Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut virome dynamics: from commensal to critical player in health and disease

Abstract

The gut virome is a complex ecosystem characterized by the interplay of diverse viral entities, predominantly bacteriophages and eukaryotic viruses. The gut virome has a critical role in human health by shaping microbial community profiles, modulating host immunity and influencing metabolic processes. Different viral metagenomics approaches have revealed the remarkable diversity of the gut virome, showing individual-specific patterns that evolve over time and adapt dynamically to environmental factors. Perturbations in this community are increasingly associated with chronic immune and inflammatory conditions, metabolic disorders and neurological conditions, highlighting its potential as a diagnostic biomarker and therapeutic target. The early-life gut virome is particularly influential in establishing lifelong health trajectories through its interactions with diet, immune pathways and others, thereby contributing to inflammatory and metabolic regulation. This Review synthesizes current knowledge of gut virome composition, dynamics and functional relevance, critically evaluating evidence distinguishing causal from correlative roles in disease pathogenesis. The interactions of the virome with other microbiome components and host immunity are examined, and emerging translational applications, including phage therapy and biomarker development, are discussed. Integrating these insights while acknowledging methodological challenges provides a comprehensive framework for understanding the complex roles of the gut virome in health and disease.

Key points

  • The gut virome, primarily composed of bacteriophages and eukaryotic viruses, substantially influences gut microbiota dynamics, immune responses and metabolic health.

  • Next-generation methods and state-of-the-art bioinformatics tools have identified numerous newly characterized viral entities with potential associations to health and disease.

  • Individual virome composition exhibits high variability, shaped by early-life exposures and sustained environmental interactions, and alterations in gut virome composition correlate with diverse diseases, including inflammatory bowel diseases, metabolic disorders, neurological conditions and cancer.

  • Prophage induction, driven by environmental factors, profoundly influences microbial community structure and host immune responses.

  • Therapeutic strategies such as phage therapy and faecal virome transplantation represent targeted approaches to restore gut microbial equilibrium.

  • Addressing methodological biases and ‘viral dark matter’ is critical for elucidating the role of the gut virome in health and disease, as disease states are commonly linked to high prevalence uncharacterized viral entities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular approaches to study the human gut virome.
Fig. 2: Gut virome dynamics: protective roles, lytic and lysogenic cycles, and immune interactions.

Similar content being viewed by others

References

  1. Zheludev, I. N. et al. Viroid-like colonists of human microbiomes. Cell 187, 6521–6536.e18 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoyles, L. et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res. Microbiol. 165, 803–812 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sausset, R., Petit, M. A., Gaboriau-Routhiau, V. & De Paepe, M. New insights into intestinal phages. Mucosal Immunol. 13, 205–215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Turner, D. et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 168, 74 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sørensen, A. N., Woudstra, C., Sørensen, M. C. H. & Brøndsted, L. Subtypes of tail spike proteins predicts the host range of Ackermannviridae phages. Comput. Struct. Biotechnol. J. 19, 4854–4867 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764–778.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Krishnamurthy, S. R. & Wang, D. Origins and challenges of viral dark matter. Virus Res. 239, 136–142 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Sullivan, M. B. Viromes, not gene markers, for studying double-stranded DNA virus communities. J. Virol. 89, 2459–2461 (2015).

    Article  PubMed  Google Scholar 

  11. Aggarwala, V., Liang, G. & Bushman, F. D. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob. DNA 8, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benler, S. et al. Thousands of previously unknown phages discovered in whole-community human gut metagenomes. Microbiome 9, 78 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guerin, E. et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 24, 653–664.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Koonin, E. V. & Yutin, N. The crAss-like phage group: how metagenomics reshaped the human virome. Trends Microbiol. 28, 349–359 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Ramos-Barbero, M. D. et al. Characterization of crAss-like phage isolates highlights Crassvirales genetic heterogeneity and worldwide distribution. Nat. Commun. 14, 4295 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Gulyaeva, A. et al. Discovery, diversity, and functional associations of crAss-like phages in human gut metagenomes from four Dutch cohorts. Cell Rep. 38, 110204 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Yutin, N. et al. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat. Commun. 12, 1044 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siranosian, B. A., Tamburini, F. B., Sherlock, G. & Bhatt, A. S. Acquisition, transmission and strain diversity of human gut-colonizing crAss-like phages. Nat. Commun. 11, 280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Remesh, A. T. & Viswanathan, R. CrAss-like phages: from discovery in human fecal metagenome to application as a microbial source tracking marker. Food Environ. Virol. 16, 121–135 (2024).

    Article  PubMed  Google Scholar 

  23. Cook, R. et al. Decoding huge phage diversity: a taxonomic classification of Lak megaphages. J. Gen. Virol. 105, 001997 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Devoto, A. E. et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 4, 693–700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yutin, N. et al. Varidnaviruses in the human gut: a major expansion of the order Vinavirales. Viruses 14, 1842 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lecuit, M. & Eloit, M. in The Microbiota in Gastrointestinal Pathophysiology Ch. 21 (eds Floch, M. H., Ringel, Y. & Allan Walker, W.) 179–183 (Academic, 2017).

  28. Garmaeva, S. et al. Stability of the human gut virome and effect of gluten-free diet. Cell Rep. 35, 109132 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Wylie, K. M. et al. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol. 12, 71 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Finkbeiner, S. R. et al. Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog. 4, e1000011 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Duerkop, B. A. & Hooper, L. V. Resident viruses and their interactions with the immune system. Nat. Immunol. 14, 654–659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pyöriä, L. et al. Unmasking the tissue-resident eukaryotic DNA virome in humans. Nucleic Acids Res. 51, 3223–3239 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang, T. et al. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 4, e3 (2005).

    Article  PubMed Central  Google Scholar 

  34. Medvedeva, S., Borrel, G., Krupovic, M. & Gribaldo, S. A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment. Nat. Microbiol. 8, 2170–2182 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Kosmopoulos, J. C., Klier, K. M., Langwig, M. V., Tran, P. Q. & Anantharaman, K. Viromes vs. mixed community metagenomes: choice of method dictates interpretation of viral community ecology. Microbiome 12, 195 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marbouty, M., Thierry, A., Millot, G. A. & Koszul, R. MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. eLife 10, e60608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roux, S. et al. iPHoP: an integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Greenman, N., Hassouneh, S. A.-D., Abdelli, L. S., Johnston, C. & Azarian, T. Improving bacterial metagenomic research through long-read sequencing. Microorganisms 12, 935 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishijima, S. et al. Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort. Nat. Commun. 13, 5252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma, Y., You, X., Mai, G., Tokuyasu, T. & Liu, C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 6, 24 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Soria-Villalba, A. et al. Comparison of experimental methodologies based on bulk-metagenome and virus-like particle enrichment: pros and cons for representativeness and reproducibility in the study of the fecal human virome. Microorganisms 12, 162 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wylie, T. N., Wylie, K. M., Herter, B. N. & Storch, G. A. Enhanced virome sequencing using targeted sequence capture. Genome Res. 25, 1910–1920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cook, R. et al. Nanopore and Illumina sequencing reveal different viral populations from human gut samples. Microb. Genom. 10, 001236 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Andrade-Martínez, J. S. et al. Computational tools for the analysis of uncultivated phage genomes. Microbiol. Mol. Biol. Rev. 86, e00004-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Allen, L. Z. et al. Single virus genomics: a new tool for virus discovery. PLoS ONE 6, e17722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Martínez Martínez, J., Martinez-Hernandez, F. & Martinez-Garcia, M. Single-virus genomics and beyond. Nat. Rev. Microbiol. 18, 705–716 (2020).

    Article  PubMed  Google Scholar 

  48. Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 15892 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martínez, J. M., Swan, B. K. & Wilson, W. H. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J. 8, 1079–1088 (2014).

    Article  Google Scholar 

  50. De la Cruz Peña, M. J. et al. Deciphering the human virome with single-virus genomics and metagenomics. Viruses 10, 113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Campbell, D. E. et al. Single cell viral tagging of Faecalibacterium prausnitzii reveals rare bacteriophages omitted by other techniques. Gut Microbes 17, 2526719 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. 4, 2192–2203 (2019).

    Article  PubMed  Google Scholar 

  54. Marbouty, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and probing host–virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv. 3, e1602105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ortiz de Ora, L. et al. Phollow reveals in situ phage transmission dynamics in the zebrafish gut microbiome at single-virion resolution. Nat. Microbiol. 10, 1067–1083 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, G. et al. Optimization and evaluation of viral metagenomic amplification and sequencing procedures toward a genome-level resolution of the human fecal DNA virome. J. Adv. Res. 48, 75–86 (2023).

    Article  PubMed  Google Scholar 

  58. Li, Y. et al. Biases and complementarity in gut viromes obtained from bulk and virus-like particle-enriched metagenomic sequencing. Microbiol. Spectr. 13, e0001325 (2025).

    Article  PubMed  Google Scholar 

  59. Brown-Jaque, M. et al. Detection of bacteriophage particles containing antibiotic resistance genes in the sputum of cystic fibrosis patients. Front. Microbiol. 9, 856 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gómez-Gómez, C. et al. Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. Sci. Rep. 9, 13281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Eichhorn, I. et al. Lysogenic conversion of atypical enteropathogenic Escherichia coli (aEPEC) from human, murine, and bovine origin with bacteriophage Φ3538 Δstx2::cat proves their enterohemorrhagic E. coli (EHEC) progeny. Int. J. Med. Microbiol. 308, 890–898 (2018).

    Article  PubMed  Google Scholar 

  63. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Spus, M., Wardhana, Y. R., Wolkers-Rooijackers, J. C. M., Abee, T. & Smid, E. J. Lytic bacteriophages affect the population dynamics of multi-strain microbial communities. Microbiome Res. Rep. 2, 33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Pal, C., Maciá, M. D., Oliver, A., Schachar, I. & Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Buckling, A. & Rainey, P. B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. R. Soc. Lond. B Biol. Sci. 269, 931–936 (2002).

    Article  Google Scholar 

  69. Inglis, L. K., Roach, M. J. & Edwards, R. A. Prophages: an integral but understudied component of the human microbiome. Microb. Genom. 10, 001166 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sinha, A., Qian, A., Boutin, T. & Maurice, C. F. Prophage induction contributes to alterations in the gut phageome during intestinal inflammation. Preprint at bioRxiv https://doi.org/10.1101/2024.12.03.626644 (2024).

  71. Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Roughgarden, J. Lytic/Lysogenic transition as a life-history switch. Virus Evol. 10, veae028 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sutcliffe, S. G., Shamash, M., Hynes, A. P. & Maurice, C. F. Common oral medications lead to prophage induction in bacterial isolates from the human gut. Viruses 13, 455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, M., Zhang, T., Yu, M., Chen, Y.-L. & Jin, M. The life cycle transitions of temperate phages: regulating factors and potential ecological implications. Viruses 14, 1904 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boeckaerts, D. et al. Predicting bacteriophage hosts based on sequences of annotated receptor-binding proteins. Sci. Rep. 11, 1467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Sordi, L., Khanna, V. & Debarbieux, L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 22, 801–808.e3 (2017).

    Article  PubMed  Google Scholar 

  77. Le, S. et al. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS ONE 8, e68562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Latka, A. et al. Engineering the modular receptor-binding proteins of Klebsiella phages switches their capsule serotype specificity. mBio 12, e00455-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen, Y., Golding, I., Sawai, S., Guo, L. & Cox, E. C. Population fitness and the regulation of Escherichia coli genes by bacterial viruses. PLoS Biol. 3, e229 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Carey, J. N. et al. Phage integration alters the respiratory strategy of its host. eLife 8, e49081 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Pott, J. et al. IFN-λ determines the intestinal epithelial antiviral host defense. Proc. Natl Acad. Sci. USA 108, 7944–7949 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ingle, H. et al. Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. Mucosal Immunol. 14, 751–761 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ingle, H. et al. IFN-λ derived from nonsusceptible enterocytes acts on tuft cells to limit persistent norovirus. Sci. Adv. 9, eadi2562 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Josefowicz, S. Z., Lu, L.-F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fleming, A., Castro-Dopico, T. & Clatworthy, M. R. B cell class switching in intestinal immunity in health and disease. Scand. J. Immunol. 95, e13139 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lisicka, W. et al. Immunoglobulin A controls intestinal virus colonization to preserve immune homeostasis. Cell Host Microbe 33, 498–511.e10 (2025).

    Article  CAS  PubMed  Google Scholar 

  89. Conrey, P. E. et al. IgA deficiency destabilizes homeostasis toward intestinal microbes and increases systemic immune dysregulation. Sci. Immunol. 8, eade2335 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Foxman, E. F. & Iwasaki, A. Genome–virome interactions: examining the role of common viral infections in complex disease. Nat. Rev. Microbiol. 9, 254–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hurst, T. P. & Magiorkinis, G. Activation of the innate immune response by endogenous retroviruses. J. Gen. Virol. 96, 1207–1218 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Almeida, G. M. F., Laanto, E., Ashrafi, R. & Sundberg, L.-R. Bacteriophage adherence to mucus mediates preventive protection against pathogenic bacteria. mBio 10, e01984-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Godsil, M., Ritz, N. L., Venkatesh, S. & Meeske, A. J. Gut phages and their interactions with bacterial and mammalian hosts. J. Bacteriol. 207, e0042824 (2025).

    Article  PubMed  Google Scholar 

  96. Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bomsel, M. & Alfsen, A. Entry of viruses through the epithelial barrier: pathogenic trickery. Nat. Rev. Mol. Cell Biol. 4, 57–68 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nguyen, S. et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio 8, e01874-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Van Belleghem, J. D., Dąbrowska, K., Vaneechoutte, M., Barr, J. J. & Bollyky, P. L. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 11, 10 (2019).

    Article  Google Scholar 

  100. Bello-Morales, R., Ripa, I. & López-Guerrero, J. A. Extracellular vesicles in viral spread and antiviral response. Viruses 12, 623 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Trinh, J. T., Székely, T., Shao, Q., Balázsi, G. & Zeng, L. Cell fate decisions emerge as phages cooperate or compete inside their host. Nat. Commun. 8, 14341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sutcliffe, S. G., Reyes, A. & Maurice, C. F. Bacteriophages playing nice: lysogenic bacteriophage replication stable in the human gut microbiota. iScience 26, 106007 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huang, D. et al. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress. Trends Microbiol. 32, 902–916 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Johansen, J. et al. Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan. Nat. Microbiol. 8, 1064–1078 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Huang, Y. et al. Mapping the early life gut microbiome in neonates with critical congenital heart disease: multiomics insights and implications for host metabolic and immunological health. Microbiome 10, 245 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Maqsood, R. et al. Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome 7, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Walters, W. A. et al. Longitudinal comparison of the developing gut virome in infants and their mothers. Cell Host Microbe 31, 187–198.e3 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Garmaeva, S. et al. Transmission and dynamics of mother–infant gut viruses during pregnancy and early life. Nat. Commun. 15, 1945 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lou, Y. C. et al. Infant gut DNA bacteriophage strain persistence during the first 3 years of life. Cell Host Microbe 32, 35–47.e6 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kaelin, E. A. et al. Longitudinal gut virome analysis identifies specific viral signatures that precede necrotizing enterocolitis onset in preterm infants. Nat. Microbiol. 7, 653–662 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Olm, M. R. et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci. Adv. 5, eaax5727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Redgwell, T. A. et al. Prophages in the infant gut are pervasively induced and may modulate the functionality of their hosts. NPJ Biofilms Microbiomes 11, 46 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Leal Rodríguez, C. et al. The infant gut virome is associated with preschool asthma risk independently of bacteria. Nat. Med. 30, 138–148 (2024).

    Article  PubMed  Google Scholar 

  119. Coffey, M. J. et al. The intestinal virome in children with cystic fibrosis differs from healthy controls. PLoS ONE 15, e0233557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, H. et al. Comparison of gut viral communities in children under 5 years old and newborns. Virol. J. 20, 52 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Muzammil, M. A. et al. Advancements in inflammatory bowel disease: a narrative review of diagnostics, management, epidemiology, prevalence, patient outcomes, quality of life, and clinical presentation. Cureus 15, e41120 (2023).

    PubMed  PubMed Central  Google Scholar 

  122. Fernandes, M. A. et al. Enteric virome and bacterial microbiota in children with ulcerative colitis and Crohn disease. J. Pediatr. Gastroenterol. Nutr. 68, 30–36 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kong, C., Liu, G., Kalady, M. F., Jin, T. & Ma, Y. Dysbiosis of the stool DNA and RNA virome in Crohn’s disease. J. Med. Virol. 95, e28573 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Cao, Z. et al. The gut ileal mucosal virome is disturbed in patients with Crohn’s disease and exacerbates intestinal inflammation in mice. Nat. Commun. 15, 1638 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yan, A. et al. Multiomic spatial analysis reveals a distinct mucosa-associated virome. Gut Microbes 15, 2177488 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Stockdale, S. R. et al. Interpersonal variability of the human gut virome confounds disease signal detection in IBD. Commun. Biol. 6, 221 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Liang, G. et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. J. Crohns Colitis 14, 1600–1610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ungaro, F. et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 10, 149–158 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Sinha, A. et al. Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome 10, 105 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tian, X. et al. Gut virome-wide association analysis identifies cross-population viral signatures for inflammatory bowel disease. Microbiome 12, 130 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Adiliaghdam, F. et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci. Immunol. 7, eabn6660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cervantes-Echeverría, M., Gallardo-Becerra, L., Cornejo-Granados, F. & Ochoa-Leyva, A. The two-faced role of crassphage subfamilies in obesity and metabolic syndrome: between good and evil. Genes 14, 139 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. de Jonge, P. A. et al. Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome. Nat. Commun. 13, 3594 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Castells-Nobau, A. et al. Microviridae bacteriophages influence behavioural hallmarks of food addiction via tryptophan and tyrosine signalling pathways. Nat. Metab. 6, 2157–2186 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. Yang, K. et al. Alterations in the gut virome in obesity and type 2 diabetes mellitus. Gastroenterology 161, 1257–1269.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Zheng, P., Li, Z. & Zhou, Z. Gut microbiome in type 1 diabetes: a comprehensive review. Diabetes Metab. Res. Rev. 34, e3043 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lang, S. et al. Intestinal virome signature associated with severity of nonalcoholic fatty liver disease. Gastroenterology 159, 1839–1852 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Jiang, L. et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology 72, 2182–2196 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Li, G. et al. Exploring the relationship between the gut mucosal virome and colorectal cancer: characteristics and correlations. Cancers 15, 3555 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Nakatsu, G. et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155, 529–541.e5 (2018).

    Article  PubMed  Google Scholar 

  142. Luo, S. et al. Gut virome profiling identifies an association between temperate phages and colorectal cancer promoted by Helicobacter pylori infection. Gut Microbes 15, 2257291 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Emlet, C., Ruffin, M. & Lamendella, R. Enteric virome and carcinogenesis in the gut. Dig. Dis. Sci. 65, 852–864 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Broecker, F. & Moelling, K. The roles of the virome in cancer. Microorganisms 9, 2538 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Diard, M. et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355, 1211–1215 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Cornuault, J. K. et al. Phages infecting Faecalibacterium prausnitzii belong to novel viral genera that help to decipher intestinal viromes. Microbiome 6, 65 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Borin, J. M. et al. Fecal virome transplantation is sufficient to alter fecal microbiota and drive lean and obese body phenotypes in mice. Gut Microbes 15, 2236750 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mao, X. et al. Transfer of modified gut viromes improves symptoms associated with metabolic syndrome in obese male mice. Nat. Commun. 15, 4704 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sartor, R. B. & Wu, G. D. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 152, 327–339.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Draper, L. A. et al. Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC Biol. 18, 173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rasmussen, T. S. et al. Fecal virome transfer improves proliferation of commensal gut Akkermansia muciniphila and unexpectedly enhances the fertility rate in laboratory mice. Gut Microbes 15, 2208504 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898.e24 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Dalmasso, M. et al. Three new Escherichia coli phages from the human gut show promising potential for phage therapy. PLoS ONE 11, e0156773 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wandro, S. et al. Phage cocktails constrain the growth of Enterococcus. mSystems 7, e00019-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Wilde, J. et al. Assessing phage–host population dynamics by reintroducing virulent viruses to synthetic microbiomes. Cell Host Microbe 32, 768–778.e9 (2024).

    Article  CAS  PubMed  Google Scholar 

  156. Cheng, M. et al. Endolysin LysEF-P10 shows potential as an alternative treatment strategy for multidrug-resistant Enterococcus faecalis infections. Sci. Rep. 7, 10164 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Schmelcher, M. et al. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J. Antimicrob. Chemother. 70, 1453–1465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zimmer, M., Vukov, N., Scherer, S. & Loessner, M. J. The murein hydrolase of the bacteriophage φ3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl. Environ. Microbiol. 68, 5311–5317 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cervantes-Echeverría, M. J. et al. Fecal virome transplantation (FVT) from healthy humans remodels the gut bacteriome and virome and reduces metabolic syndrome in mice. Preprint at bioRxiv https://doi.org/10.1101/2024.02.17.580809 (2024).

  160. Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799–811.e7 (2017).

    Article  PubMed  Google Scholar 

  161. Rasmussen, T. S. et al. Overcoming donor variability and risks associated with fecal microbiota transplants through bacteriophage-mediated treatments. Microbiome 12, 119 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Offersen, S. M. et al. Chemostat culturing reduces fecal eukaryotic virus load and delays diarrhea after virome transplantation. eLife 14, RP105991 (2025).

    Google Scholar 

  163. Yu, Y., Wang, W. & Zhang, F. The next generation fecal microbiota transplantation: to transplant bacteria or virome. Adv. Sci. 10, 2301097 (2023).

    Article  CAS  Google Scholar 

  164. Hsu, B. B. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25, 803–814.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rasmussen, T. S. et al. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut 69, 2122–2130 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Wortelboer, K. et al. Phage-microbe dynamics after sterile faecal filtrate transplantation in individuals with metabolic syndrome: a double-blind, randomised, placebo-controlled clinical trial assessing efficacy and safety. Nat. Commun. 14, 5600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Li, N. et al. Faecal phageome transplantation alleviates intermittent intestinal inflammation in IBD and the timing of transplantation matters: a preclinical proof-of-concept study in mice. Gut 74, 868–870 (2025).

    Article  CAS  PubMed  Google Scholar 

  168. Virgin, H. W. The virome in mammalian physiology and disease. Cell 157, 142–150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. National Institutes of Health. Human Virome Program. NIH https://commonfund.nih.gov/humanvirome (2025).

  170. Galiez, C., Siebert, M., Enault, F., Vincent, J. & Söding, J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33, 3113–3114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Villarroel, J. et al. HostPhinder: a phage host prediction tool. Viruses 8, 116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wang, W. et al. A network-based integrated framework for predicting virus–prokaryote interactions. Nar. Genomics Bioinforma. 2, lqaa044 (2020).

    Article  Google Scholar 

  173. Lu, C. et al. Prokaryotic virus host predictor: a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 19, 5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Coutinho, F. H. et al. RaFAH: host prediction for viruses of bacteria and archaea based on protein content. Patterns 2, 100274 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zhang, R. et al. SpacePHARER: sensitive identification of phages from CRISPR spacers in prokaryotic hosts. Bioinformatics 37, 3364–3366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang, F. et al. CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions. Commun. Biol. 1, 180 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Dion, M. B. et al. Streamlining CRISPR spacer-based bacterial host predictions to decipher the viral dark matter. Nucleic Acids Res. 49, 3127–3138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  182. Press, M. O. et al. Hi-C deconvolution of a human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions. Preprint at bioRxiv https://doi.org/10.1101/198713 (2017).

  183. DeMaere, M. Z. & Darling, A. E. bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes. Genome Biol. 20, 46 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Burton, J. N., Liachko, I., Dunham, M. J. & Shendure, J. Species-level deconvolution of metagenome assemblies with Hi-C–based contact probability maps. G3 4, 1339–1346 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Du, Y., Laperriere, S. M., Fuhrman, J. & Sun, F. Normalizing metagenomic Hi-C data and detecting spurious contacts using zero-inflated negative binomial regression. J. Comput. Biol. 29, 106–120 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Coclet, C., Camargo, A. P. & Roux, S. MVP: a modular viromics pipeline to identify, filter, cluster, annotate, and bin viruses from metagenomes. mSystems 9, e0088824 (2024).

    Article  PubMed  Google Scholar 

  187. Zhou, Z., Martin, C., Kosmopoulos, J. C. & Anantharaman, K. ViWrap: a modular pipeline to identify, bin, classify, and predict viral–host relationships for viruses from metagenomes. iMeta 2, e118 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Roach, M. J. et al. Hecatomb: an integrated software platform for viral metagenomics. GigaScience 13, giae020 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ru, J., Khan Mirzaei, M., Xue, J., Peng, X. & Deng, L. ViroProfiler: a containerized bioinformatics pipeline for viral metagenomic data analysis. Gut Microbes 15, 2192522 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Plyusnin, I., Vapalahti, O., Sironen, T., Kant, R. & Smura, T. Enhanced viral metagenomics with Lazypipe 2. Viruses 15, 431 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Shang, J., Peng, C., Liao, H., Tang, X. & Sun, Y. PhaBOX: a web server for identifying and characterizing phage contigs in metagenomic data. Bioinforma. Adv. 3, vbad101 (2023).

    Article  Google Scholar 

  192. Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024).

    Article  CAS  PubMed  Google Scholar 

  193. Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ren, J. et al. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Bouras, G. et al. Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics 39, btac776 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Bouras, G. et al. Protein structure informed bacteriophage genome annotation with phold. Preprint at bioRxiv https://doi.org/10.1101/2025.08.05.668817 (2025).

  199. Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article  Google Scholar 

  201. Zheng, K. et al. VITAP: a high precision tool for DNA and RNA viral classification based on meta-omic data. Nat. Commun. 16, 2226 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rangel-Pineros, G. et al. VIRify: an integrated detection, annotation and taxonomic classification pipeline using virus-specific protein profile hidden Markov models. PLoS Comput. Biol. 19, e1011422 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Shang, J. & Sun, Y. CHERRY: a computational method for accurate prediction of virus–prokaryotic interactions using a graph encoder–decoder model. Brief. Bioinform. 23, bbac182 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Kieft, K., Adams, A., Salamzade, R., Kalan, L. & Anantharaman, K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res. 50, e83 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mallawaarachchi, V. et al. Phables: from fragmented assemblies to high-quality bacteriophage genomes. Bioinformatics 39, btad586 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Chen, X. et al. A virome-wide clonal integration analysis platform for discovering cancer viral etiology. Genome Res. 29, 819–830 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhao, G. et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 503, 21–30 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research is funded by grants from the National Institutes of Health, including RC2DK116713 awarded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) to S.A.H., R01AI173360 awarded by the National Institute of Allergy and Infectious Diseases (NIAID) to M.T.B. and S.A.H., U01AT012998 awarded by the National Center for Complementary and Integrative Health (NCCIH) to M.T.B. and S.A.H., and U24HL175772 awarded by the National Heart, Lung, and Blood Institute (NHLBI).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Scott A. Handley.

Ethics declarations

Competing interests

M.M.L. is a consultant to EllaOla, Takeda Pharmaceuticals and Anokion, has received research support from Takeda and Moderna (to institution), and has acted as a study investigator for Merck, Regeneron, Pfizer and Takeda Pharmaceuticals (to institution). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Tao Zuo, who co-reviewed with Ziyu Huang; and Junhua Li for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Auxiliary metabolic genes

Genes carried by viruses that encode metabolic functions and can supplement or modify host cell metabolism during infection.

CrAssphages

The most abundant bacteriophage discovered in human gut metagenomes through cross-assembly analysis.

Dysbiosis

An imbalance in microbial community composition and function characterized by altered abundance of key taxa or disrupted ecological interactions with potential effects on health.

Lysogenic conversion

The process by which prophage genes alter the phenotype of the bacterial host, potentially conferring new capabilities such as toxin production or antibiotic resistance.

Lysogeny

The viral life cycle state where phage DNA integrates into the bacterial chromosome and replicates passively with the bacterial host without causing immediate lysis.

Prophage induction

The process by which integrated viral DNA (prophage) exits the bacterial chromosome and initiates viral replication, leading to bacterial cell lysis.

Temperate phages

Bacteriophages capable of both lytic (immediate bacterial host lysis) and lysogenic (chromosomal integration) life cycles.

Viral dark matter

The large fraction of viral sequences in metagenomes that cannot be taxonomically classified due to lack of similarity to known viral genomes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chica Cardenas, L.A., Leonard, M.M., Baldridge, M.T. et al. Gut virome dynamics: from commensal to critical player in health and disease. Nat Rev Gastroenterol Hepatol 23, 126–144 (2026). https://doi.org/10.1038/s41575-025-01134-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41575-025-01134-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing