Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The autonomic nervous system in the regulation of glucose and lipid metabolism

Abstract

The autonomic nervous system is a crucial mediator between the central nervous system and peripheral tissues and is essential for maintaining homeostasis. In this Review, we discuss the bidirectional communication between the autonomic nervous system and metabolic tissues in humans, focusing on the coordination of systemic glucose and lipid metabolism through autonomic signalling across changing physiological states. We also discuss the crosstalk between autonomic and immune pathways and its relevance for metabolic control. An overview of current methodologies to assess autonomic function in humans shows that quantifying organ-specific autonomic outflows remains challenging. Chronic disturbances in autonomic regulation are increasingly recognized as contributors to metabolic diseases such as obesity and type 2 diabetes mellitus. Hence, emerging therapeutic strategies targeting autonomic function could offer promising opportunities to improve metabolic health. Progress will depend on the development of tools to selectively assess autonomic input to individual metabolic organs. Addressing high inter-individual variability and capturing the temporal dynamics of organ-specific autonomic regulation will be essential for advancing mechanistic insights, ultimately enabling clinical translation.

Key points

  • The autonomic nervous system regulates glucose metabolism via coordinated brain–periphery signalling, regulating insulin secretion, hepatic glucose production, adipose lipolysis and skeletal muscle glucose uptake among other functions.

  • Both sympathetic and parasympathetic branches of the autonomic nervous system contribute to glucose homeostasis in a context-dependent manner, shaped by feeding status, stress, circadian rhythm and immune interactions.

  • Organ-specific autonomic inputs are challenging to assess; current measures (for example, heart rate variability) provide only partial insights into metabolic autonomic regulation.

  • Chronic autonomic imbalance, especially increased sympathetic tone, is implicated in the development of obesity, insulin resistance and type 2 diabetes mellitus.

  • Emerging interventions, including lifestyle changes, pharmacotherapy and device-based neuromodulation, offer promising approaches to restore autonomic balance and improve metabolic outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Efferent regulation of metabolic organ function by the ANS.
Fig. 2: Tissue-specific distribution and effects of autonomic receptors on metabolic cell function.

Similar content being viewed by others

References

  1. Langley, J. N. The Autonomic Nervous System (W. Heffer & Sons, 1921).

  2. Roche, F. et al. Anatomy and physiology of the autonomic nervous system: implication on the choice of diagnostic/monitoring tools in 2023. Rev. Neurologique 180, 42–52 (2024).

    Article  Google Scholar 

  3. Teff, K. L. Visceral nerves: vagal and sympathetic innervation. J. Parenter. Enter. Nutr. 32, 569–571 (2008).

    Article  Google Scholar 

  4. Levy, M. N. Sympathetic-parasympathetic interactions in the heart. Circulation Res. 29, 437–445 (1971).

    Article  PubMed  Google Scholar 

  5. Uijtdehaage, S. H. J. & Thayer, J. F. Accentuated antagonism in the control of human heart rate. Clin. Autonomic Res. 10, 107–110 (2000).

    Article  Google Scholar 

  6. Thayer, J. F. & Sternberg, E. Beyond heart rate variability: vagal regulation of allostatic systems. Ann. N. Y. Acad. Sci. 1088, 361–372 (2006).

    Article  PubMed  Google Scholar 

  7. Beissner, F., Meissner, K., Bar, K.-J. & Napadow, V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33, 10503–10511 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heni, M. The insulin resistant brain: impact on whole-body metabolism and body fat distribution. Diabetologia 67, 1181–1191 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kronsteiner, B. et al. Characterization, number, and spatial organization of nerve fibers in the human cervical vagus nerve and its superior cardiac branch. Brain Stimulation 17, 510–524 (2024).

    Article  PubMed  Google Scholar 

  10. Lin, E. E., Scott-Solomon, E. & Kuruvilla, R. Peripheral innervation in the regulation of glucose homeostasis. Trends Neurosci. 44, 189–202 (2021).

    Article  PubMed  Google Scholar 

  11. Stenvers, D. J., Scheer, F. A. J. L., Schrauwen, P., La Fleur, S. E. & Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 15, 75–89 (2019).

    Article  PubMed  Google Scholar 

  12. Shen, T., Tang, X., Pan, Y., He, H. & Hu, K. Effect of vagus nerve stimulation on metabolism: a systematic review and meta-analysis. Int. J. Obes. 49, 2383–2394 (2025).

    Article  Google Scholar 

  13. Koutra, E. et al. Unravelling the effect of renal denervation on glucose homeostasis: more questions than answers? Acta Diabetol. 61, 267–280 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carnagarin, R. et al. Effects of sympathetic modulation in metabolic disease. Ann. N. Y. Acad. Sci. 1454, 80–89 (2019).

    Article  PubMed  Google Scholar 

  15. Coopmans, C. et al. Both prediabetes and type 2 diabetes are associated with lower heart rate variability: the Maastricht study. Diabetes Care 43, 1126–1133 (2020).

    Article  PubMed  Google Scholar 

  16. Jarczok, Koenig, J., Schuster, A. K., Thayer, J. F. & Fischer, J. E. Nighttime heart rate variability, overnight urinary norepinephrine, and glycemic status in apparently healthy human adults. Int. J. Cardiol. 168, 3025–3026 (2013).

    Article  PubMed  Google Scholar 

  17. Schuster, A. K., Fischer, J. E., Thayer, J. F., Mauss, D. & Jarczok, M. N. Decreased heart rate variability correlates to increased cardiovascular risk. Int. J. Cardiol. 203, 728–730 (2016).

    Article  PubMed  Google Scholar 

  18. Jarczok, M. N. et al. Heart rate variability in the prediction of mortality: a systematic review and meta-analysis of healthy and patient populations. Neurosci. Biobehav. Rev. 143, 104907 (2022).

    Article  PubMed  Google Scholar 

  19. Thayer, J. F., Mather, M. & Koenig, J. Stress and aging: a neurovisceral integration perspective. Psychophysiology 58, e13804 (2021).

    Article  PubMed  Google Scholar 

  20. Schmalenberger, K. M. et al. A systematic review and meta-analysis of within-person changes in cardiac vagal activity across the menstrual cycle: implications for female health and future studies. J. Clin. Med. 8, 1946 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vallbo, ÅB., Hagbarth, K.-E. & Wallin, B. G. Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. J. Appl. Physiol. 96, 1262–1269 (2004).

    Article  PubMed  Google Scholar 

  22. Egan, B. M. Insulin resistance and the sympathetic nervous system. Curr. Sci. Inc. 5, 247–254 (2003).

    Article  Google Scholar 

  23. Shoemaker, J. K., Klassen, S. A., Badrov, M. B. & Fadel, P. J. Fifty years of microneurography: learning the language of the peripheral sympathetic nervous system in humans. J. Neurophysiol. 119, 1731–1744 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Seravalle, G. & Grassi, G. Sympathetic nervous system and hypertension: new evidences. Autonomic Neurosci. 238, 102954 (2022).

    Article  Google Scholar 

  25. Laborde, S., Mosley, E. & Thayer, J. F. Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 8, 213 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Buijs, R. M. & Kreier, F. The metabolic syndrome: a brain disease? J. Neuroendocrinol. 18, 715–716 (2006).

    Article  PubMed  Google Scholar 

  27. Yu, T. Y. & Lee, M. Autonomic dysfunction, diabetes and metabolic syndrome. J. Diabetes Invest. 12, 2108–2111 (2021).

    Article  Google Scholar 

  28. Hyun, U. & Sohn, J.-W. Autonomic control of energy balance and glucose homeostasis. Exp. Mol. Med. 54, 370–376 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol. 15, 625–636 (2018).

    Article  PubMed  Google Scholar 

  30. Imai, J. & Katagiri, H. Regulation of systemic metabolism by the autonomic nervous system consisting of afferent and efferent innervation. Int. Immunol. 34, 67–79 (2022).

    Article  PubMed  Google Scholar 

  31. Thorens, B. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 13, 82–88 (2011).

    Article  PubMed  Google Scholar 

  32. Thorens, B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiological Rev. 104, 1461–1486 (2024).

    Article  Google Scholar 

  33. Sohn, J.-W., Elmquist, J. K. & Williams, K. W. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 36, 504–512 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sohn, J.-W. Network of hypothalamic neurons that control appetite. BMB Rep. 48, 229–233 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Van Baak, M. A. Meal-induced activation of the sympathetic nervous system and its cardiovascular and thermogenic effects in man. Physiol. Behav. 94, 178–186 (2008).

    Article  PubMed  Google Scholar 

  36. Matheson, P. J., Wilson, M. A. & Garrison, R. N. Regulation of intestinal blood flow. J. Surgical Res. 93, 182–196 (2000).

    Article  Google Scholar 

  37. Fagius, J. Sympathetic nerve activity in metabolic control — some basic concepts. Acta Physiologica Scandinavica 177, 337–343 (2003).

    Article  PubMed  Google Scholar 

  38. Fugmann, A., Millgård, J., Sarabi, M., Berne, C. & Lind, L. Central and peripheral haemodynamic effects of hyperglycaemia, hyperinsulinaemia, hyperlipidaemia or a mixed meal. Clin. Sci. 105, 715–721 (2003).

    Article  Google Scholar 

  39. Waaler, B. A. & Eriksen, M. Post-prandial cardiovascular responses in man after ingestion of carbohydrate, protein or fat. Acta Physiologica Scandinavica 146, 321–327 (1992).

    Article  PubMed  Google Scholar 

  40. Fagius, J. & Berne, C. Increase in muscle nerve sympathetic activity in humans after food intake. Clin. Sci. 86, 159–167 (1994).

    Article  Google Scholar 

  41. Brooks, G. A. & Mercier, J. Balance of carbohydrate and lipid utilization during exercise: the ‘crossover’ concept. J. Appl. Physiol. 76, 2253–2261 (1994).

    Article  PubMed  Google Scholar 

  42. Kjaer, M., Engfred, K., Fernandes, A., Secher, N. H. & Galbo, H. Regulation of hepatic glucose production during exercise in humans: role of sympathoadrenergic activity. Am. J. Physiol. Endocrinol. Metab. 265, E275–E283 (1993).

    Article  Google Scholar 

  43. Hoffman, R. P. Sympathetic mechanisms of hypoglycemic counterregulation. Curr Diabetes Rev. 3, 185–193 (2007).

    Article  PubMed  Google Scholar 

  44. Pongratz, G. & Straub, R. H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 16, 504 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hallschmid, M. Intranasal insulin. J. Neuroendocrinol. 33, e12934 (2021).

    Article  PubMed  Google Scholar 

  46. Heni, M. et al. Insulin action in the hypothalamus increases second-phase insulin secretion in humans. Neuroendocrinology 110, 929–937 (2020).

    Article  PubMed  Google Scholar 

  47. Kullmann, S. et al. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol. 8, 524–534 (2020).

    Article  PubMed  Google Scholar 

  48. Borgmann, D. & Fenselau, H. Vagal pathways for systemic regulation of glucose metabolism. Semin. Cell Dev. Biol. 156, 244–252 (2024).

    Article  PubMed  Google Scholar 

  49. Hampton, R. F., Jimenez-Gonzalez, M. & Stanley, S. A. Unravelling innervation of pancreatic islets. Diabetologia 65, 1069–1084 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kalsbeek, A. et al. Hypothalamic control of energy metabolism via the autonomic nervous system. Ann. N. Y. Acad. Sci. 1212, 114–129 (2010).

    Article  PubMed  Google Scholar 

  51. Heni, M. et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes 63, 4083–4088 (2014).

    Article  PubMed  Google Scholar 

  52. Kullmann, S. et al. Dose-dependent effects of intranasal insulin on resting-state brain activity. J. Clin. Endocrinol. Metab. 103, 253–262 (2018).

    Article  PubMed  Google Scholar 

  53. Ruud, J., Steculorum, S. M. & Brüning, J. C. Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat. Commun. 8, 15259 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Heni, M. et al. Hypothalamic and striatal insulin action suppresses endogenous glucose production and may stimulate glucose uptake during hyperinsulinemia in lean but not in overweight men. Diabetes 66, 1797–1806 (2017).

    Article  PubMed  Google Scholar 

  55. Heni, M. et al. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions. Diabetologia 55, 1773–1782 (2012).

    Article  PubMed  Google Scholar 

  56. Dash, S., Xiao, C., Morgantini, C., Koulajian, K. & Lewis, G. F. Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes 64, 766–774 (2015).

    Article  PubMed  Google Scholar 

  57. Kishore, P. et al. Activation of KATP channels suppresses glucose production in humans. J. Clin. Invest. 121, 4916–4920 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gancheva, S. et al. Effects of intranasal insulin on hepatic fat accumulation and energy metabolism in humans. Diabetes 64, 1966–1975 (2015).

    Article  PubMed  Google Scholar 

  59. Plomgaard, P. et al. Nasal insulin administration does not affect hepatic glucose production at systemic fasting insulin levels. Diabetes Obes. Metab. 21, 993–1000 (2019).

    Article  PubMed  Google Scholar 

  60. Hallschmid, M. et al. Intranasal insulin reduces body fat in men but not in women. Diabetes 53, 3024–3029 (2004).

    Article  PubMed  Google Scholar 

  61. Hummel, J. et al. Brain insulin action on peripheral insulin sensitivity in women depends on menstrual cycle phase. Nat. Metab. 5, 1475–1482 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hummel, J., Kullmann, S., Wagner, R. & Heni, M. Glycaemic fluctuations across the menstrual cycle: possible effect of the brain. Lancet Diabetes Endocrinol. 11, 883–884 (2023).

    Article  PubMed  Google Scholar 

  63. Porte, D. & Williams, R. H. Inhibition of insulin release by norepinephrine in man. Science 152, 1248–1250 (1966).

    Article  PubMed  Google Scholar 

  64. Ahrén, B. Autonomic regulation of islet hormone secretion — implications for health and disease. Diabetologia 43, 393–410 (2000).

    Article  PubMed  Google Scholar 

  65. Porte, D. Beta adrenergic stimulation of insulin release in man. Diabetes 16, 150–155 (1967).

    Article  PubMed  Google Scholar 

  66. Porte, D. A receptor mechanism for the inhibition of insulin release by epinephrine in man. J. Clin. Invest. 46, 86–94 (1967).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Campfield, L. A., Smith, F. J. & Eskinazi, R. E. Glucose responsiveness and acetylcholine sensitivity of pancreatic beta-cells after vagotomy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R985–R993 (1984).

    Article  Google Scholar 

  68. Campfield, L. A. & Blocker, D. C. Simulation of the autonomic neural control of insulin secretion. Comput. Biol. Med. 9, 191–203 (1979).

    Article  PubMed  Google Scholar 

  69. Adablah, J. E., Vinson, R., Roper, M. G. & Bertram, R. Synchronization of pancreatic islets by periodic or non-periodic muscarinic agonist pulse trains. PLoS ONE 14, e0211832 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gautam, D. et al. A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab. 3, 449–461 (2006).

    Article  PubMed  Google Scholar 

  71. Azua, I. R. D., Gautam, D., Guettier, J.-M. & Wess, J. Novel insights into the function of β-cell M3 muscarinic acetylcholine receptors: therapeutic implications. Trends Endocrinol. Metab. 22, 74–80 (2011).

    Article  Google Scholar 

  72. Begg, D. P. & Woods, S. C. Interactions between the central nervous system and pancreatic islet secretions: a historical perspective. Adv. Physiol. Educ. 37, 53–60 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Thorens, B. GLUT2 in pancreatic and extra-pancreatic gluco-detection. Mol. Membr. Biol. 18, 265–273 (2001).

    Article  PubMed  Google Scholar 

  74. Gromada, J. et al. CaM kinase II-dependent mobilization of secretory granules underlies acetylcholine-induced stimulation of exocytosis in mouse pancreatic B-cells. J. Physiol. 518, 745–759 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wagner, R. et al. Nonsuppressed glucagon after glucose challenge as a potential predictor for glucose tolerance. Diabetes 66, 1373–1379 (2017).

    Article  PubMed  Google Scholar 

  76. Wagner, R. et al. Postprandial dynamics of proglucagon cleavage products and their relation to metabolic health. Front. Endocrinol. 13, 892677 (2022).

    Article  Google Scholar 

  77. Faber, C. L., Deem, J. D., Campos, C. A., Taborsky, G. J. & Morton, G. J. CNS control of the endocrine pancreas. Diabetologia 63, 2086–2094 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Taborsky, G. J. & Mundinger, T. O. Minireview: the role of the autonomic nervous system in mediating the glucagon response to hypoglycemia. Endocrinology 153, 1055–1062 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ojha, A., Ojha, U., Mohammed, R., Chandrashekar, A. & Ojha, H. Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clin. Pharmacol. 11, 57–65 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. Havel, P. J., Veith, R. C., Dunning, B. E. & Taborsky, G. J. Pancreatic noradrenergic nerves are activated by neuroglucopenia but not by hypotension or hypoxia in the dog. Evidence for stress-specific and regionally selective activation of the sympathetic nervous system. J. Clin. Invest. 82, 1538–1545 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Thorens, B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 16, 87–95 (2014).

    Article  PubMed  Google Scholar 

  82. Perseghin, G. et al. Regulation of glucose homeostasis in humans with denervated livers. J. Clin. Invest. 100, 931–941 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Verberne, A. J. M., Korim, W. S., Sabetghadam, A. & Llewellyn-Smith, I. J. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes. Br. J. Pharmacol. 173, 1425–1437 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Makhmutova, M. et al. Pancreatic β-cells communicate with vagal sensory neurons. Gastroenterology 160, 875–888.e11 (2021).

    Article  PubMed  Google Scholar 

  85. Hauge-Evans, A. C. et al. Somatostatin secreted by islet δ-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58, 403–411 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. DeFronzo, R. A. & Ferrannini, E. Regulation of hepatic glucose metabolism in humans. Diabetes Metab. Rev. 3, 415–459 (1987).

    Article  PubMed  Google Scholar 

  87. Yi, C.-X., La Fleur, S. E., Fliers, E. & Kalsbeek, A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 1802, 416–431 (2010).

    Article  PubMed  Google Scholar 

  88. Shimazu, T. & Ogasawara, S. Effects of hypothalamic stimulation on gluconeogenesis and glycolysis in rat liver. Am. J. Physiol. 228, 1787–1793 (1975).

    Article  PubMed  Google Scholar 

  89. Burcelin, R. et al. Impaired glucose homeostasis in mice lacking the α1b-adrenergic receptor subtype. J. Biol. Chem. 279, 1108–1115 (2004).

    Article  PubMed  Google Scholar 

  90. Mirzadeh, Z., Faber, C. L. & Schwartz, M. W. Central nervous system control of glucose homeostasis: a therapeutic target for type 2 diabetes? Annu. Rev. Pharmacol. Toxicol. 62, 55–84 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chu, C. A. et al. The direct effects of catecholamines on hepatic glucose production occur via α1 - and β2-receptors in the dog. Am. J. Physiol. Endocrinol. Metab. 279, E463–E473 (2000).

    Article  PubMed  Google Scholar 

  92. Shimazu, T. Regulation of glycogen metabolism in liver by the autonomic nervous system. V. Activation of glycogen synthetase by vagal stimulation. Biochim. Biophys. Acta 252, 28–38 (1971).

    Article  PubMed  Google Scholar 

  93. Shimazu, T. Glycogen synthetase activity in liver: regulation by the autonomic nerves. Science 156, 1256–1257 (1967).

    Article  PubMed  Google Scholar 

  94. Matsuhisa, M. et al. Important role of the hepatic vagus nerve in glucose uptake and production by the liver. Metabolism 49, 11–16 (2000).

    Article  PubMed  Google Scholar 

  95. Vatamaniuk, M. Z., Horyn, O. V., Vatamaniuk, O. K. & Doliba, N. M. Acetylcholine affects rat liver metabolism via type 3 muscarinic receptors in hepatocytes. Life Sci. 72, 1871–1882 (2003).

    Article  PubMed  Google Scholar 

  96. Moore, M. & Cherrington, A. Regulation of net hepatic glucose uptake: interaction of neural and pancreatic mechanisms. Reprod. Nutr. Dev. 36, 399–406 (1996).

    Article  PubMed  Google Scholar 

  97. Ahrén, B. The neuro-incretin concept. Regulatory Pept. 194–195, 3–5 (2014).

    Article  Google Scholar 

  98. Moore, M. C., Coate, K. C., Winnick, J. J., An, Z. & Cherrington, A. D. Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 3, 286–294 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mizuno, K. & Ueno, Y. Autonomic nervous system and the liver. Hepatol. Res. 47, 160–165 (2017).

    Article  PubMed  Google Scholar 

  100. Lautt, W. W. et al. Hepatic parasympathetic (HISS) control of insulin sensitivity determined by feeding and fasting. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G29–G36 (2001).

    Article  PubMed  Google Scholar 

  101. Saad, A. et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes 61, 2691–2700 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Flaa, A., Aksnes, T. A., Kjeldsen, S. E., Eide, I. & Rostrup, M. Increased sympathetic reactivity may predict insulin resistance: an 18-year follow-up study. Metabolism 57, 1422–1427 (2008).

    Article  PubMed  Google Scholar 

  103. Masuo, K. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am. J. Hypertension 10, 77–83 (1997).

    Article  Google Scholar 

  104. Gamboa, A. et al. Autonomic blockade improves insulin sensitivity in obese subjects. Hypertension 64, 867–874 (2014).

    Article  PubMed  Google Scholar 

  105. Bruinstroop, E., Fliers, E. & Kalsbeek, A. Hypothalamic control of hepatic lipid metabolism via the autonomic nervous system. Best Pract. Res. Clin. Endocrinol. Metab. 28, 673–684 (2014).

    Article  PubMed  Google Scholar 

  106. Metz, M. et al. Leptin increases hepatic triglyceride export via a vagal mechanism in humans. Cell Metab. 34, 1719–1731 (2022).

    Article  PubMed  Google Scholar 

  107. Giovanini, L., Wanionok, N., Perello, M. & Cornejo, M. P. Brain-acting hepatokines: its impact on energy balance and metabolism. Front. Neurosci. 19, 1589110 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Miao, X. et al. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol. 61, 1339–1361 (2024).

    Article  PubMed  Google Scholar 

  109. Owen, B. M. et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rose, J. P. et al. FGF21 reverses MASH through coordinated actions on the CNS and liver. Cell Metab. 37, 1515–1529 (2025).

    Article  PubMed  Google Scholar 

  111. Colle, I., Van Vlierberghe, H., Troisi, R. & De Hemptinne, B. Transplanted liver: consequences of denervation for liver functions. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 280, 924–931 (2004).

    Article  PubMed  Google Scholar 

  112. Rameshi, Y. et al. Peri-liver transplant hyperglycemia: mechanisms, associated factors, consequences, and management — a systematic review. Endocrinol. Diabetes Metab. 8, e70107 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gabrielli, F. et al. Side effects of immunosuppressant drugs after liver transplant. Pharmaceuticals 18, 342 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Burns, T. W. & Hales, C. N. Regulation of lipolysis in isolated human adipose tissue cells. Lancet 287, 796–798 (1966).

    Article  Google Scholar 

  115. Burns, T. W. & Langley, P. E. Lipolysis by human adipose tissue: the role of cyclic 3’,5’-adenosine monophosphate and adrenergic receptor sites. J. Lab. Clin. Med. 75, 983–997 (1970).

    PubMed  Google Scholar 

  116. Nielsen, S. L., Bitsch, V., Larsen, O. A., Lassen, N. A. & Quaade, F. Blood flow through human adipose tissue during lipolysis. Scand. J. Clin. Lab. Investig. 22, 124–130 (1968).

    Article  Google Scholar 

  117. Leboeuf, B., Flinn, R. B. & Cahill, G. F. Effect of epinephrine on glucose uptake and glycerol release by adipose tissue in vitro. Exp. Biol. Med. 102, 527–529 (1959).

    Article  Google Scholar 

  118. Fessler, A., Beck, J. C. & Rubinstein, D. Factors affecting lipid synthesis in human adipose tissue in vitro. Metabolism 16, 438–444 (1967).

    Article  PubMed  Google Scholar 

  119. Efendić, S. & Ostman, J. Catecholamines and metabolism of human adipose tissue. V. Studies on the incorporation of glucose-1-14C into lipids and the re-esterification of FFA by human omental tissue in vitro. Acta Med. Scand. 187, 493–502 (1970).

    Article  PubMed  Google Scholar 

  120. Östman, J., Arner, P., Kimura, H., Wahrenberg, H. & Engfeldt, P. Influence of fasting on lipolytic response to adrenergic agonists and on adrenergic receptors in subcutaneous adipocytes. Eur. J. Clin. Investig. 14, 383–391 (1984).

    Article  Google Scholar 

  121. Arner, P., Engfeldt, P. & Östman, J. Relationship between lipolysis, cyclic AMP, and fat-cell size in human adipose tissue during fasting and in diabetes mellitus. Metabolism 28, 198–209 (1979).

    Article  PubMed  Google Scholar 

  122. Burns, T. W., Boyer, P. A., Terry, B. E., Langley, P. E. & Robison, G. A. The effect of fasting on the adrenergic receptor activity of human adipocytes. J. Lab. Clin. Med. 94, 387–394 (1979).

    PubMed  Google Scholar 

  123. Bülow, J. Human adipose tissue blood flow during prolonged exercise, III. Effect of F-adrenergic blockade, nicotinic acid and glucose infusion. Scand. J. Clin. Lab. Investig. 41, 415–424 (1981).

    Article  Google Scholar 

  124. Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R. & Wahren, J. Substrate turnover during prolonged exercise in man. J. Clin. Invest. 53, 1080–1090 (1974).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386 (2004).

    Article  PubMed  Google Scholar 

  126. Vaughan, M., Berger, J. E. & Steinberg, D. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. Biol. Chem. 239, 401–409 (1964).

    Article  PubMed  Google Scholar 

  127. Perdikari, A. et al. Visualization of sympathetic neural innervation in human white adipose tissue. Open Biol. 12, 210345 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Dodt, C., Lönnroth, P., Fehm, H. L. & Elam, M. Intraneural stimulation elicits an increase in subcutaneous interstitial glycerol levels in humans. J. Physiol. 521, 545–552 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Barbe, P., Millet, L., Galitzky, J., Lafontan, M. & Berlan, M. In situ assessment of the role of the β1, β2- and β3-adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue. Br. J. Pharmacol. 117, 907–913 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Stich, V. et al. Activation of antilipolytic α2-adrenergic receptors by epinephrine during exercise in human adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277, R1076–R1083 (1999).

    Article  Google Scholar 

  131. Flechtner-Mors, M. et al. Sympathetic regulation of glucose uptake by the α1-adrenoceptor in human obesity. Obes. Res. 12, 612–620 (2004).

    Article  PubMed  Google Scholar 

  132. Hjemdahl, P., Linde, B., Daleskog, M. & Belfrage, E. Sympatho-adrenal regulation of adipose tissue blood flow in dog and man. Gen. Pharmacol. Vasc. Syst. 14, 175–177 (1983).

    Article  Google Scholar 

  133. Samra, J. S. et al. Effects of epinephrine infusion on adipose tissue: interactions between blood flow and lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 271, E834–E839 (1996).

    Article  Google Scholar 

  134. Giordano, A. et al. White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1243–R1255 (2006).

    Article  PubMed  Google Scholar 

  135. Kreier, F. et al. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat — functional implications. J. Clin. Invest. 110, 1243–1250 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kreier, F. & Buijs, R. M. Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R548–R549 (2007).

    Article  PubMed  Google Scholar 

  137. Giordano, A. et al. Reply to Kreier and Buijs: no sympathy for the claim of parasympathetic innervation of white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R550–R552 (2007).

    Article  Google Scholar 

  138. Jensen, T. E. & Richter, E. A. Regulation of glucose and glycogen metabolism during and after exercise. J. Physiol. 590, 1069–1076 (2012).

    Article  PubMed  Google Scholar 

  139. Guilherme, A., Henriques, F., Bedard, A. H. & Czech, M. P. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat. Rev. Endocrinol. 15, 207–225 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wang, Y. et al. The role of somatosensory innervation of adipose tissues. Nature 609, 569–574 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Carpentier, A. C. & Blondin, D. P. Human brown adipose tissue is not enough to combat cardiometabolic diseases. J. Clin. Investig. 133, e175288 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Cypess, A. M. et al. Emerging debates and resolutions in brown adipose tissue research. Cell Metab. 37, 12–33 (2025).

    Article  PubMed  Google Scholar 

  144. Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Investig. 130, 2209–2219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Jensen, M. D. Brown adipose tissue — not as hot as we thought. J. Physiol. 593, 489–490 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ferrannini, E. et al. The disposal of an oral glucose load in healthy subjects: a quantitative study. Diabetes 34, 580–588 (1985).

    Article  PubMed  Google Scholar 

  148. Roatta, S. & Passatore, M. In Encyclopedia of Neuroscience (eds Binder, M. D., Hirokawa, N. & Windhorst, U.) 250–253 (Springer, 2008).

  149. Nonogaki, K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533–549 (2000).

    Article  PubMed  Google Scholar 

  150. Shimazu, T., Sudo, M., Minokoshi, Y. & Takahashi, A. Role of the hypothalamus in insulin-independent glucose uptake in peripheral tissues. Brain Res. Bull. 27, 501–504 (1991).

    Article  PubMed  Google Scholar 

  151. Seoane-Collazo, P. et al. Hypothalamic-autonomic control of energy homeostasis. Endocrine 50, 276–291 (2015).

    Article  PubMed  Google Scholar 

  152. Ibeas, K., Herrero, L., Mera, P. & Serra, D. Hypothalamus-skeletal muscle crosstalk during exercise and its role in metabolism modulation. Biochemical Pharmacol. 190, 114640 (2021).

    Article  Google Scholar 

  153. Minokoshi, Y., Haque, M. S. & Shimazu, T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–291 (1999).

    Article  PubMed  Google Scholar 

  154. Haque, M. S. et al. Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes 48, 1706–1712 (1999).

    Article  PubMed  Google Scholar 

  155. Shiuchi, T. et al. Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 10, 466–480 (2009).

    Article  PubMed  Google Scholar 

  156. Patel, P. N., Horenstein, M. S. & Zwibel, H. Exercise Physiology (StatPearls Publishing, 2025).

  157. Suh, S.-H., Paik, I.-Y. & Jacobs, K. Regulation of blood glucose homeostasis during prolonged exercise. Mol. Cell 23, 272–279 (2007).

    Article  Google Scholar 

  158. Coker, R. H. & Kjaer, M. Glucoregulation during exercise: the role of the neuroendocrine system. Sports Med. 35, 575–583 (2005).

    Article  PubMed  Google Scholar 

  159. Kjaer, M., Kiens, B., Hargreaves, M. & Richter, E. A. Influence of active muscle mass on glucose homeostasis during exercise in humans. J. Appl. Physiol. 71, 552–557 (1991).

    Article  PubMed  Google Scholar 

  160. Wasserman, D. H. Regulation of glucose fluxes during exercise in the postabsorptive state. Annu. Rev. Physiol. 57, 191–218 (1995).

    Article  PubMed  Google Scholar 

  161. Christensen, N. J. & Galbo, H. Sympathetic nervous activity during exercise. Annu. Rev. Physiol. 45, 139–153 (1983).

    Article  PubMed  Google Scholar 

  162. Hearon, C. M. & Dinenno, F. A. Regulation of skeletal muscle blood flow during exercise in ageing humans. J. Physiol. 594, 2261–2273 (2016).

    Article  PubMed  Google Scholar 

  163. Jamerson, K. A., Julius, S., Gudbrandsson, T., Andersson, O. & Brant, D. O. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension 21, 618–623 (1993).

    Article  PubMed  Google Scholar 

  164. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  PubMed  Google Scholar 

  165. Chen, Z.-T., Weng, Z.-X., Lin, J. D. & Meng, Z.-X. Myokines: metabolic regulation in obesity and type 2 diabetes. Life Metab. 3, loae006 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Pedersen, B. K. Physical activity and muscle–brain crosstalk. Nat. Rev. Endocrinol. 15, 383–392 (2019).

    Article  PubMed  Google Scholar 

  167. Samadian, Z., Samadian, L. & Arabzadeh, E. Exercise training enhances myokine release and reduces brain insulin resistance: insights into muscle-CNS metabolic cross-talk. Metab. Brain Dis. 40, 271 (2025).

    Article  PubMed  Google Scholar 

  168. Shoelson, S. E. Inflammation and insulin resistance. J. Clin. Investig. 116, 1793–1801 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lee, Y. S., Wollam, J. & Olefsky, J. M. An integrated view of immunometabolism. Cell 172, 22–40 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Roden, M. & Shulman, G. I. The integrative biology of type 2 diabetes. Nature 576, 51–60 (2019).

    Article  PubMed  Google Scholar 

  171. Li, J. H., Hepworth, M. R. & O’Sullivan, T. E. Regulation of systemic metabolism by tissue-resident immune cell circuits. Immunity 56, 1168–1186 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Dantzer, R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol. Rev. 98, 477–504 (2018).

    Article  PubMed  Google Scholar 

  173. Cao, Y., Chen, H. & Yang, J. Neuroanatomy of lymphoid organs: lessons learned from whole-tissue imaging studies. Eur. J. Immunol. 53, 2250136 (2023).

    Article  Google Scholar 

  174. Bellinger, D. L. et al. Sympathetic modulation of immunity: relevance to disease. Cell Immunol. 252, 27–56 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ulloa, L. Bioelectronic neuro-immunology: neuronal networks for sympathetic-splenic and vagal-adrenal control. Neuron 111, 10–14 (2023).

    Article  PubMed  Google Scholar 

  176. Pongratz, G. & Straub, R. H. Chronic effects of the sympathetic nervous system in inflammatory models. Neuroimmunomodulation 30, 113–134 (2023).

    Article  PubMed  Google Scholar 

  177. Alen, N. V. The cholinergic anti-inflammatory pathway in humans: state-of-the-art review and future directions. Neurosci. Biobehav. Rev. 136, 104622 (2022).

    Article  PubMed  Google Scholar 

  178. Schiller, M., Ben-Shaanan, T. L. & Rolls, A. Neuronal regulation of immunity: why, how and where? Nat. Rev. Immunol. 21, 20–36 (2021).

    Article  PubMed  Google Scholar 

  179. Sharma, D. & Farrar, J. D. Adrenergic regulation of immune cell function and inflammation. Semin. Immunopathol. 42, 709–717 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kolter, J., Kierdorf, K. & Henneke, P. Origin and differentiation of nerve-associated macrophages. J. Immunol. 204, 271–279 (2020).

    Article  PubMed  Google Scholar 

  181. Ural, B. B. et al. Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci. Immunol. 5, eaax8756 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Wang, P. L. et al. Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nat. Commun. 11, 2552 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Larabee, C. M., Neely, O. C. & Domingos, A. I. Obesity: a neuroimmunometabolic perspective. Nat. Rev. Endocrinol. 16, 30–43 (2020).

    Article  PubMed  Google Scholar 

  185. Boura-Halfon, S., Pecht, T., Jung, S. & Rudich, A. Obesity and dysregulated central and peripheral macrophage–neuron cross-talk. Eur. J. Immunol. 49, 19–29 (2019).

    Article  PubMed  Google Scholar 

  186. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Msheik, Z., El Massry, M., Rovini, A., Billet, F. & Desmoulière, A. The macrophage: a key player in the pathophysiology of peripheral neuropathies. J. Neuroinflamm. 19, 97 (2022).

    Article  Google Scholar 

  188. Straub, R. H., Cutolo, M., Buttgereit, F. & Pongratz, G. Energy regulation and neuroendocrine–immune control in chronic inflammatory diseases. J. Intern. Med. 267, 543–560 (2010).

    Article  PubMed  Google Scholar 

  189. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    Article  PubMed  Google Scholar 

  190. Cailotto, C. et al. Neuroanatomical evidence demonstrating the existence of the vagal anti-inflammatory reflex in the intestine. Neurogastroenterol. Motil. 24, 191 (2012).

    Article  PubMed  Google Scholar 

  191. Song, K. & Kim, B. S. The peripheral neuroimmune system. J. Leukoc. Biol. 116, 1291–1300 (2024).

    Article  PubMed  Google Scholar 

  192. Soto-Tinoco, E., Santacruz, E., Basualdo-Sigales, M. D. C., Guerrero-Vargas, N. N. & Buijs, R. M. Time-of-day-dependent gating of the liver-spinal axis initiates an anti-inflammatory reflex in the rat. eNeuro 7, ENEURO.0463-20.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Buijs, R. M., Van Der Vliet, J., Garidou, M.-L., Huitinga, I. & Escobar, C. Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS ONE 3, e3152 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Verlinden, T. J. M. et al. Innervation of the human spleen: a complete hilum-embedding approach. Brain Behav. Immun. 77, 92–100 (2019).

    Article  PubMed  Google Scholar 

  195. Kelly, M. J., Breathnach, C., Tracey, K. J. & Donnelly, S. C. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep. Med. 3, 100696 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Herhaus, B., Conrad, R. & Petrowski, K. Effect of a slow-paced breathing with heart rate variability biofeedback intervention on pro-inflammatory cytokines in individuals with panic disorder — a randomized controlled trial. J. Affect. Disord. 326, 132–138 (2023).

    Article  PubMed  Google Scholar 

  197. Thorp, A. A. & Schlaich, M. P. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J. Diabetes Res. 2015, 341583 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Russo, B., Menduni, M., Borboni, P., Picconi, F. & Frontoni, S. Autonomic nervous system in obesity and insulin-resistance — the complex interplay between leptin and central nervous system. IJMS 22, 5187 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Hausdorff, W. P., Caron, M. G. & Lefkowitz, R. J. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J. 4, 2881–2889 (1990).

    Article  PubMed  Google Scholar 

  200. Pavlov, V. A. & Tracey, K. J. The vagus nerve and the inflammatory reflex — linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Le Thuc, O. & García-Cáceres, C. Obesity-induced inflammation: connecting the periphery to the brain. Nat. Metab. 6, 1237–1252 (2024).

    Article  PubMed  Google Scholar 

  202. Straznicky, N. E. et al. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects. Diabetes 59, 71–79 (2010).

    Article  PubMed  Google Scholar 

  203. Bönhof, G. J. et al. High-intensity interval training for 12 weeks improves cardiovascular autonomic function but not somatosensory nerve function and structure in overweight men with type 2 diabetes. Diabetologia 65, 1048–1057 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Herhaus, B. et al. Effect of 4 weeks resonance frequency breathing on glucose metabolism and autonomic tone in healthy adults. Diabetes Metab. J. 49, 1219–1228 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Picard, M. et al. Effect of exercise training on heart rate variability in type 2 diabetes mellitus patients: a systematic review and meta-analysis. PLoS ONE 16, e0251863 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Penzlin, A. I. et al. Effect of short-term heart rate variability biofeedback on long-term abstinence in alcohol dependent patients — a one-year follow-up. BMC Psychiatry 17, 325 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lachowska, K., Bellwon, J., Narkiewicz, K., Gruchała, M. & Hering, D. Long-term effects of device-guided slow breathing in stable heart failure patients with reduced ejection fraction. Clin. Res. Cardiol. 108, 48–60 (2019).

    Article  PubMed  Google Scholar 

  208. Chazova, I., Almazov, V. A. & Shlyakhto, E. Moxonidine improves glycaemic control in mildly hypertensive, overweight patients: a comparison with metformin. Diabetes Obes. Metab. 8, 456–465 (2006).

    Article  PubMed  Google Scholar 

  209. Pavlov, V. A. et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 23, 41–45 (2009).

    Article  PubMed  Google Scholar 

  210. Shikora, S. A. et al. Intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes. Surg. 26, 1021–1028 (2016).

    Article  PubMed  Google Scholar 

  211. McEvoy, J. W. et al. 2024 ESC guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 45, 3912–4018 (2024).

    Article  PubMed  Google Scholar 

  212. Austelle, C. W., Cox, S. S., Wills, K. E. & Badran, B. W. Vagus nerve stimulation (VNS): recent advances and future directions. Clin. Auton. Res. 34, 529–547 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Gordan, R., Gwathmey, J. K. & Xie, L.-H. Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 7, 204–214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Kim, S. M. et al. Regulation of renin secretion and expression in mice deficient in β1- and β2-adrenergic receptors. Hypertension 50, 103–109 (2007).

    Article  PubMed  Google Scholar 

  215. Motiejunaite, J., Amar, L. & Vidal-Petiot, E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. Endocrinol. 82, 193–197 (2021).

    Article  Google Scholar 

  216. Proctor, G. B. Muscarinic receptors and salivary secretion. J. Appl. Physiol. 100, 1103–1104 (2006).

    Article  PubMed  Google Scholar 

  217. Langmead, C. J., Watson, J. & Reavill, C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 117, 232–243 (2008).

    Article  PubMed  Google Scholar 

  218. Ehlert, F. J. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci. 74, 355–366 (2003).

    Article  PubMed  Google Scholar 

  219. Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Front. Public Health 5, 258–258 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  220. La Rovere, M. T., Pinna, G. D. & Raczak, G. Baroreflex sensitivity: measurement and clinical implications. Ann. Noninvasive Electrocardiol. 13, 191–207 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Swenne, C. A. Baroreflex sensitivity: mechanisms and measurement. Neth. Heart J. 21, 58–60 (2013).

    Article  PubMed  Google Scholar 

  222. White, D. W., Shoemaker, J. K. & Raven, P. B. Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans. Autonomic Neurosci. Basic Clin. 193, 12–21 (2015).

    Article  Google Scholar 

  223. Macefield, V. G. Recording and quantifying sympathetic outflow to muscle and skin in humans: methods, caveats and challenges. Clin. Auton. Res. 31, 59–75 (2021).

    Article  PubMed  Google Scholar 

  224. Peaston, R. T. & Weinkove, C. Measurement of catecholamines and their metabolites. Ann. Clin. Biochem. 41, 17–38 (2004).

    Article  PubMed  Google Scholar 

  225. Eisenhofer, G., Pamporaki, C. & Lenders, J. W. M. Biochemical assessment of pheochromocytoma and paraganglioma. Endocr. Rev. 44, 862–909 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of an ERC Consolidator grant (CrossPeriBrain, Project 101125605 to M.H.).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed data for the article. All authors contributed substantially to discussion of the content. S.W., M.N.J., M.E., R.S. and M.H. wrote the article. All authors reviewed and/or edited the manuscript and approved the final version before submission.

Corresponding author

Correspondence to Martin Heni.

Ethics declarations

Competing interests

M.N.J. reports scientific consultation work for LaVita GmbH. R.W. reports receiving lecture fees from Boehringer Ingelheim, Eli Lilly, Novo Nordisk and Sanofi-Aventis, and has served on the advisory board for Akcea Therapeutics, Daiichi Sankyo, Eli Lilly, Novo Nordisk and Sanofi-Aventis. M.H. reports receiving lecture fees from Amryt/Chiesi, AstraZeneca, Bayer, Boehringer Ingelheim, Daichii Sankyo, Lilly, Novartis, Novo Nordisk and Sanofi-Aventis. He has also served on advisory boards for Amryt/Chiesi and Boehringer Ingelheim. He is currently a board member of the German Diabetes Association. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks João M.N. Duarte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer

The authors are partly funded by the European Union. The views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wangler, S., Jarczok, M.N., Ennis, M. et al. The autonomic nervous system in the regulation of glucose and lipid metabolism. Nat Rev Endocrinol (2026). https://doi.org/10.1038/s41574-025-01221-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41574-025-01221-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing