Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roads and detours for CAR T cell therapy in autoimmune diseases

Abstract

Chimeric antigen receptor (CAR) T cell therapy has been highly effective in eradicating malignant B cells in cancer, and this success has prompted an extension of the approach to areas beyond oncology. In pioneering studies, CAR T cells targeting the B cell marker CD19 demonstrated robust efficacy as treatment for the autoimmune disease systemic lupus erythematosus. Patients who received anti-CD19 CAR T cells experienced remission of most or all clinical manifestations and discontinued prior medications. These results have spurred intense interest in extending these observations to larger patient cohorts and other autoimmune conditions. More nuanced strategies for use of CARs in autoimmunity have also been developed. Here, we offer insight into the role of B cells in the pathophysiology of autoimmunity and present an overview of preclinical studies and clinical trials that use engineered cell therapy for autoimmune disorders. In discussing the prospects and challenges of this emerging field, a view emerges in which the promise of clinical efficacy invites careful consideration of potential pitfalls.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Composite nature of CARs.
Fig. 2: Bubble plot of CAR T cell trials in autoimmune diseases, relating targets to indications.
Fig. 3: Alternative CAR T cell approaches.

Similar content being viewed by others

References

  1. Riddell, S. R., Jensen, M. C. & June, C. H. Chimeric antigen receptor-modified T cells: clinical translation in stem cell transplantation and beyond. Biol. Blood Marrow Transplant. 19, S2–S5 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Sadelain, M. CAR therapy: the CD19 paradigm. J. Clin. Invest. 125, 3392–3400 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Scheuermann, R. H. & Racila, E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk. Lymphoma 18, 385–397 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Shah, N., Chari, A., Scott, E., Mezzi, K. & Usmani, S. Z. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia 34, 985–1005 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goyco Vera, D., Waghela, H., Nuh, M., Pan, J. & Lulla, P. Approved CAR-T therapies have reproducible efficacy and safety in clinical practice. Hum. Vaccin. Immunother. 20, 2378543 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bhaskar, S. T., Dholaria, B., Savani, B. N., Sengsayadeth, S. & Oluwole, O. Overview of approved CAR-T products and utility in clinical practice. Clin. Hematol. Int. 6, 93–99 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shah, N. N. & Sokol, L. Targeting CD22 for the treatment of B-cell malignancies. Immunotargets Ther. 10, 225–236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abramson, J. S. et al. Two-year follow-up of lisocabtagene maraleucel in relapsed or refractory large B-cell lymphoma in TRANSCEND NHL 001. Blood 143, 404–416 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Curran, K. J. et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood 134, 2361–2368 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fowler, N. H. et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat. Med. 28, 325–332 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129, 3322–3331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laetsch, T. W. et al. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA Trial. J. Clin. Oncol. 41, 1664–1669 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Neelapu, S. S. et al. Five-year follow-up of ZUMA-1 supports the curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood 141, 2307–2315 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Park, J. H., Geyer, M. B. & Brentjens, R. J. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood 127, 3312–3320 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schultz, L. M. et al. Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report. J. Clin. Oncol. 40, 945–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Schuster, S. J. et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 22, 1403–1415 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Shah, N. N. et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J. Clin. Oncol. 39, 1650–1659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Talleur, A. et al. Preferential expansion of CD8+ CD19-CAR T cells postinfusion and the role of disease burden on outcome in pediatric B-ALL. Blood Adv. https://doi.org/10.1182/bloodadvances.2021006293 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, M. et al. Three-year follow-up of KTE-X19 in patients with relapsed/refractory mantle cell lymphoma, including high-risk subgroups, in the ZUMA-2 study. J. Clin. Oncol. 41, 555–567 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radic, M., Neeli, I. & Marion, T. Prospects for CAR T cell immunotherapy in autoimmune diseases: clues from lupus. Expert. Opin. Biol. Ther. 22, 499–507 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016). This work presents a notable approach to deplete antigen-specific B cells in a mouse model of pemphigus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med. 11, eaav1648 (2019). This work is the first report of symptom improvement and anti-CD19 CAR T cell persistence in two mouse models of lupus.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ahuja, A. et al. An acquired defect in IgG-dependent phagocytosis explains the impairment in antibody-mediated cellular depletion in lupus. J. Immunol. 187, 3888–3894 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021). This study presents the first application of CD19 CAR T cell therapy in a patient with AID.

    Article  PubMed  Google Scholar 

  27. Muller, F. et al. Comparison of the safety profiles of CD19-targeting CAR T-cell therapy in patients with SLE and B-cell lymphoma. Blood https://doi.org/10.1182/blood.2025028375 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cancro, M. P. & Tomayko, M. M. Memory B cells and plasma cells: the differentiative continuum of humoral immunity. Immunol. Rev. 303, 72–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 40, 413–442 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297, 2066–2070 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Di Niro, R. et al. Salmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturation. Immunity 43, 120–131 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739.e6 (2018). This work shows that extrafollicular B cell responses in SLE are associated with overactivity of TLR7 signalling in activated naive B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Woodruff, M. C. et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature 611, 139–147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mouat, I. C., Goldberg, E. & Horwitz, M. S. Age-associated B cells in autoimmune diseases. Cell Mol. Life Sci. 79, 402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanz, I. et al. Challenges and opportunities for consistent classification of human B cell and plasma cell populations. Front. Immunol. 10, 2458 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson, J. L., Scholz, J. L., Marshak-Rothstein, A. & Cancro, M. P. Molecular pattern recognition in peripheral B cell tolerance: lessons from age-associated B cells. Curr. Opin. Immunol. 61, 33–38 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Deguine, J. & Xavier, R. J. B cell tolerance and autoimmunity: lessons from repertoires. J. Exp. Med. 221, e20231314 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dorner, T., Jacobi, A. M. & Lipsky, P. E. B cells in autoimmunity. Arthritis Res. Ther. 11, 247 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meng, W. et al. An atlas of B-cell clonal distribution in the human body. Nat. Biotechnol. 35, 879–884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Ziegler, A. G. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309, 2473–2479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amagai, M., Koch, P. J., Nishikawa, T. & Stanley, J. R. Pemphigus vulgaris antigen (desmoglein 3) is localized in the lower epidermis, the site of blister formation in patients. J. Invest. Dermatol. 106, 351–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Harrington, W. J., Minnich, V., Hollingsworth, J. W. & Moore, C. V. Demonstration of a thrombocytopenic factor in the blood of patients with thrombocytopenic purpura. J. Lab. Clin. Med. 38, 1–10 (1951).

    CAS  PubMed  Google Scholar 

  46. Woods, V. L. Jr., Oh, E. H., Mason, D. & McMillan, R. Autoantibodies against the platelet glycoprotein IIb/IIIa complex in patients with chronic ITP. Blood 63, 368–375 (1984).

    Article  PubMed  Google Scholar 

  47. Agrawal, S., Misra, R. & Aggarwal, A. Autoantibodies in rheumatoid arthritis: association with severity of disease in established RA. Clin. Rheumatol. 26, 201–204 (2007).

    Article  PubMed  Google Scholar 

  48. Lerner, R. A., Glassock, R. J. & Dixon, F. J. The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis. J. Exp. Med. 126, 989–1004 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clynes, R., Dumitru, C. & Ravetch, J. V. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279, 1052–1054 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Patrick, J. & Lindstrom, J. Autoimmune response to acetylcholine receptor. Science 180, 871–872 (1973).

    Article  CAS  PubMed  Google Scholar 

  51. Chan, O. T., Hannum, L. G., Haberman, A. M., Madaio, M. P. & Shlomchik, M. J. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J. Exp. Med. 189, 1639–1648 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Noorchashm, H. et al. I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet β-cells of nonobese diabetic mice. J. Immunol. 163, 743–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Guerrier, T. et al. Proinflammatory B-cell profile in the early phases of MS predicts an active disease. Neurol. Neuroimmunol. Neuroinflamm 5, e431 (2018).

    Article  PubMed  Google Scholar 

  54. Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 7, 310ra166 (2015).

    Article  PubMed  Google Scholar 

  55. Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease—a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  56. Siegel, C. H. & Sammaritano, L. R. Systemic lupus erythematosus: a review. JAMA 331, 1480–1491 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 52, 203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Hu, Z. et al. BCMA-targeted CAR T cell therapy can effectively induce disease remission in refractory lupus nephritis. Ann. Rheum. Dis. https://doi.org/10.1016/j.ard.2025.06.2128 (2025).

    Article  PubMed  Google Scholar 

  60. Sokolova, M. V., Schett, G. & Steffen, U. Autoantibodies in rheumatoid arthritis: historical background and novel findings. Clin. Rev. Allergy Immunol. 63, 138–151 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Meednu, N. et al. Dynamic spectrum of ectopic lymphoid B cell activation and hypermutation in the RA synovium characterized by NR4A nuclear receptor expression. Cell Rep. 39, 110766 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bucci, L. et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat. Med. 30, 1593–1601 (2024). This study reports the use of recombinant bivalent antibodies for effective RA treatment.

    Article  CAS  PubMed  Google Scholar 

  63. Rech, J. et al. Abatacept inhibits inflammation and onset of rheumatoid arthritis in individuals at high risk (ARIAA): a randomised, international, multicentre, double-blind, placebo-controlled trial. Lancet 403, 850–859 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Thoreau, B., Chaigne, B. & Mouthon, L. Role of B-cell in the pathogenesis of systemic sclerosis. Front. Immunol. 13, 933468 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bosello, S. et al. B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res. Ther. 12, R54 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15, 705–730 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Gunther, J. et al. Angiotensin receptor type 1 and endothelin receptor type A on immune cells mediate migration and the expression of IL-8 and CCL18 when stimulated by autoantibodies from systemic sclerosis patients. Arthritis Res. Ther. 16, R65 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ebata, S. et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): a double-blind, investigator-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 3, e489–e497 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Bergmann, C. et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann. Rheum. Dis. 82, 1117–1120 (2023).

    Article  PubMed  Google Scholar 

  70. Wang, X. et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell 187, 4890–4904.e9 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, J. et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J. Clin. Invest. 130, 6317–6324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Payne, A. S. et al. Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. J. Clin. Invest. 115, 888–899 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mao, X., Sano, Y., Park, J. M. & Payne, A. S. p38 MAPK activation is downstream of the loss of intercellular adhesion in pemphigus vulgaris. J. Biol. Chem. 286, 1283–1291 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Gilhus, N. E. et al. Myasthenia gravis—autoantibody characteristics and their implications for therapy. Nat. Rev. Neurol. 12, 259–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Lazaridis, K. & Tzartos, S. J. Myasthenia gravis: autoantibody specificities and their role in MG management. Front. Neurol. 11, 596981 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Granit, V. et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 22, 578–590 (2023). This work reports successful therapy of MG using an mRNA CAR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chevet, B. et al. Diagnosing and treating ANCA-associated vasculitis: an updated review for clinical practice. Rheumatology 62, 1787–1803 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Berglin, E. et al. Anti-neutrophil cytoplasmic antibodies predate symptom onset of ANCA-associated vasculitis. A case–control study. J. Autoimmun. 117, 102579 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Minopoulou, I. et al. Anti-CD19 CAR T cell therapy induces antibody seroconversion and complete B cell depletion in the bone marrow of a therapy-refractory patient with ANCA-associated vasculitis. Ann. Rheum. Dis. https://doi.org/10.1016/j.ard.2025.01.008 (2025).

    Article  PubMed  Google Scholar 

  80. Lodka, D. et al. CD19-targeting CAR T cells protect from ANCA-induced acute kidney injury. Ann. Rheum. Dis. 83, 499–507 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Trivioli, G. et al. Advances in the treatment of ANCA-associated vasculitis. Nat. Rev. Rheumatol. https://doi.org/10.1038/s41584-025-01266-1 (2025).

    Article  PubMed  Google Scholar 

  82. Bluestone, J. A., Herold, K. & Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464, 1293–1300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith, M. J., Simmons, K. M. & Cambier, J. C. B cells in type 1 diabetes mellitus and diabetic kidney disease. Nat. Rev. Nephrol. 13, 712–720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of β-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Spanier, J. A. et al. Tregs with an MHC class II peptide-specific chimeric antigen receptor prevent autoimmune diabetes in mice. J. Clin. Invest. https://doi.org/10.1172/JCI168601 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Arnold, D. M. et al. Systematic review: efficacy and safety of rituximab for adults with idiopathic thrombocytopenic purpura. Ann. Intern. Med. 146, 25–33 (2007).

    Article  PubMed  Google Scholar 

  87. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Hawker, K. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 66, 460–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Hirsch, G. et al. Rituximab, a new treatment for difficult-to-treat chronic erythema multiforme major? Five cases. J. Eur. Acad. Dermatol. Venereol. 30, 1140–1143 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Joly, P. et al. A single cycle of rituximab for the treatment of severe pemphigus. N. Engl. J. Med. 357, 545–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Colliou, N. et al. Long-term remissions of severe pemphigus after rituximab therapy are associated with prolonged failure of desmoglein B cell response. Sci. Transl. Med. 5, 175ra130 (2013).

    Article  Google Scholar 

  92. Maloney, D. G., Smith, B. & Rose, A. Rituximab: mechanism of action and resistance. Semin. Oncol. 29, 2–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Horvat, T. Z. et al. The ABCs of immunotherapy for adult patients with B-cell acute lymphoblastic leukemia. Ann. Pharmacother. 52, 268–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Canales-Herrerias, P. et al. High-affinity autoreactive plasma cells disseminate through multiple organs in patients with immune thrombocytopenic purpura. J. Clin. Invest. 132, e153580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cazzaniga, S., Naldi, L. & Borradori, L. Rituximab and risk of infections in patients with pemphigus: answers from a global population-based cohort study. Br. J. Dermatol. 188, 454–455 (2023).

    Article  PubMed  Google Scholar 

  96. Tony, H. P. et al. Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID). Arthritis Res. Ther. 13, R75 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feldman, R. J. & Ahmed, A. R. Relevance of rituximab therapy in pemphigus vulgaris: analysis of current data and the immunologic basis for its observed responses. Expert. Rev. Clin. Immunol. 7, 529–541 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Berger, J. R., Malik, V., Lacey, S., Brunetta, P. & Lehane, P. B. Progressive multifocal leukoencephalopathy in rituximab-treated rheumatic diseases: a rare event. J. Neurovirol 24, 323–331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug. Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Danza, A. et al. Prednisone and long-term damage in systemic lupus erythematosus: which is the threshold dose? A pilot study. Lupus 31, 880–884 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Rekvig, O. P. SLE: a cognitive step forward—a synthesis of rethinking theories, causality, and ignored DNA structures. Front. Immunol. 15, 1393814 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Burnet, F. M. & Holmes, M. C. The natural history of the NZB/NZW F1 hybrid mouse: a laboratory model of systemic lupus erythematosus. Australas. Ann. Med. 14, 185–191 (1965).

    Article  CAS  PubMed  Google Scholar 

  103. Steinberg, A. D., Roths, J. B., Murphy, E. D., Steinberg, R. T. & Raveche, E. S. Effects of thymectomy or androgen administration upon the autoimmune disease of MRL/Mp-lpr/lpr mice. J. Immunol. 125, 871–873 (1980).

    Article  CAS  PubMed  Google Scholar 

  104. Kochenderfer, J. N., Yu, Z., Frasheri, D., Restifo, N. P. & Rosenberg, S. A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 116, 3875–3886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Avouac, J. et al. Effects of B Cell depletion by CD19-targeted chimeric antigen receptor T cells in a murine model of systemic sclerosis. Arthritis Rheumatol. 76, 268–278 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Dai, D. et al. The transcription factor ZEB2 drives the formation of age-associated B cells. Science 383, 413–421 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gao, X. et al. Zeb2 drives the formation of CD11c+ atypical B cells to sustain germinal centers that control persistent infection. Sci. Immunol. 9, eadj4748 (2024).

    Article  CAS  PubMed  Google Scholar 

  108. Haga, C. L., Ehrhardt, G. R., Boohaker, R. J., Davis, R. S. & Cooper, M. D. Fc receptor-like 5 inhibits B cell activation via SHP-1 tyrosine phosphatase recruitment. Proc. Natl Acad. Sci. USA 104, 9770–9775 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu, Z., Li, R., Li, H., Zhou, T. & Davis, R. S. FCRL5 exerts binary and compartment-specific influence on innate-like B-cell receptor signaling. Proc. Natl Acad. Sci. USA 110, E1282–E1290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dimopoulos, M. A. et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N. Engl. J. Med. 379, 1811–1822 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Davis, R. S. Fc receptor-like molecules. Annu. Rev. Immunol. 25, 525–560 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Schett, G. et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 20, 531–544 (2024).

    Article  PubMed  Google Scholar 

  113. Feng, J., Hu, Y.-x., Chang, A. H. & Huang, H. CD19/BCMA CAR-T cell therapy for refractory systemic lupus erythematosus—safety and preliminary efficacy data from a phase I clinical study. Blood 142, 4835 (2023).

    Article  Google Scholar 

  114. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022). This pioneering work assesses tolerability and efficacy of CD19 CAR T cells in refractory patients with SLE and provided the proof of concept for the expansion of CAR T cell therapies to autoimmune indications.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, W. et al. Treatment of systemic lupus erythematosus using BCMA–CD19 compound CAR. Stem Cell Rev. Rep. 17, 2120–2123 (2021). This work is the first use of dual targeting CAR T cell therapy in AIDs.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fischbach, F. et al. CD19-targeted chimeric antigen receptor T cell therapy in two patients with multiple sclerosis. Med 5, 550–558.e2 (2024). This work is the first report of CAR T cell therapy in MS.

    Article  CAS  PubMed  Google Scholar 

  117. Richter, J. et al. CD19-directed CAR T cell therapy in 4 patients with refractory multiple sclerosis. Blood 144, 2073 (2024).

    Article  Google Scholar 

  118. Krickau, T. et al. CAR T-cell therapy rescues adolescent with rapidly progressive lupus nephritis from haemodialysis. Lancet 403, 1627–1630 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Auth, J. et al. CD19-targeting CAR T-cell therapy in patients with diffuse systemic sclerosis: a case series. Lancet Rheumatol. https://doi.org/10.1016/S2665-9913(24)00282-0 (2024).

    Article  PubMed  Google Scholar 

  120. Sheng, L. et al. Concurrent remission of lymphoma and Sjogren’s disease following anti-CD19 chimeric antigen receptor-T cell therapy for diffuse large B-cell lymphoma: a case report. Front. Immunol. 14, 1298815 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pecher, A. C. et al. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA 329, 2154–2162 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Taubmann, J. et al. Rescue therapy of antisynthetase syndrome with CD19-targeted CAR-T cells after failure of several B-cell depleting antibodies. Rheumatology 63, e12–e14 (2024).

    Article  PubMed  Google Scholar 

  123. Haghikia, A. et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 22, 1104–1105 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Motte, J. et al. Treatment of concomitant myasthenia gravis and Lambert–Eaton myasthenic syndrome with autologous CD19-targeted CAR T cells. Neuron 112, 1757–1763.e2 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Nicolai, R. et al. Autologous CD19-targeting CAR T cells in a patient with refractory juvenile dermatomyositis. Arthritis Rheumatol. 76, 1560–1565 (2024).

    Article  CAS  PubMed  Google Scholar 

  126. Volkov, J. et al. Case study of CD19 CAR T therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis phase I/II trial. Mol. Ther. 32, 3821–3828 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tur, C. et al. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. 84, 106–114 (2025). This study demonstrates that CD19-CAR T cell therapy induces profound B cell depletion in secondary lymphoid tissues of patients with SLE.

    Article  CAS  PubMed  Google Scholar 

  128. Wilhelm, A. et al. Selective CAR T cell-mediated B cell depletion suppresses IFN signature in SLE. JCI Insight 9, 179433 (2024).

    Article  Google Scholar 

  129. Hagen, M. M. et al. Safety and long-term efficacy of CD19-CAR T-cell therapy in 30 patients with autoimmune disease [abstract]. Arthritis Rheumatol. 76, 1749 (2024).

    Google Scholar 

  130. Hagen, M. et al. Local immune effector cell-associated toxicity syndrome in CAR T-cell treated patients with autoimmune disease: an observational study. Lancet Rheumatol. 7, e424–e433 (2025).

    Article  CAS  PubMed  Google Scholar 

  131. He, X. et al. Treatment of two pediatric patients with refractory systemic lupus erythematosus using CD19-targeted CAR T-cells. Autoimmun. Rev. 24, 103692 (2025).

    Article  CAS  PubMed  Google Scholar 

  132. Gray, G. I. et al. The evolving T cell receptor recognition code: the rules are more like guidelines. Immunol. Rev. 329, e13439 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Alarcon, B. & Schamel, W. W. Allosteric changes underlie the outside-in transmission of activatory signals in the TCR. Immunol. Rev. 329, e13438 (2025).

    Article  CAS  PubMed  Google Scholar 

  134. Jayaraman, J. et al. CAR-T design: elements and their synergistic function. EBioMedicine 58, 102931 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. & Bluestone, J. A. CD28 costimulation: from mechanism to therapy. Immunity 44, 973–988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Balagopalan, L. et al. Generation of antitumor chimeric antigen receptors incorporating T cell signaling motifs. Sci. Signal. 17, eadp8569 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Castellanos-Rueda, R. et al. speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing. Nat. Commun. 13, 6555 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Goodman, D. B. et al. Pooled screening of CAR T cells identifies diverse immune signaling domains for next-generation immunotherapies. Sci. Transl. Med. 14, eabm1463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rios, X. et al. Refining chimeric antigen receptors via barcoded protein domain combination pooled screening. Mol. Ther. 31, 3210–3224 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Frigault, M. J. et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. 3, 356–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wu, L. et al. CD28-CAR-T cell activation through FYN kinase signaling rather than LCK enhances therapeutic performance. Cell Rep. Med. 4, 100917 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. van Oers, N. S., Killeen, N. & Weiss, A. ZAP-70 is constitutively associated with tyrosine-phosphorylated TCRζ in murine thymocytes and lymph node T cells. Immunity 1, 675–685 (1994).

    Article  PubMed  Google Scholar 

  148. van Oers, N. S. et al. Constitutive tyrosine phosphorylation of the T-cell receptor (TCR) ζ subunit: regulation of TCR-associated protein tyrosine kinase activity by TCRζ. Mol. Cell Biol. 13, 5771–5780 (1993).

    PubMed  PubMed Central  Google Scholar 

  149. Ajina, A. & Maher, J. Strategies to address chimeric antigen receptor tonic signaling. Mol. Cancer Ther. 17, 1795–1815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Minguet, S., Maus, M. V. & Schamel, W. W. From TCR fundamental research to innovative chimeric antigen receptor design. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-01093-7 (2024).

    Article  PubMed  Google Scholar 

  151. Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Liu, Y. et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci. Transl. Med. 13, eabb5191 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Mansilla-Soto, J. et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 28, 345–352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang, X. et al. Allogeneic CD19-targeting T cells for treatment-refractory systemic lupus erythematosus: a phase 1 trial. Nat. Med. https://doi.org/10.1038/s41591-025-03899-x (2025). This work shows that allogeneic CAR T cell therapy can be safe and efficacious in AIDs.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kvalvaag, A. & Dustin, M. L. Clathrin controls bidirectional communication between T cells and antigen presenting cells. Bioessays 46, e2300230 (2024).

    Article  PubMed  Google Scholar 

  156. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lungova, K. & Putman, M. Barriers to CAR T-cell therapy in rheumatology. Lancet Rheumatol. 7, e212–e216 (2025).

    Article  CAS  PubMed  Google Scholar 

  158. Borgert, R. Improving outcomes and mitigating costs associated with CAR T-cell therapy. Am. J. Manag. Care 27, S253–S261 (2021).

    Article  PubMed  Google Scholar 

  159. Mansoori, S., Noei, A., Maali, A., Seyed-Motahari, S. S. & Sharifzadeh, Z. Recent updates on allogeneic CAR-T cells in hematological malignancies. Cancer Cell Int. 24, 304 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Caldwell, K. J., Gottschalk, S. & Talleur, A. C. Allogeneic CAR cell therapy—more than a pipe dream. Front. Immunol. 11, 618427 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Moradi, V., Omidkhoda, A. & Ahmadbeigi, N. The paths and challenges of “off-the-shelf” CAR-T cell therapy: an overview of clinical trials. Biomed. Pharmacother. 169, 115888 (2023). This review surveys advanced allogeneic strategies in clinical development.

    Article  CAS  PubMed  Google Scholar 

  162. Peng, L., Sferruzza, G., Yang, L., Zhou, L. & Chen, S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol. Immunol. 21, 1089–1108 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Acharya, S. et al. CD28 costimulation augments CAR signaling in NK cells via the LCK/CD3ζ/ZAP70 signaling axis. Cancer Discov. 14, 1879–1900 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Page, A., Chuvin, N., Valladeau-Guilemond, J. & Depil, S. Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol. Immunol. 21, 315–331 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jorgensen, L. V., Christensen, E. B., Barnkob, M. B. & Barington, T. The clinical landscape of CAR NK cells. Exp. Hematol. Oncol. 14, 46 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yu, J. et al. CAR immunotherapy in autoimmune diseases: promises and challenges. Front. Immunol. 15, 1461102 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, Q. et al. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed. Pharmacother. 173, 116371 (2024).

    Article  CAS  PubMed  Google Scholar 

  168. Bialy, S. & Bogunia-Kubik, K. Uncovering the mysteries of human γδ T cells: from origins to novel therapeutics. Front. Immunol. 16, 1543454 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Skuljec, J. et al. Chimeric antigen receptor-redirected regulatory T cells suppress experimental allergic airway inflammation, a model of asthma. Front. Immunol. 8, 1125 (2017). This work demonstrates that CAR-engineered Treg cells effectively suppress allergic airway inflammation in a mouse model of asthma.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zhang, Q. et al. Chimeric antigen receptor (CAR) Treg: a promising approach to inducing immunological tolerance. Front. Immunol. 9, 2359 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Selck, C. & Dominguez-Villar, M. Antigen-specific regulatory T cell therapy in autoimmune diseases and transplantation. Front. Immunol. 12, 661875 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yeh, W. I. et al. Avidity and bystander suppressive capacity of human regulatory T cells expressing de novo autoreactive T-cell receptors in type 1 diabetes. Front. Immunol. 8, 1313 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Arjomandnejad, M. et al. Modulating immune responses to AAV by expanded polyclonal T-regs and capsid specific chimeric antigen receptor T-regulatory cells. Mol. Ther. Methods Clin. Dev. 23, 490–506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Proics, E. et al. Preclinical assessment of antigen-specific chimeric antigen receptor regulatory T cells for use in solid organ transplantation. Gene Ther. 30, 309–322 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Kim, Y. C. et al. Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J. Autoimmun. 92, 77–86 (2018). This work demonstrates that engineered MBP-specific human Treg cells can suppress autoimmunity in an MS model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lamarthee, B. et al. Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nat. Commun. 12, 6446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Requejo Cier, C. J., Valentini, N. & Lamarche, C. Unlocking the potential of Tregs: innovations in CAR technology. Front. Mol. Biosci. 10, 1267762 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Khawar, M. B., Afzal, A., Si, Y. & Sun, H. Steering the course of CAR T cell therapy with lipid nanoparticles. J. Nanobiotechnology 22, 380 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Short, L., Holt, R. A., Cullis, P. R. & Evgin, L. Direct in vivo CAR T cell engineering. Trends Pharmacol. Sci. 45, 406–418 (2024). This study presents a comprehensive overview of emerging strategies to generate CAR T cells in vivo.

    Article  CAS  PubMed  Google Scholar 

  181. Michels, A., Ho, N. & Buchholz, C. J. Precision medicine: in vivo CAR therapy as a showcase for receptor-targeted vector platforms. Mol. Ther. 30, 2401–2415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020). This work is an elegant demonstration of in vivo CAR construction using targeted LNPs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022). This work provides a preclinical proof of concept for in vivo generation of CAR T cells, using T cell-targeted LNPs, to treat cardiac fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug. Discov. 20, 817–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kon, E., Ad-El, N., Hazan-Halevy, I., Stotsky-Oterin, L. & Peer, D. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023).

    Article  CAS  PubMed  Google Scholar 

  186. Meng, S. et al. In vivo engineered CAR-T cell therapy: lessons built from COVID-19 mRNA vaccines. Int. J. Mol. Sci. https://doi.org/10.3390/ijms26073119 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Metzloff, A. E. et al. Antigen presenting cell mimetic lipid nanoparticles for rapid mRNA CAR T cell cancer immunotherapy. Adv. Mater. 36, e2313226 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Anolik, J. H. et al. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum. 50, 3580–3590 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Reijm, S. et al. Autoreactive B cells in rheumatoid arthritis include mainly activated CXCR3+ memory B cells and plasmablasts. JCI Insight 8, e172006 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Wang, Y. et al. Rheumatoid arthritis patients display B-cell dysregulation already in the naive repertoire consistent with defects in B-cell tolerance. Sci. Rep. 9, 19995 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Eggers, E. L. et al. Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients. JCI Insight 2, e92724 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Palanichamy, A. et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci. Transl. Med. 6, 248ra106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Hammers, C. M. et al. Persistence of anti-desmoglein 3 IgG+ B-cell clones in pemphigus patients over years. J. Invest. Dermatol. 135, 742–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Pollmann, R. et al. Identification of autoreactive B cell subpopulations in peripheral blood of autoimmune patients with pemphigus vulgaris. Front. Immunol. 10, 1375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. El-Mokhtar, M. A. et al. Altered regulatory B cell subsets in children with type 1 diabetes mellitus. J. Immunol. Res. 2020, 8935694 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Stensland, Z. C. et al. Identification of an anergic BND cell-derived activated B cell population (BND2) in young-onset type 1 diabetes patients. J. Exp. Med. 220, e20221604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kohler, S. et al. Disturbed B cell subpopulations and increased plasma cells in myasthenia gravis patients. J. Neuroimmunol. 264, 114–119 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Stathopoulos, P., Kumar, A., Nowak, R. J. & O’Connor, K. C. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight 2, e94263 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Elinav, E., Adam, N., Waks, T. & Eshhar, Z. Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology 136, 1721–1731 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Fransson, M. et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J. Neuroinflamm. 9, 112 (2012).

    Article  CAS  Google Scholar 

  202. Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. 41, 1229–1238 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Reincke, S. M. et al. Chimeric autoantibody receptor T cells deplete NMDA receptor-specific B cells. Cell 186, 5084–5097.e18 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Westin, J. R. et al. Survival with axicabtagene ciloleucel in large B-cell lymphoma. N. Engl. J. Med. 389, 148–157 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Martin, T. et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. 41, 1265–1274 (2023).

    Article  CAS  PubMed  Google Scholar 

  207. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Frank, M. J. et al. CD22-directed CAR T-cell therapy for large B-cell lymphomas progressing after CD19-directed CAR T-cell therapy: a dose-finding phase 1 study. Lancet 404, 353–363 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lamble, A. J. et al. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 7, 575–585 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Lee, H. et al. Mechanisms of antigen escape from BCMA- or GPRC5D-targeted immunotherapies in multiple myeloma. Nat. Med. 29, 2295–2306 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Ghorashian, S. et al. CD19/CD22 targeting with cotransduced CAR T cells to prevent antigen-negative relapse after CAR T-cell therapy for B-cell ALL. Blood 143, 118–123 (2024).

    Article  CAS  PubMed  Google Scholar 

  216. Schultz, L. M. et al. CD22 CAR T cells demonstrate high response rates and safety in pediatric and adult B-ALL: phase 1b results. Leukemia https://doi.org/10.1038/s41375-024-02220-y (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Li, P. et al. C-CAR066, a novel fully human anti-CD20 CAR-T therapy for relapsed or refractory large B-cell lymphoma after failure of anti-CD19 CAR-T therapy: a phase I clinical study. Am. J. Hematol. 99, 2306–2312 (2024).

    Article  CAS  PubMed  Google Scholar 

  218. Larson, S. M. et al. CD19/CD20 bispecific chimeric antigen receptor (CAR) in naive/memory T cells for the treatment of relapsed or refractory non-Hodgkin lymphoma. Cancer Discov. 13, 580–597 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Shah, N. N. et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat. Med. 26, 1569–1575 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Hines, M. R. et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transpl. Cell Ther. 29, 438.e1–438.e16 (2023).

    Google Scholar 

  221. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25, 625–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Maus, M. V. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J. Immunother. Cancer 8, e001511 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Gust, J. et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Gofshteyn, J. S. et al. Neurotoxicity after CTL019 in a pediatric and young adult cohort. Ann. Neurol. 84, 537–546 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Gust, J., Taraseviciute, A. & Turtle, C. J. Neurotoxicity associated with CD19-targeted CAR-T cell therapies. CNS Drugs 32, 1091–1101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Santomasso, B. D. et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 8, 958–971 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Diorio, C. et al. Anakinra utilization in refractory pediatric CAR T-cell associated toxicities. Blood Adv. 6, 3398–3403 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kattamuri, L. et al. Safety and efficacy of CAR-T cell therapy in patients with autoimmune diseases: a systematic review. Rheumatol. Int. 45, 18 (2025).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge information gathered by J. J. Knox, University of Pennsylvania, that was used in Table 2. A.B. acknowledges funding from the European Research Council (ERC) (08930382000), Boaz and Varda Dotan, and the Israeli Ministry of Health (00370000015). R.S.D. was supported in part by the Leukaemia and Lymphoma Society (LLS). M.S. is supported by the Bettencourt-Schueller Foundation, the INSERM, Ecole de l’INSERM Bettencourt-Schueller, the FOREUM foundation and the Arthritis Pierre Coubertin foundation. S.G. is supported by the American Lebanese Syrian Associated Charities (ALSAC). A.T. is supported by 1K08CA279927-01A1 from the National Institutes of Health (NIH). M.R. receives research support from the Alliance for Lupus Research, LLS and the Oxnard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article and are listed alphabetically.

Corresponding author

Correspondence to Marko Radic.

Ethics declarations

Competing interests

M.S. is a consultant for Abbvie, Amgen, AstraZeneca, Biogen, BMS, Fresenius, Galapagos, GSK, Innate Pharma, Nordic Pharma, Novartis, Roche and Sandoz. S.G. is a member of the Data Safety Monitoring Board (DSMB) of Immatics, serves on the Scientific Advisory Board of Be Biopharma, served as a consultant for CARGO Therapeutics within the last 12 months, and has patents and patent applications in the fields of T cell and/or gene therapy for cancer. M.R. has consulted for Bain Capital, Guidepoint Global LLC and NVP Associates. The other authors declare no additional competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Laura Evgin, Christopher Jewell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avouac, J., Barzel, A., Caiati, D. et al. Roads and detours for CAR T cell therapy in autoimmune diseases. Nat Rev Drug Discov (2026). https://doi.org/10.1038/s41573-025-01349-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41573-025-01349-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing