Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational analysis of DNA methylation from long-read sequencing

Abstract

DNA methylation is a critical epigenetic mechanism in numerous biological processes, including gene regulation, development, ageing and the onset of various diseases such as cancer. Studies of methylation are increasingly using single-molecule long-read sequencing technologies to simultaneously measure epigenetic states such as DNA methylation with genomic variation. These long-read data sets have spurred the continuous development of advanced computational methods to gain insights into the roles of methylation in regulating chromatin structure and gene regulation. In this Review, we discuss the computational methods for calling methylation signals, contrasting methylation between samples, analysing cell-type diversity and gaining additional genomic insights, and then further discuss the challenges and future perspectives of tool development for DNA methylation research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational workflow for long-read methylation analysis.
Fig. 2: Applications of long-read methylation analyses.

Similar content being viewed by others

References

  1. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lucas, M. C. & Novoa, E. M. Long-read sequencing in the era of epigenomics and epitranscriptomics. Nat. Methods 20, 25–29 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023). This paper is the first to reveal the DNA methylation landscape of major normal human cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jones, M. J., Goodman, S. J. & Kobor, M. S. DNA methylation and healthy human aging. Aging Cell 14, 924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Locke, W. J. et al. DNA methylation cancer biomarkers: translation to the clinic. Front. Genet. 10, 477856 (2019).

    Article  Google Scholar 

  6. Ansar, M. et al. SMAD3 hypomethylation as a biomarker for early prediction of colorectal cancer. Int. J. Mol. Sci. 21, 7395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400–5413 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40–46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Timp, W. & Feinberg, A. P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer 13, 497–510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Si, W. et al. Nanopore sequencing identifies differentially methylated genes in the central nervous system in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 381, 578134 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed, S. A. H., Ansari, S. A., Mensah-Brown, E. P. K. & Emerald, B. S. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin. Epigenetics 12, 104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson, A. A. et al. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 15, 483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berdasco, M. & Esteller, M. Clinical epigenetics: seizing opportunities for translation. Nat. Rev. Genet. 20, 109–127 (2018).

    Article  Google Scholar 

  17. Ahsan, M. U., Gouru, A., Chan, J., Zhou, W. & Wang, K. A signal processing and deep learning framework for methylation detection using Oxford Nanopore sequencing. Nat. Commun. 15, 1448 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Genner, R. et al. Assessing methylation detection for primary human tissue using Nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.02.29.581569 (2024).

  19. Huang, Y.-W., Huang, T. H.-M. & Wang, L.-S. Profiling DNA methylomes from microarray to genome-scale sequencing. Technol. Cancer Res. Treat. 9, 139–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Clark, S. J., Statham, A., Stirzaker, C., Molloy, P. L. & Frommer, M. DNA methylation: bisulphite modification and analysis. Nat. Protoc. 1, 2353–2364 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009). This paper shows the importance of DMRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olova, N. et al. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of sbiases affecting DNA methylation data. Genome Biol. 19, 33 (2018).

    Article  Google Scholar 

  25. Sigurpalsdottir, B. D. et al. A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Genome Biol. 25, 69 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vaisvila, R. et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 31, 1280–1289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y. et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat. Biotechnol. 37, 424–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dinh, H. Q. et al. Advanced methylome analysis after bisulfite deep sequencing: an example in Arabidopsis. PLoS ONE 7, e41528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johns Hopkins University, School of Medicine. Genetic Resources Core Facility. GRCF https://grcf.jhmi.edu/ (2022).

  31. Noguera-Castells, A., García-Prieto, C. A., Álvarez-Errico, D. & Esteller, M. Validation of the new EPIC DNA methylation microarray (900K EPIC v2) for high-throughput profiling of the human DNA methylome. Epigenetics 18, 2185742 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329–346 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010). This paper is the first to show that long-read sequencing is capable of detecting DNA methylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Timp, W., Comer, J. & Aksimentiev, A. DNA base-calling from a nanopore using a Viterbi algorithm. Biophys. J. 102, L37–L39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017). This paper presents the first widely adopted method (Nanopolish) capable of calling DNA methylation on ONT.

    Article  CAS  PubMed  Google Scholar 

  36. Karimzadeh, M., Ernst, C., Kundaje, A. & Hoffman, M. M. Umap and Bismap: quantifying genome and methylome mappability. Nucleic Acids Res. 46, e120 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Yuen, Z. W.-S. et al. Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing. Nat. Commun. 12, 3438 (2021).

    Article  Google Scholar 

  38. Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22, 295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mahmoud, M. et al. Structural variant calling: the long and the short of it. Genome Biol. 20, 246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. English, A. C. et al. Analysis and benchmarking of small and large genomic variants across tandem repeats. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02225-z (2024).

  41. Martin, M. et al. WhatsHap: fast and accurate read-based phasing. Preprint at bioRxiv https://doi.org/10.1101/085050 (2016).

  42. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suzuki, Y. et al. AgIn: measuring the landscape of CpG methylation of individual repetitive elements. Bioinformatics 32, 2911–2919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pacific Biosciences. Detecting DNA base modifications using single molecule, real-time sequencing White Paper, Base Modifications (PacBio, 2024).

  46. Tse, O. Y. O. et al. Genome-wide detection of cytosine methylation by single molecule real-time sequencing. Proc. Natl Acad. Sci. USA 118, e2019768118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pacific Biosciences. Jasmine: predict 5mC in PacBio HiFi reads. GitHub https://github.com/PacificBiosciences/jasmine (2024).

  48. Ni, P. et al. DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing. Nat. Commun. 14, 4054 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vaswani, A. et al. Attention is all you need. In Proc. 31st International Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 6000–6010 (Curran Associates, 2017).

  50. Liu, Y., Liu, Z., Jiang, T., Zang, T. & Wang, Y. Comparison of the Nanopore and PacBio sequencing technologies for DNA 5-methylcytosine detection. In Proc. IEEE International Conference on Bioinformatics and Biomedicine 220–225 (IEEE, 2022).

  51. Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oxford Nanopore Technology. megalodon. GitHub https://github.com/nanoporetech/megalodon (2024).

  53. Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ni, P. et al. DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35, 4586–4595 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Bonet, J. et al. DeepMP: a deep learning tool to detect DNA base modifications on Nanopore sequencing data. Bioinformatics 38, 1235–1243 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Stanojević, D., Li, Z., Bakić, S., Foo, R. & Šikić, M. Rockfish: A transformer-based model for accurate 5-methylcytosine prediction from nanopore sequencing. Nat. Commun. 15, 5580 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang, Y. et al. On the application of BERT models for nanopore methylation detection. In Proc. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 320–327 (IEEE, 2021).

  58. Yin, C. et al. NanoCon: contrastive learning-based deep hybrid network for nanopore methylation detection. Bioinformatics 40, btae046 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oxford Nanopore Technology. dorado: Oxford Nanopore’s basecaller. GitHub https://github.com/nanoporetech/dorado (2024).

  60. Gamaarachchi, H. et al. GPU accelerated adaptive banded event alignment for rapid comparative nanopore signal analysis. BMC Bioinform. 21, 343 (2020).

    Article  CAS  Google Scholar 

  61. Tourancheau, A., Mead, E. A., Zhang, X.-S. & Fang, G. Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing. Nat. Methods 18, 491–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. He, Y. & Ecker, J. R. Non-CG methylation in the human genome. Annu. Rev. Genomics Hum. Genet. 16, 55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Titcombe, P. et al. Human non-CpG methylation patterns display both tissue-specific and inter-individual differences suggestive of underlying function. Epigenetics 17, 653 (2022).

    Article  PubMed  Google Scholar 

  64. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Khare, T. et al. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon–intron boundary. Nat. Struct. Mol. Biol. 19, 1037–1043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pastor, W. A. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vasanthakumar, A. & Godley, L. A. 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Cancer Genet. 208, 167–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Pfeifer, G. P., Xiong, W., Hahn, M. A. & Jin, S.-G. The role of 5-hydroxymethylcytosine in human cancer. Cell Tissue Res. 356, 631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo, X.-J. et al. Loss of 5-hydroxymethylcytosine induces chemotherapy resistance in hepatocellular carcinoma via the 5-hmC/PCAF/AKT axis. Cell Death Dis. 14, 79 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sakamoto, Y. et al. Long-read whole-genome methylation patterning using enzymatic base conversion and nanopore sequencing. Nucleic Acids Res. 49, e81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun, Z. et al. Nondestructive enzymatic deamination enables single-molecule long-read amplicon sequencing for the determination of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Genome Res. 31, 291–300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Mastroeni, D. et al. Epigenetic changes in Alzheimer’s disease. Decrements in DNA methylation. Neurobiol. Aging 31, 2025–2037 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Mazzone, R. et al. The emerging role of epigenetics in human autoimmune disorders. Clin. Epigenetics 11, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Akbari, V. et al. Megabase-scale methylation phasing using nanopore long reads and NanoMethPhase. Genome Biol. 22, 68 (2021).

    Article  Google Scholar 

  77. Aryee, M. J. et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hansen, K. D., Langmead, B. & Irizarry, R. A. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 13, R83 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Feng, H. & Wu, H. Differential methylation analysis for bisulfite sequencing using DSS. Quant. Biol. 7, 327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oxford Nanopore Technologies. Modkit. ONT https://nanoporetech.github.io/modkit (2024).

  81. Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191–1199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Feng, H., Conneely, K. N. & Wu, H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 42, e69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Piao, Y., Xu, W., Park, K. H., Ryu, K. H. & Xiang, R. Comprehensive evaluation of differential methylation analysis methods for bisulfite sequencing data. Int. J. Environ. Res. Public Health 18, 7975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13, R87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mattei, G. et al. PoreMeth2: decoding the evolution of methylome alterations with Nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.10.03.616449 (2024).

  87. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. De Coster, W., Stovner, E. B. & Strazisar, M. methplotlib: analysis of modified nucleotides from nanopore sequencing. Bioinformatics 36, 3236–3238 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gu, Z., Eils, R., Schlesner, M. & Ishaque, N. EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations. BMC Genomics 19, 234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Li, Y., Ge, D. & Lu, C. The SMART App: an interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics Chromatin 12, 71 (2019).

    Article  Google Scholar 

  91. Cheetham, S. W., Kindlova, M. & Ewing, A. D. methylartist: tools for visualizing modified bases from nanopore sequence data. Bioinformatics 38, 3109 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Razaghi, R. et al. modbamtools: analysis of single-molecule epigenetic data for long-range profiling, heterogeneity, and clustering. Preprint at bioRxiv https://doi.org/10.1101/2022.07.07.499188 (2022).

  93. Bodea, G. O. et al. LINE-1 retrotransposons contribute to mouse PV interneuron development. Nat. Neurosci. 27, 1274–1284 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kolmogorov, M. et al. Scalable Nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation. Nat. Methods 20, 1483–1492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dolzhenko, E. et al. Characterization and visualization of tandem repeats at genome scale. Nat. Biotechnol. 42, 1606–1614 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Simmer, F. et al. Comparative genome-wide DNA methylation analysis of colorectal tumor and matched normal tissues. Epigenetics 7, 1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sindi, S. et al. Promoter methylation-regulated differentially expressed genes in breast cancer. Breast Cancer 15, 435 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gustafson, J. A. et al. High-coverage nanopore sequencing of samples from the 1000 Genomes Project to build a comprehensive catalog of human genetic variation. Genome Res. 34, 2061–2073 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abante, J., Fang, Y., Feinberg, A. P. & Goutsias, J. Detection of haplotype-dependent allele-specific DNA methylation in WGBS data. Nat. Commun. 11, 5238 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gigante, S. et al. Using long-read sequencing to detect imprinted DNA methylation. Nucleic Acids Res. 47, e46 (2019). This paper presents the first method to phase DNA methylation with SNP-based long-read phasing methods.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Shoemaker, R., Deng, J., Wang, W. & Zhang, K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 20, 883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, Y., Rohde, C., Reinhardt, R., Voelcker-Rehage, C. & Jeltsch, A. Non-imprinted allele-specific DNA methylation on human autosomes. Genome Biol. 10, R138 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zink, F. et al. Insights into imprinting from parent-of-origin phased methylomes and transcriptomes. Nat. Genet. 50, 1542–1552 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Rosenski, J. et al. Atlas of imprinted and allele-specific DNA methylation in the human body. Preprint at bioRxiv https://doi.org/10.1101/2024.05.01.591988 (2024).

  106. Fraser, H. B., Lam, L. L., Neumann, S. M. & Kobor, M. S. Population-specificity of human DNA methylation. Genome Biol. 13, R8 (2012).

    Article  Google Scholar 

  107. Majidian, S. & Sedlazeck, F. J. PhaseME: automatic rapid assessment of phasing quality and phasing improvement. Gigascience 9, giaa078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S. & Delaneau, O. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat. Genet. 55, 1243–1249 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fu, Y. et al. MethPhaser: methylation-based long-read haplotype phasing of human genomes. Nat. Commun. 15, 5327 (2024). This work is the first study using long-read DNA methylation signals to enhance genome phasing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, T., Hu, Y., Zang, T. & Wang, Y. Integrate GWAS, eQTL, and mQTL data to identify Alzheimer’s disease-related genes. Front. Genet. 10, 467372 (2019).

    Article  Google Scholar 

  112. Ma, J. et al. Elucidating the genetic architecture of DNA methylation to identify promising molecular mechanisms of disease. Sci. Rep. 12, 19564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fan, Y. et al. IMAGE: high-powered detection of genetic effects on DNA methylation using integrated methylation QTL mapping and allele-specific analysis. Genome Biol. 20, 220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Stefansson, O. A. et al. The correlation between CpG methylation and gene expression is driven by sequence variants. Nat. Genet. 56, 1624–1631 (2024). This important paper uses long reads to perform an mQTL study on an Icelandic population with the consideration of parent-of-origin DNA methylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, Y. et al. Global impact of somatic structural variation on the DNA methylome of human cancers. Genome Biol. 20, 209 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Katsman, E. et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol. 23, 158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu, T. et al. A pan-tissue DNA methylation atlas enables in silico decomposition of human tissue methylomes at cell-type resolution. Nat. Methods 19, 296–306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 13, 86 (2012).

    Article  Google Scholar 

  119. Jaffe, A. E. & Irizarry, R. A. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 15, R31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Schmidt, M., Maié, T., Dahl, E., Costa, I. G. & Wagner, W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol. 18, 178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, J. et al. DNA methylation-based epigenetic signatures predict somatic genomic alterations in gliomas. Nat. Commun. 13, 4410 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zong, W. et al. scMethBank: a database for single-cell whole genome DNA methylation maps. Nucleic Acids Res. 50, D380–D386 (2021).

    Article  PubMed Central  Google Scholar 

  123. Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018). This paper describes the ability of using DNA methylation to classify central nervous system tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Oliva, M. et al. DNA methylation QTL mapping across diverse human tissues provides molecular links between genetic variation and complex traits. Nat. Genet. 55, 112–122 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Nichols, R. V. et al. High-throughput robust single-cell DNA methylation profiling with sciMETv2. Nat. Commun. 13, 7627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Luo, C. et al. Robust single-cell DNA methylome profiling with snmC-seq2. Nat. Commun. 9, 3824 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Franzen, J. et al. DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift. Commun. Biol. 4, 598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, H., Cai, R., Dai, J. & Sun, W. EMeth: an EM algorithm for cell type decomposition based on DNA methylation data. Sci. Rep. 11, 5717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Arneson, D., Yang, X. & Wang, K. MethylResolver — a method for deconvoluting bulk DNA methylation profiles into known and unknown cell contents. Commun. Biol. 3, 422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, W. et al. ARIC: accurate and robust inference of cell type proportions from bulk gene expression or DNA methylation data. Brief. Bioinform. 23, bbab362 (2021).

    Article  Google Scholar 

  133. Broadbent, J. nanomix. GitHub https://github.com/Jonbroad15/nanomix (2024).

  134. Hannon, E. & Mill, J. Leveraging epigenetic signatures to determine the cell-type of origin from long read sequencing data. Preprint at bioRxiv https://doi.org/10.1101/2024.06.03.597114 (2024).

  135. De Ridder, K., Che, H., Leroy, K. & Thienpont, B. Benchmarking of methods for DNA methylome deconvolution. Nat. Commun. 15, 4134 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Houseman, E. A. et al. Reference-free deconvolution of DNA methylation data and mediation by cell composition effects. BMC Bioinform. 17, 259 (2016).

    Article  Google Scholar 

  137. Chakravarthy, A. et al. Pan-cancer deconvolution of tumour composition using DNA methylation. Nat. Commun. 9, 3220 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lee, D., Lee, S. & Kim, S. PRISM: methylation pattern-based, reference-free inference of subclonal makeup. Bioinformatics 35, i520–i529 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rahmani, E. et al. BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference. Genome Biol. 19, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Titus, A. J., Gallimore, R. M., Salas, L. A. & Christensen, B. C. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum. Mol. Genet. 26, R216 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xie, H. et al. Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res. 39, 4099–4108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fang, Y. et al. DNA methylation entropy is associated with DNA sequence features and developmental epigenetic divergence. Nucleic Acids Res 51, 2046–2065 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lee, D., Koo, B., Yang, J. & Kim, S. Metheor: ultrafast DNA methylation heterogeneity calculation from bisulfite read alignments. PLoS Comput. Biol. 19, e1010946 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813–825 (2014).

  145. Jenkinson, G., Pujadas, E., Goutsias, J. & Feinberg, A. P. Potential energy landscapes identify the information-theoretic nature of the epigenome. Nat. Genet. 49, 719–729 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vaidya, H. et al. DNA methylation entropy as a measure of stem cell replication and aging. Genome Biol. 24, 27 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, D. L. & Koo, B. K. DNA methylation heterogeneity profiles of 928 CCLE cell lines. figshare https://doi.org/10.6084/m9.figshare.21100717.v1 (2022).

  148. Scherer, M. et al. Quantitative comparison of within-sample heterogeneity scores for DNA methylation data. Nucleic Acids Res. 48, e46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Abante, J., Kambhampati, S., Feinberg, A. P. & Goutsias, J. Estimating DNA methylation potential energy landscapes from nanopore sequencing data. Sci. Rep. 11, 21619 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kerr, L., Kafetzopoulos, I., Grima, R. & Sproul, D. Genome-wide single-molecule analysis of long-read DNA methylation reveals heterogeneous patterns at heterochromatin that reflect nucleosome organisation. PLoS Genet. 19, e1010958 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Villicaña, S. & Bell, J. T. Genetic impacts on DNA methylation: research findings and future perspectives. Genome Biol. 22, 127 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bhat, A. et al. Role of transposable elements in genome stability: implications for health and disease. Int. J. Mol. Sci. 23, 7802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022). This important paper uses long reads to profile DNA methylation in human repeat elements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Giesselmann, P. et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Ewing, A. D. et al. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell 80, 915–928.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Ramirez, P. et al. Nanopore-based DNA long-read sequencing analysis of the aged human brain. Prerpint at bioRxiv https://doi.org/10.1101/2024.02.01.578450 (2024).

  158. Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schmidt, T. T. et al. High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer. Nat. Commun. 15, 5149 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Potapova, T. et al. Epigenetic control and inheritance of rDNA arrays. Preprint at bioRxiv https://doi.org/10.1101/2024.09.13.612795 (2024).

  162. Rodriguez-Algarra, F. et al. Genetic variation at mouse and human ribosomal DNA influences associated epigenetic states. Genome Biol. 23, 54 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stergachis, A. B., Debo, B. M., Haugen, E., Stirling Churchman, L. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Jha, A. et al. DNA-m6A calling and integrated long-read epigenetic and genetic analysis with fibertools. Genome Res. 34, 1976–1986 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hook, P. W. & Timp, W. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nat. Rev. Genet. 24, 627–641 (2023). This important paper describes the application on single-molecule sequencing technologies towards epigenomics.

    Article  CAS  PubMed  Google Scholar 

  166. Mahmoud, M. et al. Utility of long-read sequencing for all of us. Nat. Commun. 15, 837 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mei, X., Blanchard, J., Luellen, C., Conboy, M. J. & Conboy, I. M. Fail-tests of DNA methylation clocks, and development of a noise barometer for measuring epigenetic pressure of aging and disease. Aging 15, 8552–8575 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Olson, N. D. et al. Variant calling and benchmarking in an era of complete human genome sequences. Nat. Rev. Genet. 24, 464–483 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Liu, Z. et al. Author correction: towards accurate and reliable resolution of structural variants for clinical diagnosis. Genome Biol. 23, 198 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Khayat, M. M. et al. Hidden biases in germline structural variant detection. Genome Biol. 22, 347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kovaka, S. et al. Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment. Preprint at bioRxiv https://doi.org/10.1101/2024.03.05.583511 (2024).

  173. Oxford Nanopore Technologies. Guppy protocol. ONT https://nanoporetech.com/document/Guppy-protocol#gns.searchValue=guppy (2018).

  174. Kong, Y. et al. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution. Science 375, 515–522 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Park, Y. & Wu, H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32, 1446–1453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pacific Biosciences. MethBat: a battery of methylation tools for PacBio HiFi reads. GitHub https://github.com/PacificBiosciences/MethBat (2024).

  177. De Coster, W. methplotlib. GitHub https://github.com/wdecoster/methplotlib (2024).

  178. Lau, B. T. et al. Single-molecule methylation profiles of cell-free DNA in cancer with nanopore sequencing. Genome Med. 15, 33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 622, 842–849 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhou, W. InfiniumMethylation BeadChips annotation. GitHub https://zwdzwd.github.io/InfiniumAnnotation (2024).

  181. Beaulaurier, J. et al. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat. Commun. 6, 7438 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Ni, P. et al. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nat. Commun. 12, 5976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Klughammer, J. et al. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat. Commun. 14, 232 (2023).

    Article  Google Scholar 

  184. Agustinho, D. P. et al. Unveiling microbial diversity: harnessing long-read sequencing technology. Nat. Methods 21, 954–966 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ziller, M. J., Hansen, K. D., Meissner, A. & Aryee, M. J. Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat. Methods 12, 230–232 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Faulk, C. Genome skimming with nanopore sequencing precisely determines global and transposon DNA methylation in vertebrates. Genome Res. 33, 948–956 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Pacific Biosciences. pb-CpG-tools: collection of tools for the analysis of CpG data. GitHub https://github.com/PacificBiosciences/pb-CpG-tools (2024).

  188. Hansen, K. et al. bsseq. Bioconductor https://doi.org/10.18129/B9.BIOC.BSSEQ (2017).

  189. Global Alliance for Genomics & Health. HTS format specifications. Samtools https://samtools.github.io/hts-specs/ (2024).

Download references

Acknowledgements

The authors thank L. Paulin, K. Hansen, A. Wengler, C. Saunders and P. Rescheneder for discussions, and E. Dolzhenko for help with Fig. 2. Y.F. and F.J.S. are supported by National Institutes of Health (NIH) (1UG3NS132105-01, UM1DA058229 and 1U01HG011758-01). W.T. is supported by HG009190 (National Human Genome Research Institute (NHGRI)).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the literature and contributed substantially to discussion of the content; Y.F. wrote the article and all authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Fritz J. Sedlazeck.

Ethics declarations

Competing interests

F.J.S. receives research support from Illumina, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). W.T. has two patents (8,748,091 and 8,394,584) licensed to ONT. Y.F. declares no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Duncan Sproul, Quentin Gouil and Kai Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

6mASCOPE: https://github.com/fanglab/6mASCOPE

bsseq: https://rdrr.io/github/hansenlab/bsseq/man/read.modkit.html

ccsmeth: https://github.com/PengNi/ccsmeth

ccsmethphase: https://github.com/PengNi/ccsmethphase

cfDNA: https://github.com/billytcl/nanopore_cfDNA

cfNano: https://github.com/methylgrammarlab/cfdna-ont

CNS tumour tissue-type atlas: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109381

DeepMod2: https://github.com/WGLab/DeepMod2

DeepSignal2: https://github.com/bioinfomaticsCSU/deepsignal

Dorado: https://github.com/nanoporetech/dorado

DSS R Package: https://bioconductor.org/packages/release/bioc/vignettes/DSS/inst/doc/DSS.html

fibertools: https://github.com/fiberseq/fibertools-rs

GTEx: https://gtexportal.org/home/

Guppy: https://nanoporetech.com

Integrative Genomics Viewer (IGV): https://igv.org/

Jasmine: https://github.com/PacificBiosciences/jasmine

LongReadDNAmCTClassifier: https://github.com/ejh243/LongReadDNAmCTClassifier

MethBat: https://github.com/PacificBiosciences/MethBat

MethPhaser: https://github.com/treangenlab/methphaser

methplotlib: https://github.com/wdecoster/methplotlib

methylartist: https://github.com/adamewing/methylartist

modbamtools: https://github.com/rrazaghi/modbamtools

ModKit: https://nanoporetech.github.io/modkit/

NanoMethPhase: https://github.com/vahidAK/NanoMethPhase

Nanomix: https://github.com/Jonbroad15/nanomix

Nanopolish/f5c: https://github.com/jts/nanopolish

Normal human cell types atlas: https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186458

Pan-tissue DNA methylation atlas: https://github.com/aet21/EpiSCORE

pb-CpG-tools: https://github.com/PacificBiosciences/pb-CpG-tools

PoreMeth2: https://github.com/Lab-CoMBINE/PoreMeth2

Rockfish: https://github.com/lbcb-sci/rockfish

scMethBank: https://ngdc.cncb.ac.cn/methbank/scm/documentation

Sturgeon: https://github.com/marcpaga/sturgeon

TCGA Pan-Cancer atlas: https://portal.gdc.cancer.gov/

TLDR: https://github.com/adamewing/tldr

TRGT: https://github.com/PacificBiosciences/trgt

UNCALLED4: https://github.com/skovaka/uncalled4

Glossary

Attention model

A machine learning method that determines the relative importance of each component in a sequence.

Beta distribution

A continuous probability distribution defined from 0 to 1.

Bivariate shifting level model

A statistical model used to analyse paired data with shifting levels.

Genomic imprinting

A process of gene silencing through DNA methylation — the repressed allele is methylated whereas the active allele is unmethylated.

Graph genomes

A representation of genomic variation using a graph structure.

Haplotype phasing

The process of determining which variants are located on the same chromosome copy (that is, haplotype).

Hypermethylation

The increase in DNA methylation levels at specific genomic regions, often associated with gene silencing and implicated in various diseases, including cancer.

Hypomethylation

The decrease in DNA methylation levels, which can lead to genomic instability, overexpression of oncogenes or reactivation of transposable elements.

k-mer

A substring of length k from a DNA, RNA or protein sequence.

Long short-term memory model

A specialized type of recurrent neural network (RNN) capable of learning long-term dependencies by incorporating a memory cell structure, mitigating the vanishing gradient problem.

Non-negative matrix factorization

A dimensionality reduction technique that decomposes a matrix into non-negative components.

Phase block

A contiguous genomic region where haplotypes are resolved.

Recurrent neural networks

(RNNs). A class of neural network designed to process sequential data by maintaining a memory of past inputs, commonly used in time-series analysis and text prediction.

Transformer architectures

Deep learning models that leverage self-attention mechanisms to process sequences in parallel, achieving state-of-the-art performance in tasks such as language modelling and sequence alignment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Timp, W. & Sedlazeck, F.J. Computational analysis of DNA methylation from long-read sequencing. Nat Rev Genet 26, 620–634 (2025). https://doi.org/10.1038/s41576-025-00822-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00822-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research