Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The fate of dietary protein in the gastrointestinal tract and implications for colonic disease

Abstract

Protein is an essential nutrient in the human diet. Global Westernization and modern dietary trends have seen protein become a more substantial contributor to the Western diet, with dietary sources expanding beyond traditional wholefoods to a myriad of processed protein-enriched food products. Although dietary protein is critical for human health, it has also been implicated in colonic health and disease both directly via the microbial fermentation of protein entering the colonic environment and indirectly by affecting the intake of other nutrients in the diet such as fibre. Although protein digestion in the small intestine is highly efficient, there are numerous factors that can influence the capacity for protein digestion and absorption, particularly dietary factors representative of modern-day protein intakes such as high protein diets and food manufacturing. The subsequent fermentation of protein and production of microbial metabolites in the colon is in turn affected by the source of protein entering the colon and the presence of fibre. In this Review, we examine factors that influence human digestion and absorption of protein in the small intestine and protein fermentation in the colon, describing implications for colonic health and disease.

Key points

  • Global Westernization has changed the way protein is consumed in modern-day society with trends focused on high protein diets and processed protein sources.

  • Dietary and non-dietary factors including protein source, fibre intake and medications influence capacity for digestion and absorption of protein in the small intestine and subsequent availability for colonic fermentation.

  • Metabolites produced during colonic protein fermentation have the potential to exert beneficial and/or detrimental effects on the colonic mucosa.

  • Optimization of protein intake requires careful consideration of the effect of protein on colonic health directly via its colonic fermentation and indirectly by its effect on dietary intake of other nutrients.

  • Further research is required to personalize protein recommendations based on genetic, environmental and microbial data to optimize health and minimize the risk of colonic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The fate of dietary protein in the human gastrointestinal tract.
Fig. 2: Trends in dietary protein intake and colonic disease since inception of Westernized dietary patterns.
Fig. 3: Production of metabolites from protein substrates by colonic microorganisms and their subsequent analysis in biological samples.
Fig. 4: Fermentation of dietary substrates across different sections of the colon.

Similar content being viewed by others

References

  1. Wu, G. Dietary protein intake and human health. Food Funct. 7, 1251–1265 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Schmidhuber, J. & Shetty, P. The nutrition transition to 2030. Why developing countries are likely to bear the major burden. Food Econ. 2, 150–166 (2005).

    Google Scholar 

  3. Grigg, D. The pattern of world protein consumption. Geoforum 26, 1–17 (1995).

    Article  Google Scholar 

  4. Campbell, B. et al. International Society of Sports Nutrition position stand: protein and exercise. J. Int. Soc. Sports Nutr. 4, 8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization. Red and processed meat in the context of health and the environment: many shades of red and green: information brief https://www.who.int/publications/i/item/9789240074828 (WHO, 2023).

  6. Silvester, K. R. & Cummings, J. H. Does digestibility of meat protein help explain large bowel cancer risk? Nutr. Cancer 24, 279–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Magee, E. A., Richardson, C. J., Hughes, R. & Cummings, J. H. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 72, 1488–1494 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Zannini, E., Sahin, A. W. & Arendt, E. K. Resistant protein: forms and functions. Foods 11, 2759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kato, N. & Iwami, K. Resistant protein; its existence and function beneficial to health. J. Nutr. Sci. Vitaminol. 48, 1–5 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Windey, K., De Preter, V. & Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56, 184–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Yao, C. K., Muir, J. G. & Gibson, P. R. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment. Pharmacol. Ther. 43, 181–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Joint WHO/FAO/UNU Expert Consultation. Protein and Amino Acid Requirements in Human Nutrition. WHO Technical Report Series 935 (WHO, 2007).

  14. Day, L., Cakebread, J. A. & Loveday, S. M. Food proteins from animals and plants: differences in the nutritional and functional properties. Trends Food Sci. Technol. 119, 428–442 (2022).

    Article  CAS  Google Scholar 

  15. Erickson, R. H. & Kim, Y. S. Digestion and absorption of dietary protein. Annu. Rev. Med. 41, 133–139 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Goodman, B. E. Insights into digestion and absorption of major nutrients in humans. Adv. Physiol. Educ. 34, 44–53 (2010).

    Article  PubMed  Google Scholar 

  17. Hoffer, L. J. Human protein and amino acid requirements. JPEN J. Parenter. Enter. Nutr. 40, 460–474 (2016).

    Article  CAS  Google Scholar 

  18. Australian Bureau of Statistics. Australian Health Survey: Nutrition First Results-Foods and Nutrients https://www.abs.gov.au/statistics/health/food-and-nutrition/food-and-nutrients/2011-12 (Australian Bureau of Statistics, 2014).

  19. Australian Bureau of Statistics. Australian Health Survey: Food and Nutrients https://www.abs.gov.au/statistics/health/food-and-nutrition/food-and-nutrients/latest-release (Australian Bureau of Statistics, 2025).

  20. International Food Information Council. Americans’ Perceptions of Protein https://ific.org/wp-content/uploads/2025/07/IFIC-Spotlight-Survey-Protein-Perceptions.pdf (2025).

  21. Wilson, B. Protein Mania: the Rich World’s New Diet Obsession https://www.theguardian.com/news/2019/jan/04/protein-mania-the-rich-worlds-new-diet-obsession (The Guardian, 2019).

  22. Arenas-Jal, M., Suñé-Negre, J., Pérez-Lozano, P. & García-Montoya, E. Trends in the food and sports nutrition industry: a review. Crit. Rev. Food Sci. Nutr. 60, 2405–2421 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Chapple, C. I., Burnett, A. J., Woods, J. L. & Russell, C. G. A cross-sectional study of sports food consumption patterns, experiences, and perceptions amongst non-athletes in Australia. Nutrients 16, 1101 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Alae-Carew, C. et al. The role of plant-based alternative foods in sustainable and healthy food systems: Consumption trends in the UK. Sci. Total. Env. 807, 151041, (2022).

    Article  CAS  Google Scholar 

  26. O’Keefe, S. J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 13, 691–706 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. World Health Organization. Colorectal Cancer https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (WHO, 2023).

  28. Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dong, C. et al. Meat intake is associated with a higher risk of ulcerative colitis in a large European prospective cohort study. J. Crohns Colitis 16, 1187–1196 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Larsson, S. C. & Wolk, A. Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int. J. Cancer 119, 2657–2664 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Blachier, F. et al. Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. Am. J. Physiol. Gastrointest. Liver Physiol 320, 125–135 (2021).

    Article  Google Scholar 

  32. Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Petroski, W. & Minich, D. M. Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients 12, 2929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gibson, J. A., Sladen, G. E. & Dawson, A. M. Protein absorption and ammonia production: the effects of dietary protein and removal of the colon. Br. J. Nutr. 35, 61–65 (1976).

    Article  CAS  PubMed  Google Scholar 

  35. Moreno-Pérez, D. et al. Effect of a protein supplement on the gut microbiota of endurance athletes: a randomized, controlled, double-blind pilot study. Nutrients 10, 337 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dale, H. F. et al. Effects of a cod protein hydrolysate supplement on symptoms, gut integrity markers and fecal fermentation in patients with irritable bowel syndrome. Nutrients 11, 1635 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Geypens, B. et al. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut 41, 70–76 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Silvester, K. R., Bingham, S. A., Pollock, J. R., Cummings, J. H. & O’Neill, I. K. Effect of meat and resistant starch on fecal excretion of apparent N-nitroso compounds and ammonia from the human large bowel. Nutr. Cancer 29, 13–23 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Bingham, S. A. et al. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 17, 515–523 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Cummings, J. H., Hill, M. J., Bone, E. S., Branch, W. J. & Jenkins, D. J. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am. J. Clin. Nutr. 32, 2094–2101 (1979).

    Article  CAS  PubMed  Google Scholar 

  41. Mitchell, S. et al. A period of 10 weeks of increased protein consumption does not alter faecal microbiota or volatile metabolites in healthy older men: a randomised controlled trial. J. Nutr. Sci. 9, e25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korpela, K. Diet, microbiota, and metabolic health: trade-off between saccharolytic and proteolytic fermentation. Annu. Rev. Food Sci. Technol. 9, 65–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Rasheed, F., Markgren, J., Hedenqvist, M. & Johansson, E. Modeling to understand plant protein structure-function relationships — implications for seed storage proteins. Molecules 25, 873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sá, A. G. A., Moreno, Y. M. F. & Carciofi, B. A. M. Food processing for the improvement of plant proteins digestibility. Crit. Rev. Food Sci. Nutr. 60, 3367–3386 (2020).

    Article  PubMed  Google Scholar 

  45. Guillin, F. M. et al. Real ileal amino acid digestibility of pea protein compared to casein in healthy humans: a randomized trial. Am. J. Clin. Nutr. 115, 353–363 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Bos, C. et al. Assessment of net postprandial protein utilization of 15N-labelled milk nitrogen in human subjects. Br. J. Nutr. 81, 221–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Tessier, R. et al. Digestive and metabolic bioavailability in healthy humans of 15N-labeled rapeseed and flaxseed protein incorporated in biscuits. Am. J. Clin. Nutr. 117, 896–902 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Kashyap, S. et al. True ileal digestibility of legumes determined by dual-isotope tracer method in Indian adults. Am. J. Clin. Nutr. 110, 873–882 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Evenepoel, P. et al. Digestibility of cooked and raw egg protein in humans as assessed by stable isotope techniques. J. Nutr. 128, 1716–1722 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Teigen, L. et al. Differential hydrogen sulfide production by a human cohort in response to animal- and plant-based diet interventions. Clin. Nutr. 41, 1153–1162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beaumont, M. et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am. J. Clin. Nutr. 106, 1005–1019 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Patel, K. P., Luo, F. J. G., Plummer, N. S., Hostetter, T. H. & Meyer, T. W. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 7, 982–988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eggum, B. O. in Dietary Fibre — A Component of Food: Nutritional Function in Health and Disease (eds Schweizer, T. F. & Edwards, C. A.) 153–165 (Springer, 1992).

  54. Abrahamsson, M., Aman, P., Hallmans, G., Zhang, J. X. & Lundin, E. Excretion of amino acid residues from diets based on low-fibre wheat or high-fibre rye bread in human subjects with ileostomies. Eur. J. Clin. Nutr. 49, 589–595 (1995).

    CAS  PubMed  Google Scholar 

  55. Macfarlane, G., Gibson, G. & Cummings, J. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 72, 57–64 (1992).

    CAS  PubMed  Google Scholar 

  56. Cummings, J. H. & Branch, W. J. in Dietary Fiber: Basic and Clinical Aspects (eds Vahouny, G. V. & Kritchevsky, D.) 131–149 (Springer, 1986).

  57. Boets, E. et al. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7, 8916–8929 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yao, C. K. et al. Modulation of colonic hydrogen sulfide production by diet and mesalazine utilizing a novel gas-profiling technology. Gut Microbes 9, 510–522 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Muir, J. G. et al. Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone. Am. J. Clin. Nutr. 79, 1020–1028 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Lewis, S., Brazier, J., Beard, D., Nazem, N. & Proctor, D. Effects of metronidazole and oligofructose on faecal concentrations of sulphate-reducing bacteria and their activity in human volunteers. Scand. J. Gastroenterol. 40, 1296–1303 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Birkett, A., Muir, J., Phillips, J., Jones, G. & O’Dea, K. Resistant starch lowers fecal concentrations of ammonia and phenols in humans. Am. J. Clin. Nutr. 63, 766–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. McIntyre, A., Young, G. P., Taranto, T., Gibson, P. R. & Ward, P. B. Different fibers have different regional effects on luminal contents of rat colon. Gastroenterology 101, 1274–1281 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Govers, M., Gannon, N., Dunshea, F., Gibson, P. & Muir, J. Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: a study in pigs. Gut 45, 840–847 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. So, D. et al. Detection of changes in regional colonic fermentation in response to supplementing a low FODMAP diet with dietary fibres by hydrogen concentrations, but not by luminal pH. Aliment. Pharmacol. Ther. 58, 417–428 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Meade, S. J., Reid, E. A. & Gerrard, J. A. The impact of processing on the nutritional quality of food proteins. J. AOAC Int. 88, 904–922 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Loveday, S. M. Protein digestion and absorption: the influence of food processing. Nutr. Res. Rev. 36, 544–559 (2022).

    Article  PubMed  Google Scholar 

  67. Prodhan, U. K. et al. Comparable postprandial amino acid and gastrointestinal hormone responses to beef steak cooked using different methods: a randomised crossover trial. Nutrients 12, 380 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oberli, M. et al. High true ileal digestibility but not postprandial utilization of nitrogen from bovine meat protein in humans is moderately decreased by high-temperature, long-duration cooking. J. Nutr. 145, 2221–2228 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, K., Zheng, J. & Chen, F. Heat-induced changes in the physicochemical properties and in vitro digestibility of rice protein fractions. J. Food Sci. Technol. 58, 1368–1377 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Accardo, F., Leni, G., Tedeschi, T., Prandi, B. & Sforza, S. Structural and chemical changes induced by temperature and pH hinder the digestibility of whey proteins. Food Chem. 387, 132884 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Trommelen, J. et al. Casein protein processing strongly modulates post-prandial plasma amino acid responses in vivo in humans. Nutrients 12, 2299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Loveday, S. M., Peram, M. R., Singh, H., Ye, A. & Jameson, G. B. Digestive diversity and kinetic intrigue among heated and unheated β-lactoglobulin species. Food Funct. 5, 2783–2791 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Drummond, E., O’Sullivan, V., Sc Sri Harsha, P., Brennan, L. & Horner, K. Effects of a casein hydrolysate versus intact casein on gastric emptying and amino acid responses. Eur. J. Nutr. 58, 955–964 (2019).

    Article  PubMed  Google Scholar 

  74. Calbet, J. A. & Holst, J. J. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur. J. Nutr. 43, 127–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Koopman, R. et al. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am. J. Clin. Nutr. 90, 106–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Aljahdali, N. & Carbonero, F. Impact of Maillard reaction products on nutrition and health: current knowledge and need to understand their fate in the human digestive system. Crit. Rev. Food Sci. Nutr. 59, 474–487 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Murray, M. et al. Reduced growth, altered gut microbiome and metabolite profile, and increased chronic kidney disease risk in young pigs consuming a diet containing highly resistant protein. Front. Nutr. 9, 816749 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Seiquer, I. et al. Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. Am. J. Clin. Nutr. 83, 1082–1088 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Hellwig, M. et al. Stability of individual Maillard reaction products in the presence of the human colonic microbiota. J. Agric. Food Chem. 63, 6723–6730 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Mills, D. et al. Dietary glycated protein modulates the colonic microbiota towards a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects. J. Appl. Microbiol. 105, 706–714 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Yuan, X. et al. Accumulation and effects of dietary advanced glycation end products on the gastrointestinal tract in rats. Int. J. Food Sci. Technol. 53, 2273–2281 (2018).

    Article  CAS  Google Scholar 

  82. Mastrocola, R. et al. Effects of exogenous dietary advanced glycation end products on the cross-talk mechanisms linking microbiota to metabolic inflammation. Nutrients 12, 2497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shanika, L. G. T., Reynolds, A., Pattison, S. & Braund, R. Proton pump inhibitor use: systematic review of global trends and practices. Eur. J. Clin. Pharmacol. 79, 1159–1172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Evenepoel, P. Alteration in digestion and absorption of nutrients during profound acid suppression. Best. Pract. Res. Clin. Gastroenterol. 15, 539–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Evenepoel, P. et al. Evidence for impaired assimilation and increased colonic fermentation of protein, related to gastric acid suppression therapy. Aliment. Pharmacol. Ther. 12, 1011–1019 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Kostiuchenko, O. et al. Effects of proteases from pineapple and papaya on protein digestive capacity and gut microbiota in healthy C57BL/6 mice and dose-manner response on mucosal permeability in human reconstructed intestinal 3D tissue model. Metabolites 12, 1027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wiboonsirikul, J., Klahan, R. & Khuwijitjaru, P. Extraction of crude bromelain from pineapple (Ananas comosus L.) fruit waste and it’s in vitro protein digestibility. J. Agric. Sci. 19, 73–88 (2024).

    Google Scholar 

  88. Lee, S. Y. et al. Methods for improving meat protein digestibility in older adults. J. Anim. Sci. Technol. 65, 32–56 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Garces Ortega, M. Effect of Proteolytic Enzyme and Fiber of Papaya Fruit on Human Digestive Health Thesis, Univ. Illinois at Urbana-Champaign (2012).

  90. Park, S. et al. The impact of Hayward green kiwifruit on dietary protein digestion and protein metabolism. Eur. J. Nutr. 60, 1141–1148 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Jäger, R. et al. Probiotic administration increases amino acid absorption from plant protein: a placebo-controlled, randomized, double-blind, multicenter, crossover study. Probiotics Antimicrob. Proteins 12, 1330–1339 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Walden, K. E. et al. Probiotic BC30 improves amino acid absorption from plant protein concentrate in older women. Probiotics Antimicrob. Proteins 16, 125–137 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Stecker, R. A. et al. Bacillus coagulans GBI-30, 6086 improves amino acid absorption from milk protein. Nutr. Metab. 17, 93 (2020).

    Article  CAS  Google Scholar 

  94. Gilbert, M. S., Ijssennagger, N., Kies, A. K. & van Mil, S. W. Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G159–G170 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Smirnov, K. S. et al. Challenges of metabolomics in human gut microbiota research. Int. J. Med. Microbiol. 306, 266–279 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Rhodes, J. M. Nutrition and gut health: the impact of specific dietary components — it’s not just five-a-day. Proc. Nutr. Soc. 80, 9–18 (2021).

    Article  PubMed  Google Scholar 

  97. Gibson, P. R., Halmos, E. P. & Muir, J. G. FODMAPS, prebiotics and gut health — the FODMAP hypothesis revisited. Aliment. Pharmacol. Ther. 52, 233–246 (2020).

    Article  PubMed  Google Scholar 

  98. Morita, A., Tsao, D. & Kim, Y. S. Effect of sodium butyrate on alkaline phosphatase in HRT-18, a human rectal cancer cell line. Cancer Res. 42, 4540–4545 (1982).

    CAS  PubMed  Google Scholar 

  99. Macfarlane, G. & Allison, C. Utilisation of protein by human gut bacteria. FEMS Microbiol. Ecol. 2, 19–24 (1986).

    Article  CAS  Google Scholar 

  100. Vancamelbeke, M. & Vermeire, S. The intestinal barrier: a fundamental role in health and disease. Expert. Rev. Gastroenterol. Hepatol. 11, 821–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Buret, A. G., Allain, T., Motta, J.-P. & Wallace, J. L. Effects of hydrogen sulfide on the microbiome: from toxicity to therapy. Antioxid. Redox Signal. 36, 211–219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mutuyemungu, E., Singh, M., Liu, S. & Rose, D. J. Intestinal gas production by the gut microbiota: a review. J. Funct. Foods 100, 105367 (2023).

    Article  Google Scholar 

  103. Suarez, F., Springfield, J. & Levitt, M. Identification of gases responsible for the odour of human flatus and evaluation of a device purported to reduce this odour. Gut 43, 100–104 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tangerman, A. & Winkel, E. G. Volatile sulfur compounds as the cause of bad breath: a review. Phosphorus Sulfur. Silicon Relat. Elem. 188, 396–402 (2013).

    Article  CAS  Google Scholar 

  105. Trabue, S., Kerr, B., Scoggin, K., Andersen, D. & Van Weelden, M. Swine diets impact manure characteristics and gas emissions: part I protein level. Sci. Total. Env. 755, 142528 (2021).

    Article  CAS  Google Scholar 

  106. Peters, V. et al. Western and carnivorous dietary patterns are associated with greater likelihood of IBD development in a large prospective population-based cohort. J. Crohns Colitis 16, 931–939 (2022).

    Article  PubMed  Google Scholar 

  107. Jowett, S. et al. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut 53, 1479–1484 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zinger, A., Barnes, E. L., Weisbein, L., Kappelman, M. & Micic, D. High red meat consumption is associated with greater risk of ulcerative colitis flare [abstract S61]. Am. J. Gastroenterol. 118, S17 (2023).

    Article  Google Scholar 

  109. Pitcher, M. & Cummings, J. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 39, 1–4 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Roediger, W. E. Decreased sulphur aminoacid intake in ulcerative colitis. Lancet 351, 1555 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Zhu, S. et al. Composition and diverse differences of intestinal microbiota in ulcerative colitis patients. Front. Cell Infect. Microbiol. 12, 953962 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rowan, F. et al. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis. Colon. Rectum 53, 1530–1536 (2010).

    Article  PubMed  Google Scholar 

  113. James, S. L. et al. Abnormal fibre usage in UC in remission. Gut 64, 562–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228–240 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Khalil, N. A., Walton, G. E., Gibson, G. R., Tuohy, K. M. & Andrews, S. C. In vitro batch cultures of gut microbiota from healthy and ulcerative colitis (UC) subjects suggest that sulphate-reducing bacteria levels are raised in UC and by a protein-rich diet. Int. J. Food Sci. Nutr. 65, 79–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Gibson, G., Cummings, J. & Macfarlane, G. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Lett. 86, 103–111 (1991).

    Article  CAS  Google Scholar 

  117. Levine, J., Ellis, C. J., Furne, J. K., Springfield, J. & Levitt, M. D. Fecal hydrogen sulfide production in ulcerative colitis. Am. J. Gastroenterol. 93, 83–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. De Preter, V. et al. Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway. Inflamm. Bowel Dis. 18, 1127–1136 (2012).

    Article  PubMed  Google Scholar 

  119. Roediger, W. nitric oxide from dysbiotic bacterial respiration of nitrate in the pathogenesis and as a target for therapy of ulcerative colitis. Aliment. Pharmacol. Ther. 27, 531–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Gibson, P., Van de Pol, E., Barratt, P. & Doe, W. Ulcerative colitis — a disease characterised by the abnormal colonic epithelial cell? Gut 29, 516–521 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chiba, M. et al. Relapse prevention by plant-based diet incorporated into induction therapy for ulcerative colitis: a single-group trial. Perm. J. 23, 18–220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Day, A. S. et al. Therapeutic potential of the 4 strategies to SUlfide-REduction (4-SURE) diet in adults with mild to moderately active ulcerative colitis: an open-label feasibility study. J. Nutr. 152, 1690–1701 (2022).

    Article  PubMed  Google Scholar 

  123. Sarbagili-Shabat, C. et al. A novel UC exclusion diet and antibiotics for treatment of mild to moderate pediatric ulcerative colitis: a prospective open-label pilot study. Nutrients 13, 3736 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Schmitt, M. & Greten, F. R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 21, 653–667 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Joosen, A. M. et al. Effect of dietary meat and fish on endogenous nitrosation, inflammation and genotoxicity of faecal water. Mutagenesis 25, 243–247 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Aune, D. et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343, d6617 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  128. So, D., Gibson, P. R., Muir, J. G. & Yao, C. K. Dietary fibres and IBS: translating functional characteristics to clinical value in the era of personalised medicine. Gut 70, 2383–2394 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Zeng, H., Lazarova, D. L. & Bordonaro, M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J. Gastrointest. Oncol. 6, 41–51 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Li, Y. & Tong, W. D. Association between dietary protein intake and constipation: data from the National Health and Nutrition Examination Survey 2005–2010. Neurogastroenterol. Motil. 36, e14795 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Austin, G. L. et al. A very low-carbohydrate diet improves symptoms and quality of life in diarrhea-predominant irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 7, 706–708.e1 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Halmos, E. P., Power, V. A., Shepherd, S. J., Gibson, P. R. & Muir, J. G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146, 67–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Ramani, A., Hazra, T., Mudgil, S. & Mudgil, D. Emerging potential of whey proteins in prevention of cancer. Food Humanity 2, 100199 (2024).

    Article  Google Scholar 

  134. Brown, T. D., Whitehead, K. A. & Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2020).

    Article  Google Scholar 

  135. Yao, C. K. et al. Effects of fiber intake on intestinal pH, transit, and predicted oral mesalamine delivery in patients with ulcerative colitis. J. Gastroenterol. Hepatol. 36, 1580–1589 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Bischoff, S. C. et al. ESPEN practical guideline: clinical nutrition in inflammatory bowel disease. Clin. Nutr. 39, 632–653 (2020).

    Article  PubMed  Google Scholar 

  137. Singar, S., Nagpal, R., Arjmandi, B. H. & Akhavan, N. S. Personalized nutrition: tailoring dietary recommendations through genetic insights. Nutrients 16, 2673 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Allaband, C. et al. Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians. Clin. Gastroenterol. Hepatol. 17, 218–230 (2019).

    Article  PubMed  Google Scholar 

  139. Lagoumintzis, G. & Patrinos, G. P. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum. Genomics 17, 109 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jaskiewicz, J. et al. Catabolism of isobutyrate by colonocytes. Arch. Biochem. Biophys. 327, 265–270 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Li, X., Zhang, B., Hu, Y. & Zhao, Y. New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front. Pharmacol. 12, 769501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang, Y. et al. Unraveling p-cresol: from biosynthesis to biological and biochemical activities. Front. Pharmacol. 16, 1665421 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Davila, A.-M. et al. Re-print of “Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host”. Pharmacol. Res. 69, 114–126 (2013).

    Article  PubMed  Google Scholar 

  144. Ichikawa, H. & Sakata, T. Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is nonadditive. J. Nutr. 128, 843–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Bradley III, E., Isaacs, J., Hersh, T., Davidson, E. D. & Millikan, W. Nutritional consequences of total gastrectomy. Ann. Surg. 182, 415–429 (1975).

    Article  Google Scholar 

  146. Crenn et al. Net digestive absorption and adaptive hyperphagia in adult short bowel patients. Gut 53, 1279–1286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tappenden, K. A. Intestinal adaptation following resection. JPEN J. Parenter. Enter. Nutr. 38, 23S–31S (2014).

    Article  Google Scholar 

  148. Keller, J., Panter, H. & Layer, P. Management of the short bowel syndrome after extensive small bowel resection. Best. Pract. Res. Clin. Gastroenterol. 18, 977–992 (2004).

    Article  PubMed  Google Scholar 

  149. Luscombe-Marsh, N. D. et al. Plasma free amino acid responses to intraduodenal whey protein, and relationships with insulin, glucagon-like peptide-1 and energy intake in lean healthy men. Nutrients 8, 1, 4 (2016).

    Article  Google Scholar 

  150. Diether, N. E. & Willing, B. P. Microbial fermentation of dietary protein: an important factor in diet–microbe–host interaction. Microorganisms 7, 19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dhakal, S., Moazzami, Z., Perry, C. & Dey, M. Effects of lean pork on microbiota and microbial-metabolite trimethylamine-N-oxide: a randomized controlled non-inferiority feeding trial based on the dietary guidelines for Americans. Mol. Nutr. Food Res. 66, e2101136 (2022).

    Article  PubMed  Google Scholar 

  152. Abdallah, A., Elemba, E., Zhong, Q. & Sun, Z. Gastrointestinal gut microbiota: with special emphasis on host nutrition. Curr. Protein Pept. Sci. 21, 785–798 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Freeman, H. J. & Kim, Y. S. Digestion and absorption of protein. Annu. Rev. Med. 29, 99–116 (1978).

    Article  CAS  PubMed  Google Scholar 

  154. Trommelen, J., Tomé, D. & van Loon, L. J. Gut amino acid absorption in humans: concepts and relevance for postprandial metabolism. Clin. Nutr. Open. Sci. 36, 43–55 (2021).

    Article  Google Scholar 

  155. Ambühl, P. M. Protein intake in renal and hepatic disease. Int. J. Vitam. Nutr. Res. 81, 162–172 (2011).

    Article  PubMed  Google Scholar 

  156. Wu, G. Amino acids: metabolism, functions, and nutrition. Amino acids 37, 1–17 (2009).

    Article  PubMed  Google Scholar 

  157. Gaffney-Stomberg, E., Insogna, K. L., Rodriguez, N. R. & Kerstetter, J. E. Increasing dietary protein requirements in elderly people for optimal muscle and bone health. J. Am. Geriatr. Soc. 57, 1073–1079 (2009).

    Article  PubMed  Google Scholar 

  158. Muscaritoli, M. et al. ESPEN practical guideline: clinical nutrition in cancer. Clin. Nutr. 40, 2898–2913 (2021).

    Article  PubMed  Google Scholar 

  159. Hodgkinson, S. M. & Darragh, A. J. Quantifying the digestibility of dietary protein. J. Nutr. 130, 1850S–1856S (2000).

    Article  PubMed  Google Scholar 

  160. Bandyopadhyay, S. et al. Evaluation of protein quality in humans and insights on stable isotope approaches to measure digestibility — a review. Adv. Nutr. 13, 1131–1143 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Adhikari, S., Schop, M., de Boer, I. J. M. & Huppertz, T. Protein quality in perspective: a review of protein quality metrics and their applications. Nutrients 14, 947 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Thwaites, P. A. et al. Current status and future directions of ingestible electronic devices in gastroenterology. Aliment. Pharmacol. Ther. 59, 459–474 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant funding and academic support from The Hospital Research Foundation Group and Michelle McGrath Fellowship. The authors acknowledge A. Holasek from the Central Adelaide Local Health Network Library service who provided support with the practicalities of literature searching. The figures were originally developed with BioRender before being redrawn; Supplementary Fig 1 was created with BioRender; Mathias, R. (2025) https://BioRender.com/v5telb9.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. R.H.D. wrote the original article and created tables and figures. All authors made substantial contributions to discussion of content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Alice S. Day.

Ethics declarations

Competing interests

R.V.B. has received grant, research support or speaker fees (all paid to his employer for research support) from AbbVie, Ferring, Janssen, Shire, Takeda, GSK and Emerge Health; and is a shareholder in Biomebank. P.R.G. is a consultant or advisory board member for Anatara, Atmo Biosciences, Topas and Comvita; has received research grants for investigator-driven studies from Mindset Health, and speaker honoraria from Dr Falk Pharma and Mindset Health Pty.; and is a shareholder in Atmo Biosciences. His salary is derived from sales of a digital application (Monash University FODMAP diet app), patient booklets cookbooks and online courses, all of which relate to the low FODMAP diet therapy. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Alan Mackie, Kaitlin Day and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

The electronic databases Medline, Embase, Emcare and Cochrane Library were searched up to 18 November 2025 to retrieve articles. A comprehensive search strategy using both keywords and MeSH terms was developed to identify a broad scope of potentially relevant articles (Supplementary Table 5). Search terms and synonyms to signify ’Protein‘, ’Digestion‘, ’Absorption‘ and ’Fermentation‘ were used. No limits were applied to the search strategy. However, a range of synonyms for ’animals‘ and ’paediatrics‘ were used in attempt to refine the search to human adults. Citations from each database were exported into EndNote 20 and then Covidence where duplicates were removed. The resulting 8,331 articles were screened by title and abstract to locate primary studies and reviews detailing digestion, absorption or fermentation of protein in the human gastrointestinal tract. Studies in animals, in vitro or simulated digestion, and studies in infants and children were excluded. Additional papers including animal or in vitro data relevant to the concepts discussed in this paper were subsequently included. Full-text articles were screened to determine relevance for inclusion in this narrative review.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, R.H., Bryant, R.V., Gibson, P.R. et al. The fate of dietary protein in the gastrointestinal tract and implications for colonic disease. Nat Rev Gastroenterol Hepatol (2026). https://doi.org/10.1038/s41575-026-01173-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41575-026-01173-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing