et al. Recovery and symptom trajectories up to two years after SARS-CoV-2 infection: population based, longitudinal cohort study. BMJ 381, e074425 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giussani, G. et al. Prevalence and trajectories of post-COVID-19 neurological manifestations: a systematic review and meta-analysis. Neuroepidemiology 58, 120–133 (2024).

    Article  PubMed  Google Scholar 

  36. Proal, A. D. et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat. Immunol. 24, 1616–1627 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Yin, K. et al. Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. Nat. Immunol. 25, 218–225 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klein, J. et al. Distinguishing features of long COVID identified through immune profiling. Nature 623, 139–148 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rong, Z. et al. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe 32, 2112–2130.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Wong, A. C. et al. Serotonin reduction in post-acute sequelae of viral infection. Cell 186, 4851–4867.e20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yonker, L. M. et al. Viral spike antigen clearance and augmented recovery in children with post-COVID multisystem inflammatory syndrome treated with larazotide. Sci. Transl. Med. 17, eadu4284 (2025).

    Article  CAS  PubMed  Google Scholar 

  42. White, D. W., Suzanne Beard, R. & Barton, E. S. Immune modulation during latent herpesvirus infection. Immunol. Rev. 245, 189–208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su, Y. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 185, 881–895.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peluso, M. J. et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J. Clin. Invest. 133, e163669 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cervia-Hasler, C. et al. Persistent complement dysregulation with signs of thromboinflammation in active Long Covid. Science 383, eadg7942 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz-Pablos, M., Paiva, B. & Zabaleta, A. Epstein–Barr virus-acquired immunodeficiency in myalgic encephalomyelitis — is it present in long COVID? J. Transl. Med. 21, 633 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Q. et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 71, 544–552 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Guo, C. et al. Deficient butyrate-producing capacity in the gut microbiome is associated with bacterial network disturbances and fatigue symptoms in ME/CFS. Cell Host Microbe 31, 288–304.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duan, W. X., Wang, F., Liu, J. Y. & Liu, C. F. Relationship between short-chain fatty acids and parkinson’s disease: a review from pathology to clinic. Neurosci. Bull. 40, 500–516 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Mann, E. R., Lam, Y. K. & Uhlig, H. H. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat. Rev. Immunol. 24, 577–595 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Lau, R. I. et al. A synbiotic preparation (SIM01) for post-acute COVID-19 syndrome in Hong Kong (RECOVERY): a randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 24, 256–265 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Bodansky, A. et al. Autoantigen profiling reveals a shared post-COVID signature in fully recovered and long COVID patients. JCI Insight 8, e169515 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Etter, M. M. et al. Severe neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study. Nat. Commun. 13, 6777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seibert, F. S. et al. Severity of neurological long-COVID symptoms correlates with increased level of autoantibodies targeting vasoregulatory and autonomic nervous system receptors. Autoimmun. Rev. 22, 103445 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Almulla, A. F., Maes, M., Zhou, B., Al-Hakeim, H. K. & Vojdani, A. brain-targeted autoimmunity is strongly associated with long COVID and its chronic fatigue syndrome as well as its affective symptoms. J. Adv. Res. 75, 621–633 (2025).

    Article  PubMed  Google Scholar 

  56. Chen, H.-J. et al. Transfer of IgG from long COVID patients induces symptomology in mice. Preprint at bioRxiv https://doi.org/10.1101/2024.05.30.596590 (2024).

  57. Santos Guedes de Sa, K. et al. A causal link between autoantibodies and neurological symptoms in long COVID. Preprint at medRxiv https://doi.org/10.1101/2024.06.18.24309100 (2024).

  58. Stein, E. et al. Efficacy of repeated immunoadsorption in patients with post-COVID myalgic encephalomyelitis/chronic fatigue syndrome and elevated β2-adrenergic receptor autoantibodies: a prospective cohort study. Lancet Reg. Health Eur. 49, 101161 (2025).

    Article  PubMed  Google Scholar 

  59. Lee, M. H. et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain 145, 2555–2568 (2022).

    Article  PubMed  Google Scholar 

  60. Turner, S. et al. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 34, 321–344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Almulla, A. F., Thipakorn, Y., Zhou, B., Vojdani, A. & Maes, M. Immune activation and immune-associated neurotoxicity in long-COVID: a systematic review and meta-analysis of 103 studies comprising 58 cytokines/chemokines/growth factors. Brain Behav. Immun. 122, 75–94 (2024).

    Article  CAS  PubMed  Google Scholar 

  62. Peluso, M. J. & Deeks, S. G. Mechanisms of long COVID and the path toward therapeutics. Cell 187, 5500–5529 (2024). This study reviews how mechanisms of long COVID may help us to understand a path towards future treatments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fernandez-Castaneda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468.e16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Petersen, M. et al. Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 120, e2217232120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rua, C. et al. Quantitative susceptibility mapping at 7T in COVID-19: brainstem effects and outcome associations. Brain https://doi.org/10.1093/brain/awae215 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fontes-Dantas, F. L. et al. SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Rep. 42, 112189 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martinez-Marmol, R. et al. SARS-CoV-2 infection and viral fusogens cause neuronal and glial fusion that compromises neuronal activity. Sci. Adv. 9, eadg2248 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crunfli, F. et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc. Natl Acad. Sci. USA 119, e2200960119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Andrews, M. G. et al. Tropism of SARS-CoV-2 for human cortical astrocytes. Proc. Natl Acad. Sci. USA 119, e2122236119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, C. et al. ApoE-isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell 28, 331–342.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Savelieff, M. G., Feldman, E. L. & Stino, A. M. Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection. Neurobiol. Dis. 168, 105715 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Katsoularis, I., Fonseca-Rodriguez, O., Farrington, P., Lindmark, K. & Fors Connolly, A. M. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet 398, 599–607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Knight, R. et al. Association of COVID-19 with major arterial and venous thrombotic diseases: a population-wide cohort study of 48 million adults in England and Wales. Circulation 146, 892–906 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kell, D. B., Laubscher, G. J. & Pretorius, E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem. J. 479, 537–559 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Xu, E., Xie, Y. & Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 28, 2406–2415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Monje, M. & Iwasaki, A. The neurobiology of long COVID. Neuron 110, 3484–3496 (2022). This paper discusses the neurobiology of long COVID.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, X. et al. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis 27, 5–22 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Pretorius, E. et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with long COVID/post-acute sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 21, 148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bulfamante, G. et al. Brainstem neuropathology in two cases of COVID-19: SARS-CoV-2 trafficking between brain and lung. J. Neurol. 268, 4486–4491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zingaropoli, M. A. et al. Neuro-axonal damage and alteration of blood-brain barrier integrity in COVID-19 patients. Cells 11, 2480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kong, W. et al. Neuropilin-1 mediates SARS-CoV-2 infection of astrocytes in brain organoids, inducing inflammation leading to dysfunction and death of neurons. mBio 13, e0230822 (2022).

    Article  PubMed  Google Scholar 

  85. Rutkai, I. et al. Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nat. Commun. 13, 1745 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bocci, T., Campiglio, L. & Priori, A. in NEUROLOGY OF COVID–19 [Internet] Ch. 13, 195–201 (Milano University Press, 2021).

  87. Todisco, M. et al. Isolated bulbar palsy after SARS-CoV-2 infection. Lancet Neurol. 20, 169–170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604, 697–707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Teller, N. et al. Feasibility of diffusion-tensor and correlated diffusion imaging for studying white-matter microstructural abnormalities: application in COVID-19. Hum. Brain Mapp. 44, 3998–4010 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bispo, D. D. C. et al. Altered structural connectivity in olfactory disfunction after mild COVID-19 using probabilistic tractography. Sci. Rep. 13, 12886 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Esposito, F. et al. Olfactory loss and brain connectivity after COVID-19. Hum. Brain Mapp. 43, 1548–1560 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bocci, T. et al. Brainstem clinical and neurophysiological involvement in COVID-19. J. Neurol. 268, 3598–3600 (2021). This study investigated other mechanisms in the neurophysiology of long COVID.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Manganelli, F. et al. Brainstem involvement and respiratory failure in COVID-19. Neurol. Sci. 41, 1663–1665 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Manganotti, P., Michelutti, M., Furlanis, G., Deodato, M. & Buoite Stella, A. Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment. Clin. Neurophysiol. 151, 83–91 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Versace, V. et al. Co-ultramicronized palmitoylethanolamide/luteolin normalizes GABAB-ergic activity and cortical plasticity in long COVID-19 syndrome. Clin. Neurophysiol. 145, 81–88 (2023).

    Article  PubMed  Google Scholar 

  96. Ortelli, P. et al. Altered motor cortex physiology and dysexecutive syndrome in patients with fatigue and cognitive difficulties after mild COVID-19. Eur. J. Neurol. 29, 1652–1662 (2022).

    Article  PubMed  Google Scholar 

  97. Ferrucci, R. et al. One-year cognitive follow-up of COVID-19 hospitalized patients. Eur. J. Neurol. 29, 2006–2014 (2022).

    Article  PubMed  Google Scholar 

  98. Cecchetti, G. et al. Cognitive, EEG, and MRI features of COVID-19 survivors: a 10-month study. J. Neurol. 269, 3400–3412 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. York, E. M., Zhang, J., Choi, H. B. & MacVicar, B. A. Neuroinflammatory inhibition of synaptic long-term potentiation requires immunometabolic reprogramming of micro. Glia. Glia 69, 567–578 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Stratoulias, V. et al. ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain. Nat. Neurosci. 26, 1008–1020 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bulfamante, G. et al. First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva Anestesiol. 86, 678–679 (2020).

    Article  PubMed  Google Scholar 

  102. Horsager, J. et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143, 3077–3088 (2020).

    Article  PubMed  Google Scholar 

  103. Emmi, A. et al. Detection of SARS-CoV-2 viral proteins and genomic sequences in human brainstem nuclei. NPJ Parkinsons Dis. 9, 25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dos Reis, R. S., Selvam, S. & Ayyavoo, V. Neuroinflammation in post COVID-19 sequelae: neuroinvasion and neuroimmune crosstalk. Rev. Med. Virol. 34, e70009 (2024).

    Article  PubMed  Google Scholar 

  105. Beardmore, R., Hou, R., Darekar, A., Holmes, C. & Boche, D. The locus coeruleus in aging and Alzheimer’s disease: a postmortem and brain imaging review. J. Alzheimers Dis. 83, 5–22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brundin, P., Nath, A. & Beckham, J. D. Is COVID-19 a perfect storm for Parkinson’s disease? Trends Neurosci. 43, 931–933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beauchamp, L. C., Finkelstein, D. I., Bush, A. I., Evans, A. H. & Barnham, K. J. Parkinsonism as a third wave of the COVID-19 pandemic? J. Parkinsons Dis. 10, 1343–1353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Calculli, A. et al. Parkinson disease following COVID-19: report of six cases. Eur. J. Neurol. 30, 1272–1280 (2023).

    Article  PubMed  Google Scholar 

  110. Ferrucci, R. et al. Brain positron emission tomography (PET) and cognitive abnormalities one year after COVID-19. J. Neurol. 270, 1823–1834 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zilio, G. et al. SARS-CoV-2-mimicking pseudoviral particles accelerate α-synuclein aggregation in vitro. ACS Chem. Neurosci. 15, 215–221 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Centers for Disease Control and Prevention. Clinical overview of long COVID. CDC https://www.cdc.gov/long-covid/hcp/clinical-overview/index.html (2025).

  113. World Health Organization. A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus: 6 October 2021 https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (WHO, 2021).

  114. National Academies of Sciences, Engineering, and Medicine. A Long COVID Definition: A Chronic, Systemic Disease State with Profound Consequences (National Academies Press, 2024).

  115. Ely, E. W., Brown, L. M. & Fineberg, H. V. Long Covid defined. N. Engl. J. Med. 391, 1746–1753 (2024). Both this article and the National Academies of Sciences, Engineering, and Medicine article provide working definitions of long COVID.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Greenhalgh, T., Sivan, M., Delaney, B., Evans, R. & Milne, R. Long covid — an update for primary care. BMJ 378, e072117 (2022).

    Article  PubMed  Google Scholar 

  117. Clutterbuck, D. et al. Barriers to healthcare access and experiences of stigma: findings from a coproduced long covid case-finding study. Health Expect. 27, e14037 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Baz, S. A. et al. Long COVID and health inequalities: what’s next for research and policy advocacy? Health Expect. 27, e70047 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kenny, G. et al. Identification of distinct long COVID clinical phenotypes through cluster analysis of self-reported symptoms. Open. Forum Infect. Dis. 9, ofac060 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gentilotti, E. et al. Clinical phenotypes and quality of life to define post-COVID-19 syndrome: a cluster analysis of the multinational, prospective ORCHESTRA cohort. EClinicalMedicine 62, 102107 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dagliati, A. et al. Characterization of long COVID temporal sub-phenotypes by distributed representation learning from electronic health record data: a cohort study. EClinicalMedicine 64, 102210 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gottlieb, M. et al. Long COVID clinical phenotypes up to 6 months after infection identified by latent class analysis of self-reported symptoms. Open. Forum Infect. Dis. 10, ofad277 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kisiel, M. A. et al. Clustering analysis identified three long COVID phenotypes and their association with general health status and working ability. J. Clin. Med. 12, 3617 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kitsios, G. D. et al. Subphenotypes of self-reported symptoms and outcomes in long COVID: a prospective cohort study with latent class analysis. BMJ Open. 14, e077869 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Liew, F. et al. Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease. Nat. Immunol. 25, 607–621 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Espin, E. et al. Cellular and molecular biomarkers of long COVID: a scoping review. EBioMedicine 91, 104552 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lai, Y. J. et al. Biomarkers in long COVID-19: a systematic review. Front. Med. 10, 1085988 (2023).

    Article  Google Scholar 

  128. Patel, M. A. et al. Organ and cell-specific biomarkers of long-COVID identified with targeted proteomics and machine learning. Mol. Med. 29, 26 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Patel, M. A. et al. Elevated vascular transformation blood biomarkers in long-COVID indicate angiogenesis as a key pathophysiological mechanism. Mol. Med. 28, 122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chioh, F. W. et al. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. Elife 10, e64909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Iosef, C. et al. Plasma proteome of long-COVID patients indicates HIF-mediated vasculo-proliferative disease with impact on brain and heart function. J. Transl. Med. 21, 377 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zanoli, L. et al. Vascular dysfunction of COVID-19 is partially reverted in the long-term. Circ. Res. 130, 1276–1285 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Szeghy, R. E. et al. Six-month longitudinal tracking of arterial stiffness and blood pressure in young adults following SARS-CoV-2 infection. J. Appl. Physiol. 132, 1297–1309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Santoro, L. et al. Impaired endothelial function in convalescent phase of COVID-19: A 3 month follow up observational prospective study. J. Clin. Med. 11, 1774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Alhuthail, E., Stockley, J., Coney, A. & Cooper, B. Measurement of breathing in patients with post-COVID-19 using structured light plethysmography (SLP). BMJ Open. Respir. Res. 8, e001070 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bazdar, S. et al. A systematic review of chest imaging findings in long COVID patients. J. Pers. Med. 13, 282 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Matheson, A. M. et al. Persistent 129Xe MRI pulmonary and CT vascular abnormalities in symptomatic individuals with post-acute COVID-19 syndrome. Radiology 305, 466–476 (2022).

    Article  PubMed  Google Scholar 

  138. Hugon, J. et al. Cognitive decline and brainstem hypometabolism in long COVID: a case series. Brain Behav. 12, e2513 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Martini, A. L. et al. Time-dependent recovery of brain hypometabolism in neuro-COVID-19 patients. Eur. J. Nucl. Med. Mol. Imaging 50, 90–102 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Heine, J. et al. Structural brain changes in patients with post-COVID fatigue: a prospective observational study. EClinicalMedicine 58, 101874 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hellgren, L. et al. Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: an observational cohort study. BMJ Open. 11, e055164 (2021).

    Article  PubMed  Google Scholar 

  142. Golding, L. et al. A novel anti-nucleocapsid antibody avidity method for identifying SARS-CoV-2 reinfections. J. Infect. Dis. https://doi.org/10.1093/infdis/jiae072 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Peluso, M. J. et al. SARS-CoV-2 antibody magnitude and detectability are driven by disease severity, timing, and assay. Sci. Adv. 7, eabh3409 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Peluso, M. J. et al. Plasma-based antigen persistence in the post-acute phase of COVID-19. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(24)00211-1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Siso-Almirall, A. et al. Long covid-19: proposed primary care clinical guidelines for diagnosis and disease management. Int. J. Env. Res. Public. Health 18, 4350 (2021).

    Article  CAS  Google Scholar 

  146. Yelin, D. et al. ESCMID rapid guidelines for assessment and management of long COVID. Clin. Microbiol. Infect. 28, 955–972 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Thornton, G. M. et al. The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: a systematic review of ventilation and coronavirus. PLoS Glob. Public. Health 2, e0000552 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Nejatian, A. et al. How much natural ventilation rate can suppress COVID-19 transmission in occupancy zones? J. Res. Med. Sci. 28, 84 (2023).

    PubMed  Google Scholar 

  149. Floriano, I. et al. Effectiveness of wearing masks during the COVID-19 outbreak in cohort and case-control studies: a systematic review and meta-analysis. J. Bras. Pneumol. 49, e20230003 (2024).

    PubMed  Google Scholar 

  150. Bowe, B., Xie, Y. & Al-Aly, Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat. Med. 28, 2398–2405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Azzolini, E. et al. Association between BNT162b2 vaccination and long COVID after infections not requiring hospitalization in health care workers. JAMA https://doi.org/10.1001/jama.2022.11691 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Xie, Y., Choi, T. & Al-Aly, Z. Association of treatment with nirmatrelvir and the risk of post-COVID-19 condition. JAMA Intern. Med. 183, 554–564 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xie, Y., Choi, T. & Al-Aly, Z. Molnupiravir and risk of post-acute sequelae of covid-19: cohort study. BMJ 381, e074572 (2023).

    Article  PubMed  Google Scholar 

  154. Durstenfeld, M. S. et al. Association of nirmatrelvir for acute SARS-CoV-2 infection with subsequent long COVID symptoms in an observational cohort study. J. Med. Virol. 96, e29333 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ioannou, G. N. et al. Effectiveness of nirmatrelvir-ritonavir against the development of post-COVID-19 conditions among U.S. veterans : a target trial emulation. Ann. Intern. Med. 176, 1486–1497 (2023).

    Article  PubMed  Google Scholar 

  156. Brannock, M. D. et al. Long COVID risk and pre-COVID vaccination in an EHR-based cohort study from the RECOVER program. Nat. Commun. 14, 2914 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ceban, F. et al. COVID-19 vaccination for the prevention and treatment of long COVID: a systematic review and meta-analysis. Brain Behav. Immun. 111, 211–229 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Watanabe, A., Iwagami, M., Yasuhara, J., Takagi, H. & Kuno, T. Protective effect of COVID-19 vaccination against long COVID syndrome: a systematic review and meta-analysis. Vaccine 41, 1783–1790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. The Lancet Infectious Diseases Where are the long COVID trials? Lancet Infect. Dis. 23, 879 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Chee, Y. J., Fan, B. E., Young, B. E., Dalan, R. & Lye, D. C. Clinical trials on the pharmacological treatment of long COVID: a systematic review. J. Med. Virol. 95, e28289 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Shah, W., Hillman, T., Playford, E. D. & Hishmeh, L. Managing the long term effects of covid-19: summary of NICE, SIGN, and RCGP rapid guideline. BMJ 372, n136 (2021).

    Article  PubMed  Google Scholar 

  162. Seo, J. W. et al. Updated clinical practice guidelines for the diagnosis and management of long COVID. Infect. Chemother. 56, 122–157 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jacobs, M. M., Evans, E. & Ellis, C. Racial, ethnic, and sex disparities in the incidence and cognitive symptomology of long COVID-19. J. Natl Med. Assoc. 115, 233–243 (2023).

    PubMed  Google Scholar 

  164. Perlis, R. H. et al. Prevalence and correlates of long COVID symptoms among US adults. JAMA Netw. Open. 5, e2238804 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Stussman, B. et al. Characterization of post-exertional malaise in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Front. Neurol. 11, 1025 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Haunhorst, S. et al. Towards an understanding of physical activity-induced post-exertional malaise: insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome. Infection https://doi.org/10.1007/s15010-024-02386-8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Kos, D. et al. Activity pacing self-management in chronic fatigue syndrome: a randomized controlled trial. Am. J. Occup. Ther. 69, 6905290020 (2015).

    Article  PubMed  Google Scholar 

  168. Tyson, S. F. Appraisal of Clinical Practice Guideline: National Institute for Health and Care Excellence (NICE) clinical practice guideline for myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: diagnosis and management. J. Physiother. 70, 155 (2024).

    Article  Google Scholar 

  169. Kuut, T. A. et al. Efficacy of cognitive-behavioral therapy targeting severe fatigue following coronavirus disease 2019: results of a randomized controlled trial. Clin. Infect. Dis. 77, 687–695 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Oliver-Mas, S. et al. Transcranial direct current stimulation for post-COVID fatigue: a randomized, double-blind, controlled pilot study. Brain Commun. 5, fcad117 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Santana, K. et al. Non-invasive brain stimulation for fatigue in post-acute sequelae of SARS-CoV-2 (PASC). Brain Stimul. 16, 100–107 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Robbins, T. et al. Hyperbaric oxygen therapy for the treatment of long COVID: early evaluation of a highly promising intervention. Clin. Med. 21, e629–e632 (2021).

    Article  Google Scholar 

  173. Hawkins, J., Hires, C., Keenan, L. & Dunne, E. Aromatherapy blend of thyme, orange, clove bud, and frankincense boosts energy levels in post-COVID-19 female patients: a randomized, double-blinded, placebo controlled clinical trial. Complement. Ther. Med. 67, 102823 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Reitsma, L., Boelen, P. A., de Keijser, J. & Lenferink, L. I. M. Self-guided online treatment of disturbed grief, posttraumatic stress, and depression in adults bereaved during the COVID-19 pandemic: a randomized controlled trial. Behav. Res. Ther. 163, 104286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hausswirth, C., Schmit, C., Rougier, Y. & Coste, A. Positive impacts of a four-week neuro-meditation program on cognitive function in post-acute sequelae of COVID-19 patients: a randomized controlled trial. Int. J. Env. Res. Public. Health 20, 1361 (2023).

    Article  Google Scholar 

  176. World Health Organization. Clinical management of COVID-19: living guideline (WHO, 2025).

  177. Bahar-Fuchs, A., Martyr, A., Goh, A. M., Sabates, J. & Clare, L. Cognitive training for people with mild to moderate dementia. Cochrane Database Syst. Rev. 3, CD013069 (2019).

    PubMed  Google Scholar 

  178. Simon, S. S., Yokomizo, J. E. & Bottino, C. M. Cognitive intervention in amnestic mild cognitive impairment: a systematic review. Neurosci. Biobehav. Rev. 36, 1163–1178 (2012).

    Article  PubMed  Google Scholar 

  179. Kim, E. J. et al. Current status of cognitive remediation for psychiatric disorders: a review. Front. Psychiatry 9, 461 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Palladini, M. et al. Cognitive remediation therapy for post-acute persistent cognitive deficits in COVID-19 survivors: a proof-of-concept study. Neuropsychol. Rehabil. 33, 1207–1224 (2023).

    Article  PubMed  Google Scholar 

  181. Zilberman-Itskovich, S. et al. Hyperbaric oxygen therapy improves neurocognitive functions and symptoms of post-COVID condition: randomized controlled trial. Sci. Rep. 12, 11252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Reijnders, J., van Heugten, C. & van Boxtel, M. Cognitive interventions in healthy older adults and people with mild cognitive impairment: a systematic review. Ageing Res. Rev. 12, 263–275 (2013).

    Article  PubMed  Google Scholar 

  183. Sanjuan, M., Navarro, E. & Calero, M. D. Effectiveness of cognitive interventions in older adults: a review. Eur. J. Investig. Health Psychol. Educ. 10, 876–898 (2020).

    PubMed  PubMed Central  Google Scholar 

  184. Kaufmann, J., Gould, O. & Lloyd, V. Seeking care for long COVID: a narrative analysis of Canadian experiences. J. Patient Exp. 10, 23743735231151770 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ziauddeen NA, P. M., O’hara, M. E., Hastie, C. & Alwan, N. A. Symptom patterns and triggers of long covid: findings from a longitudinal online survey. Eur. J. Public. Health https://doi.org/10.1093/eurpub/ckad160.091 (2023).

    Article  PubMed Central  Google Scholar 

  186. Mastrorosa, I. et al. What is the impact of post-COVID-19 syndrome on health-related quality of life and associated factors: a cross-sectional analysis. Health Qual. Life Outcomes 21, 28 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Al-Jabr, H., Thompson, D. R., Castle, D. J. & Ski, C. F. Experiences of people with long COVID: symptoms, support strategies and the long COVID optimal health programme (LC-OHP). Health Expect. 27, 13879 (2023).

    Article  Google Scholar 

  188. Perlis, R. H. et al. Association of post-COVID-19 condition symptoms and employment status. JAMA Netw. Open. 6, e2256152 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Office for National Statistics. Self-Reported Coronavirus (COVID-19) Infections and Associated Symptoms, England and Scotland https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/selfreportedcoronaviruscovid19infectionsandassociatedsymptomsenglandandscotland/november2023tomarch2024 (Office for National Statistics, 2024).

  190. Ramos, S. C., Maldonado, J. E., Vandeplas, A., Vanyolos, I. Long COVID: A Tentative Assessment of its Impact on Labour Market Participation and Potential Economic Effects in the EU https://economy-finance.ec.europa.eu/publications/long-covid-tentative-assessment-its-impact-labour-market-participation-and-potential-economic_en, (European Commission, 2024).

  191. Ayoubkhani, D. et al. Employment outcomes of people with Long Covid symptoms: community-based cohort study. Eur. J. Public. Health 34, 489–496 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Ziauddeen, N., Pantelic, M., O’Hara, M. E., Hastie, C. & Alwan, N. A. Impact of long COVID-19 on work: a co-produced survey. Lancet 402, S98 (2023). This paper discusses the impact of long COVID on patients.

    Article  PubMed  Google Scholar 

  193. O’Brien, K. K. et al. Conceptualising the episodic nature of disability among adults living with Long COVID: a qualitative study. BMJ Glob. Health 8, e011276 (2023).

    Article  PubMed  Google Scholar 

  194. Shabnam, S. et al. Socioeconomic inequalities of long COVID: a retrospective population-based cohort study in the United Kingdom. J. R. Soc. Med. 116, 263–273 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Cheetham, N. J. et al. Social determinants of recovery from ongoing symptoms following COVID-19 in two UK longitudinal studies: a prospective cohort study. BMJ Public. Health 3, e001166 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Chilunga, F. P. et al. Differences in incidence, nature of symptoms, and duration of long COVID among hospitalised migrant and non-migrant patients in the Netherlands: a retrospective cohort study. Lancet Reg. Health Eur. 29, 100630 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tanne, J. H. Covid-19: US studies show racial and ethnic disparities in long covid. BMJ 380, 535 (2023).

    Article  PubMed  Google Scholar 

  198. McGreevy, A. et al. Ethnic inequalities in the impact of COVID-19 on primary care consultations: a time series analysis of 460,084 individuals with multimorbidity in South London. BMC Med. 21, 26 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Woodrow, M., Ziauddeen, N., Smith, D. & Alwan, N. A. Exploring long covid prevalence and patient uncertainty by sociodemographic characteristics using GP patient survey data. Health Expect. 28, e70202 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Carlile, O. et al. Impact of long COVID on health-related quality-of-life: an OpenSAFELY population cohort study using patient-reported outcome measures (OpenPROMPT). Lancet Reg. Health Eur. 40, 100908 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Poudel, A. N. et al. Impact of Covid-19 on health-related quality of life of patients: a structured review. PLoS ONE 16, e0259164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Baz, S. A., Fang, C., Carpentieri, J. D. & Sheard, L. ‘I don’t know what to do or where to go’. Experiences of accessing healthcare support from the perspectives of people living with long covid and healthcare professionals: a qualitative study in Bradford, UK. Health Expect. 26, 542–554 (2023).

    Article  PubMed  Google Scholar 

  203. Pantelic, M. et al. Long covid stigma: estimating burden and validating scale in a UK-based sample. PLoS ONE 17, e0277317 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Buonsenso, D. et al. Social stigma in children with long COVID. Children 10, 1518 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Scholz, U., Bierbauer, W. & Luscher, J. Social stigma, mental health, stress, and health-related quality of life in people with long COVID. Int. J. Env. Res. Public. Health 20, 3927 (2023).

    Article  Google Scholar 

  206. Nyaaba, G. N. et al. Experiences of stigma and access to care among long COVID patients: a qualitative study in a multi-ethnic population in the Netherlands. BMJ Open. 15, e094487 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Smyth, N. et al. People from ethnic minorities seeking help for long COVID: a qualitative study. Br. J. Gen. Pract. 74, e814–e822 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Arienti, C. et al. Rehabilitation and COVID-19: systematic review by Cochrane Rehabilitation. Eur. J. Phys. Rehabil. Med. 59, 800–818 (2023).

    PubMed  Google Scholar 

  209. Frontera, J. A. et al. Evaluation and treatment approaches for neurological post-acute sequelae of COVID-19: a consensus statement and scoping review from the Global COVID-19 Neuro Research Coalition. J. Neurol. Sci. 454, 120827 (2023).

    Article  PubMed  Google Scholar 

  210. Fine, J. S. et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of cognitive symptoms in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). PM R 14, 96–111 (2022).

    Article  PubMed  Google Scholar 

  211. Guttuso, T. Jr., Zhu, J. & Wilding, G. E. Lithium aspartate for long COVID fatigue and cognitive dysfunction: a randomized clinical trial. JAMA Netw. Open. 7, e2436874 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Kwan, A. T. H. et al. Impacts of metabolic disruption, body mass index and inflammation on cognitive function in post-COVID-19 condition: a randomized controlled trial on vortioxetine. Ann. Gen. Psychiatry 23, 10 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lupfer, C. R., Nadler, R., Amen, R. & Martin, A. Inhalation of sodium pyruvate to reduce the symptoms and severity of respiratory diseases including COVID-19, long COVID, and pulmonary fibrosis. Eur. J. Respiratory Med. 3, 229–237 (2021).

    Google Scholar 

  214. Thurgur, H. et al. Feasibility of a cannabidiol-dominant cannabis-based medicinal product for the treatment of long COVID symptoms: a single-arm open-label feasibility trial. Br. J. Clin. Pharmacol. 90, 1081–1093 (2024).

    Article  CAS  PubMed  Google Scholar 

  215. Finnigan, L. E. M. et al. Efficacy and tolerability of an endogenous metabolic modulator (AXA1125) in fatigue-predominant long COVID: a single-centre, double-blind, randomised controlled phase 2a pilot study. EClinicalMedicine 59, 101946 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Isman, A. et al. Low-dose naltrexone and NAD+ for the treatment of patients with persistent fatigue symptoms after COVID-19. Brain Behav. Immun. Health 36, 100733 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Geng, L. N. et al. Nirmatrelvir-ritonavir and symptoms in adults with postacute sequelae of SARS-CoV-2 infection: the STOP-PASC randomized clinical trial. JAMA Intern. Med. 184, 1024–1034 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Viner, R. M. et al. Systematic review of reviews of symptoms and signs of COVID-19 in children and adolescents. Arch. Dis. Child. 106, 802–807 (2021).

    Article  PubMed  Google Scholar 

  219. Consiglio, C. R. et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell 183, 968–981.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Feldstein, L. R. et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N. Engl. J. Med. 383, 334–346 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Fraser, D. D., Patterson, E. K., Daley, M. & Cepinskas, G. Inflammation and endothelial injury profiling of COVID-19 pediatric multisystem inflammatory syndrome (MIS-C). Front. Pediatr. 9, 597926 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Patel, M. A. et al. The plasma proteome differentiates the multisystem inflammatory syndrome in children (MIS-C) from children with SARS-CoV-2 negative sepsis. Mol. Med. 30, 51 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Castagnoli, R. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatrics 174, 882–889 (2020).

    Article  PubMed  Google Scholar 

  224. Ha, E. K., Kim, J. H. & Han, M. Y. Long COVID in children and adolescents: prevalence, clinical manifestations, and management strategies. Clin. Exp. Pediatr. 66, 465–474 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Borch, L. et al. Long COVID symptoms and duration in SARS-CoV-2 positive children — a nationwide cohort study. Eur. J. Pediatrics https://doi.org/10.1007/s00431-021-04345-z (2022).

    Article  Google Scholar 

  226. Fainardi, V. et al. Long COVID in children and adolescents. Life 12, 285–285 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Izquierdo-Pujol, J. et al. Post COVID-19 condition in children and adolescents: an emerging problem. Front. Pediatrics 10, 894204 (2022).

    Article  Google Scholar 

  228. Kostev, K. et al. Post-COVID-19 conditions in children and adolescents diagnosed with COVID-19. Pediatr. Res. https://doi.org/10.1038/s41390-022-02111-x (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Heiss, R. et al. Pulmonary dysfunction after pediatric COVID-19. Radiology 306, e221250 (2023).

    Article  PubMed  Google Scholar 

  230. Cocciolillo, F. et al. Orbito-frontal cortex hypometabolism in children with post-COVID condition (Long COVID): a preliminary experience. Pediatr. Infect. Dis. J. 41, 663–665 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Morand, A. et al. Similar patterns of [18F]-FDG brain PET hypometabolism in paediatric and adult patients with long COVID: a paediatric case series. Eur. J. Nucl. Med. Mol. Imaging 49, 913–920 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Lopez-Leon, S. et al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci. Rep. 12, 9950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Camporesi, A. et al. Characteristics and predictors of Long Covid in children: a 3-year prospective cohort study. EClinicalMedicine 76, 102815 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.E.W. and E.W.E. are supported by NIA 1R01AG085873 and by the Department of Veterans Affairs Geriatric Research, Education and Clinical Center. M.J.P. is supported on K23AI157875 and 1R01NS136197. E.W.E. is supported by the National Institute on Aging (NIA) R01AG058639, NIA 1R01AG085873 and VA Merit 1RX002992. A.I. is supported by the Else Kröner Fresenius Prize for Medical Research 2023, grants from National Institute of Allergy and Infectious Disease (NIAID) R01AI157488, the Howard Hughes Medical Institute Collaborative COVID-19 Initiative, the Howard Hughes Medical Institute Emerging Pathogens Initiative, and the Howard Hughes Medical Institute. C.L.Y. is supported by The Brazilian National Council for Scientific and Technological Development (CNPQ 403307/2021-0, 445340/2024-0, 315953/2021-7). D.D.F. is supported by the Canadian Institutes for Health Research (grant no. 185352, Long COVID Web) and the Schmidt Initiative for Long Covid (SILC-2023-006, LC-Optimize and SILC-2024-004, LC-Revitalize, NCT06928272).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all sections of the manuscript.

Corresponding author

Correspondence to Jo Ellen Wilson.

Ethics declarations

Competing interests

J.E.W. received research support from the Department of Veterans Affairs Office of Rural Health, Ac-Immune, IONIS therapeutics, Bristol Meyers Squibb and Ono therapeutics outside the submitted work. M.J.P. received consulting fees from Gilead Sciences, AstraZeneca, BioVie, Apellis Pharmaceuticals and BioNTech, and research support from Aerium Therapeutics and Shionogi, outside the submitted work. R.H. received grant funding from Fresenius Kabi Germany and Austrian Science Fund; and has received payments or honoraria from BD, Integra, Neuroptics and Zoll, not related to the submitted work. N.A.A. is a Long Covid Kids Charity Champion, is a scientific adviser to the Long Covid Support Charity, and has contributed in an advisory capacity to WHO and the EU Commission’s Expert Panel on effective ways of investing in health meetings in relation to post-COVID-19 conditions. E.W.E. has NIH funding for an ongoing clinical trial of immunomodulation in long COVID for which the JAK–STAT medical intervention is donated by Eli Lilly; E.W.E. has no financial relationship with Eli Lilly and has no stocks or paid consultancies with Eli Lilly. C.L.Y. is supported by CNPQ. D.G., S.O., D.D.F., S.R.F., A.I., T.B., A.P. and D.A. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks N. Babel; D. Marazziti; and B. Michael, who co-reviewed with R. Matthews, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, J.E., Gurdasani, D., Helbok, R. et al. COVID-19-associated neurological and psychological manifestations. Nat Rev Dis Primers 11, 91 (2025). https://doi.org/10.1038/s41572-025-00674-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-025-00674-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing