Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial architecture of development and disease

Abstract

Tissue architecture is a product of a multilayered molecular landscape, where even subtle disruptions in the spatial context can initiate or reflect disease processes. Recent advances in high-throughput spatial omics technologies have enabled the investigation of this complexity in stunning detail, providing groundbreaking insights into how spatial molecular organization shapes health and disease. Spatial analysis empowers the discovery of developmental and disease-associated molecular signatures, cell states and multicellular niches, as well as the evaluation of disease heterogeneity within and across organs. This Review examines spatially resolved pathological molecular alterations in a wide range of disease processes, such as developmental disorders, tumorigenesis, fibrosis and injury responses, neurodegeneration, infection and inflammation, through the lens of these universal biological frameworks. We discuss challenges, opportunities and promising examples in advancing these technologies to clinical applications, including the increasing importance of artificial intelligence. Finally, we explore possible avenues for a more comprehensive, multidimensional assessment of tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Technical approaches for spatially resolved molecular capture.
Fig. 2: Biological frameworks for spatial data analysis.
Fig. 3: Spatial scales of development and disease.
Fig. 4: A possible strategy for the adoption of spatial omics into clinical pipelines.
Fig. 5: Expanding spatial molecular profiling beyond two dimensions.

Similar content being viewed by others

References

  1. Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).

    PubMed  PubMed Central  Google Scholar 

  2. Liu, L. et al. Spatiotemporal omics for biology and medicine. Cell 187, 4488–4519 (2024).

    PubMed  Google Scholar 

  3. Jain, S. & Eadon, M. T. Spatial transcriptomics in health and disease. Nat. Rev. Nephrol. 20, 659–671 (2024).

    PubMed  PubMed Central  Google Scholar 

  4. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    PubMed  Google Scholar 

  5. Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).

    PubMed  Google Scholar 

  6. Alexandrov, T., Saez-Rodriguez, J. & Saka, S. K. Enablers and challenges of spatial omics, a melting pot of technologies. Mol. Syst. Biol. 19, e10571 (2023).

    PubMed  PubMed Central  Google Scholar 

  7. De Jonghe, J. et al. scTrends: a living review of commercial single-cell and spatial ’omic technologies. Cell Genom. 4, 100723 (2024).

    PubMed  PubMed Central  Google Scholar 

  8. Gulati, G. S., D’Silva, J. P., Liu, Y., Wang, L. & Newman, A. M. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat. Rev. Mol. Cell Biol. 26, 11–31 (2025).

    PubMed  Google Scholar 

  9. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    PubMed  Google Scholar 

  10. Xiao, Z. et al. 3D reconstruction of a gastrulating human embryo. Cell 187, 2855–2874.e19 (2024).

    PubMed  Google Scholar 

  11. Xu, Y. et al. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat. Cell Biol. 25, 604–615 (2023).

    PubMed  Google Scholar 

  12. Cui, L. et al. Spatial transcriptomic characterization of a Carnegie stage 7 human embryo. Nat. Cell Biol. 27, 360–369 (2025).

    PubMed  Google Scholar 

  13. Pavon, N. et al. Patterning ganglionic eminences in developing human brain organoids using a morphogen-gradient-inducing device. Cell Rep. Methods 4, 100689 (2024).

    PubMed  PubMed Central  Google Scholar 

  14. Sanchís-Calleja, F. et al. Decoding morphogen patterning of human neural organoids with a multiplexed single-cell transcriptomic screen. Preprint at bioRxiv https://doi.org/10.1101/2024.02.08.579413 (2024).

  15. Bertacchi, M., Maharaux, G., Loubat, A., Jung, M. & Studer, M. FGF8-mediated gene regulation affects regional identity in human cerebral organoids. eLife 13, e98096 (2024).

    PubMed  PubMed Central  Google Scholar 

  16. Amin, N. D. et al. Generating human neural diversity with a multiplexed morphogen screen in organoids. Cell Stem Cell 31, 1831–1846.e9 (2024).

    PubMed  PubMed Central  Google Scholar 

  17. Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8, 70 (2023).

    PubMed  PubMed Central  Google Scholar 

  18. Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    PubMed  Google Scholar 

  19. Carmona-Fontaine, C. et al. Metabolic origins of spatial organization in the tumor microenvironment. Proc. Natl Acad. Sci. USA 114, 2934–2939 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Haley, M. J. et al. Hypoxia coordinates the spatial landscape of myeloid cells within glioblastoma to affect survival. Sci. Adv. 10, eadj3301 (2024).

    PubMed  PubMed Central  Google Scholar 

  21. Wang, W. et al. Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization. Cancer Cell 42, 815–832.e12 (2024).

    PubMed  Google Scholar 

  22. Rashidi, A. et al. Myeloid cell-derived creatine in the hypoxic niche promotes glioblastoma growth. Cell Metab. 36, 62–77.e8 (2024).

    PubMed  Google Scholar 

  23. Sun, H. et al. The relevance between hypoxia-dependent spatial transcriptomics and the prognosis and efficacy of immunotherapy in claudin-low breast cancer. Front. Immunol. 13, 1042835 (2022).

    PubMed  Google Scholar 

  24. Malagoli Tagliazucchi, G., Wiecek, A. J., Withnell, E. & Secrier, M. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat. Commun. 14, 789 (2023).

    PubMed  PubMed Central  Google Scholar 

  25. Kureshi, C. T. & Dougan, S. K. Cytokines in cancer. Cancer Cell 43, 15–35 (2025).

    PubMed  Google Scholar 

  26. Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).

    PubMed  PubMed Central  Google Scholar 

  27. Zhao, L. et al. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct. Target. Ther. 9, 225 (2024).

    PubMed  PubMed Central  Google Scholar 

  28. Wu, R. et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci. Adv. 7, eabg3750 (2021).

    PubMed  PubMed Central  Google Scholar 

  29. Jing, X. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Campillo, N. et al. Differential oxygenation in tumor microenvironment modulates macrophage and cancer cell crosstalk: Novel experimental setting and proof of concept. Front. Oncol. 9, 43 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Auxillos, J. et al. Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes. Sci. Adv. 10, eadn3448 (2024).

    PubMed  PubMed Central  Google Scholar 

  32. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Kueckelhaus, J. et al. Inferring histology-associated gene expression gradients in spatial transcriptomic studies. Nat. Commun. 15, 7280 (2024).

    PubMed  PubMed Central  Google Scholar 

  35. Li, C. et al. SpaceWalker enables interactive gradient exploration for spatial transcriptomics data. Cell Rep. Methods 3, 100645 (2023).

    PubMed  PubMed Central  Google Scholar 

  36. Chitra, U. et al. Mapping the topography of spatial gene expression with interpretable deep learning. Nat. Methods 22, 298–309 (2025).

    PubMed  PubMed Central  Google Scholar 

  37. Rood, J. E. et al. The Human Cell Atlas from a cell census to a unified foundation model. Nature 637, 1065–1071 (2025).

    PubMed  Google Scholar 

  38. Dann, E. et al. Precise identification of cell states altered in disease using healthy single-cell references. Nat. Genet. 55, 1998–2008 (2023).

    PubMed  PubMed Central  Google Scholar 

  39. Tabula Sapiens Consortium. The tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Google Scholar 

  40. Barkley, D. et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet. 54, 1192–1201 (2022).

    PubMed  PubMed Central  Google Scholar 

  41. Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 594–602 (2022).

    PubMed  PubMed Central  Google Scholar 

  42. Mo, C.-K. et al. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature 634, 1178–1186 (2024).

    PubMed  PubMed Central  Google Scholar 

  43. Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

    PubMed  PubMed Central  Google Scholar 

  44. Engblom, C. et al. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science 382, eadf8486 (2023).

    PubMed  Google Scholar 

  45. Cords, L. et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat. Commun. 14, 4294 (2023).

    PubMed  PubMed Central  Google Scholar 

  46. Ma, C. et al. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol. Cancer 22, 170 (2023).

    PubMed  PubMed Central  Google Scholar 

  47. Chu, X., Tian, Y. & Lv, C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol. Cancer 23, 150 (2024).

    PubMed  PubMed Central  Google Scholar 

  48. Matusiak, M. et al. Spatially segregated macrophage populations predict distinct outcomes in colon cancer. Cancer Discov. 14, 1418–1439 (2024).

    PubMed  PubMed Central  Google Scholar 

  49. Nasir, I. et al. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies. Trends Immunol. 44, 971–985 (2023).

    PubMed  Google Scholar 

  50. Ianevski, A. et al. Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones. Nat. Commun. 15, 8579 (2024).

    PubMed  PubMed Central  Google Scholar 

  51. Tirosh, I. & Suva, M. L. Cancer cell states: lessons from ten years of single-cell RNA-sequencing of human tumors. Cancer Cell 42, 1497–1506 (2024).

    PubMed  Google Scholar 

  52. Bai, Z. et al. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 187, 6760–6779.e24 (2024).

    PubMed  PubMed Central  Google Scholar 

  53. Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024).

    PubMed  Google Scholar 

  54. Watson, B. R. et al. Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. Nat. Commun. 16, 319 (2025).

    PubMed  PubMed Central  Google Scholar 

  55. Mayr, C. H. et al. Spatial transcriptomic characterization of pathologic niches in IPF. Sci. Adv. 10, eadl5473 (2024).

    PubMed  PubMed Central  Google Scholar 

  56. Franzén, L. et al. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat. Genet. 56, 1725–1736 (2024).

    PubMed  PubMed Central  Google Scholar 

  57. Kenigsbuch, M. et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886 (2022).

    PubMed  PubMed Central  Google Scholar 

  58. Lázár, E. et al. Spatiotemporal gene expression and cellular dynamics of the developing human heart. Nat. Genet. https://doi.org/10.1038/s41588-025-02352-6 (2025).

  59. He, P. et al. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 185, 4841–4860.e25 (2022).

    PubMed  PubMed Central  Google Scholar 

  60. Suo, C. et al. Mapping the developing human immune system across organs. Science 376, eabo0510 (2022).

    PubMed  Google Scholar 

  61. Greenbaum, S. et al. A spatially resolved timeline of the human maternal-fetal interface. Nature 619, 595–605 (2023).

    PubMed  PubMed Central  Google Scholar 

  62. Yayon, N. et al. A spatial human thymus cell atlas mapped to a continuous tissue axis. Nature 635, 708–718 (2024).

    PubMed  PubMed Central  Google Scholar 

  63. Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660.e19 (2019).

    PubMed  Google Scholar 

  64. Li, X. et al. Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nat. Neurosci. 26, 891–901 (2023).

    PubMed  PubMed Central  Google Scholar 

  65. Sountoulidis, A. et al. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat. Cell Biol. 25, 351–365 (2023).

    PubMed  PubMed Central  Google Scholar 

  66. Zhang, B. et al. A human embryonic limb cell atlas resolved in space and time. Nature 635, 668–678 (2024).

    PubMed  Google Scholar 

  67. To, K. et al. A multi-omic atlas of human embryonic skeletal development. Nature 635, 657–667 (2024).

    PubMed  PubMed Central  Google Scholar 

  68. Quach, H. et al. Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity. Nat. Commun. 15, 5898 (2024).

    PubMed  PubMed Central  Google Scholar 

  69. Sariyar, S. et al. High-parametric protein maps reveal the spatial organization in early-developing human lung. Nat. Commun. 15, 9381 (2024).

    PubMed  PubMed Central  Google Scholar 

  70. Gopee, N. H. et al. A prenatal skin atlas reveals immune regulation of human skin morphogenesis. Nature 635, 679–689 (2024).

    PubMed  PubMed Central  Google Scholar 

  71. Cranley, J. et al. Multiomic analysis reveals developmental dynamics of the human heart in health and disease. Preprint at bioRxiv https://doi.org/10.1101/2024.04.29.591736 (2024).

  72. Bayraktar, S. et al. High-resolution atlas of the developing human heart and the great vessels. Preprint at bioRxiv https://doi.org/10.1101/2024.04.27.591127 (2024).

  73. Valm, A. M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl Acad. Sci. USA 108, 4152–4157 (2011).

    PubMed  PubMed Central  Google Scholar 

  74. Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. Lyu, L. et al. Simultaneous profiling of host expression and microbial abundance by spatial metatranscriptome sequencing. Genome Res. 33, 401–411 (2023).

    PubMed  PubMed Central  Google Scholar 

  76. Zhu, B. et al. A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment. Nat. Commun. 16, 1230 (2025).

    PubMed  PubMed Central  Google Scholar 

  77. Saarenpää, S. et al. Spatial metatranscriptomics resolves host-bacteria-fungi interactomes. Nat. Biotechnol. 42, 1384–1393 (2024).

    PubMed  Google Scholar 

  78. Sarfatis, A., Wang, Y., Twumasi-Ankrah, N. & Moffitt, J. R. Highly multiplexed spatial transcriptomics in bacteria. Science 387, eadr0932 (2025).

    PubMed  PubMed Central  Google Scholar 

  79. Sounart, H. et al. Dual spatially resolved transcriptomics for human host-pathogen colocalization studies in FFPE tissue sections. Genome Biol. 24, 237 (2023).

    PubMed  PubMed Central  Google Scholar 

  80. Rendeiro, A. F. et al. The spatial landscape of lung pathology during COVID-19 progression. Nature 593, 564–569 (2021).

    PubMed  PubMed Central  Google Scholar 

  81. Lee, J. T. H. et al. Integrated histopathology, spatial and single cell transcriptomics resolve cellular drivers of early and late alveolar damage in COVID-19. Nat. Commun. 16, 1979 (2025).

    PubMed  PubMed Central  Google Scholar 

  82. Zhang, T. et al. Brain-wide alterations revealed by spatial transcriptomics and proteomics in COVID-19 infection. Nat. Aging 4, 1598–1618 (2024).

    PubMed  PubMed Central  Google Scholar 

  83. Pita-Juarez, Y. et al. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. Genome Biol. 26, 56 (2025).

    PubMed  PubMed Central  Google Scholar 

  84. Chen, J., Larsson, L., Swarbrick, A. & Lundeberg, J. Spatial landscapes of cancers: insights and opportunities. Nat. Rev. Clin. Oncol. 21, 660–674 (2024).

    PubMed  Google Scholar 

  85. Gong, D., Arbesfeld-Qiu, J. M., Perrault, E., Bae, J. W. & Hwang, W. L. Spatial oncology: translating contextual biology to the clinic. Cancer Cell 42, 1653–1675 (2024).

    PubMed  PubMed Central  Google Scholar 

  86. Xu, M., Zhang, T., Xia, R., Wei, Y. & Wei, X. Targeting the tumor stroma for cancer therapy. Mol. Cancer 21, 208 (2022).

    PubMed  PubMed Central  Google Scholar 

  87. Bilotta, M. T., Antignani, A. & Fitzgerald, D. J. Managing the TME to improve the efficacy of cancer therapy. Front. Immunol. 13, 954992 (2022).

    PubMed  PubMed Central  Google Scholar 

  88. Rui, R., Zhou, L. & He, S. Cancer immunotherapies: advances and bottlenecks. Front. Immunol. 14, 1212476 (2023).

    PubMed  PubMed Central  Google Scholar 

  89. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    PubMed  PubMed Central  Google Scholar 

  90. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    PubMed  Google Scholar 

  91. Teillaud, J.-L., Houel, A., Panouillot, M., Riffard, C. & Dieu-Nosjean, M.-C. Tertiary lymphoid structures in anticancer immunity. Nat. Rev. Cancer 24, 629–646 (2024).

    PubMed  Google Scholar 

  92. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    PubMed  PubMed Central  Google Scholar 

  93. Vanhersecke, L. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).

    PubMed  PubMed Central  Google Scholar 

  94. Dong, Y., Wang, T. & Wu, H. Tertiary lymphoid structures in autoimmune diseases. Front. Immunol. 14, 1322035 (2023).

    PubMed  Google Scholar 

  95. Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol. 19, 525–537 (2023).

    PubMed  Google Scholar 

  96. Castillo, R. L. et al. Spatial transcriptomics stratifies psoriatic disease severity by emergent cellular ecosystems. Sci. Immunol. 8, eabq7991 (2023).

    PubMed  PubMed Central  Google Scholar 

  97. Nayar, S. et al. Molecular and spatial analysis of tertiary lymphoid structures in Sjogren’s syndrome. Nat. Commun. 16, 5 (2025).

    PubMed  PubMed Central  Google Scholar 

  98. Liu, S. et al. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response. Immunity 55, 1940–1952.e5 (2022).

    PubMed  PubMed Central  Google Scholar 

  99. Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).

    PubMed  PubMed Central  Google Scholar 

  100. Bandyopadhyay, S. et al. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 187, 3120–3140.e29 (2024).

    PubMed  PubMed Central  Google Scholar 

  101. Dasdemir, E. et al. Spatial transcriptomics reveals inflammation and trans-differentiation states of acute myeloid leukemia in extramedullary and medullary tissues. Preprint at bioRxiv https://doi.org/10.1101/2024.11.11.622999 (2024).

  102. Vadakekolathu, J. et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci. Transl. Med. 12, eaaz0463 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. Rutella, S. et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvironments in acute myeloid leukemia. J. Clin. Invest. 132, e159579 (2022).

    PubMed  PubMed Central  Google Scholar 

  104. Koedijk, J. B. et al. A multidimensional analysis reveals distinct immune phenotypes and the composition of immune aggregates in pediatric acute myeloid leukemia. Leukemia 38, 2332–2343 (2024).

    PubMed  PubMed Central  Google Scholar 

  105. Wu, Y. et al. Multimodal transcriptomics reveal neurogenic aging trajectories and age-related regional inflammation in the dentate gyrus. Nat. Neurosci. 28, 415–430 (2025).

    PubMed  PubMed Central  Google Scholar 

  106. Sun, E. D. et al. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 638, 160–171 (2025).

    PubMed  Google Scholar 

  107. Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020).

    PubMed  Google Scholar 

  108. Avey, D. R. et al. Uncovering plaque-glia niches in human Alzheimer’s disease brains using spatial transcriptomics. Mol. Neurodegener. Adv. 1, 2 (2025).

    PubMed  PubMed Central  Google Scholar 

  109. Miyoshi, E. et al. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer’s disease. Nat. Genet. 56, 2704–2717 (2024).

    PubMed  PubMed Central  Google Scholar 

  110. Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat. Neurosci. 25, 588–595 (2022).

    PubMed  PubMed Central  Google Scholar 

  111. Ma, M. et al. The spatial landscape of glial pathology and T-cell response in Parkinson’s disease substantia nigra. Nat. Commun. 16, 7146 (2025).

    PubMed  PubMed Central  Google Scholar 

  112. Liu, Z. et al. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 32, 479–498 (2025).

    PubMed  Google Scholar 

  113. Theocharidis, G. et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat. Commun. 13, 181 (2022).

    PubMed  PubMed Central  Google Scholar 

  114. Chan, A. S. F. et al. Spatio-temporal dynamics of the fibrotic niche in cardiac repair. Preprint at bioRxiv https://doi.org/10.1101/2024.11.10.622609 (2024).

  115. Yamada, S. et al. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction. Nat. Cardiovasc. Res. 1, 1072–1083 (2022).

    PubMed  PubMed Central  Google Scholar 

  116. Wünnemann, F. et al. Spatial omics of acute myocardial infarction reveals a novel mode of immune cell infiltration. Preprint at bioRxiv https://doi.org/10.1101/2024.05.20.594955 (2024).

  117. He, J. et al. Single-cell and spatial transcriptomic analyses reveals the dynamic transcript profiles of myocardial lymphangiogenesis post myocardial infarction. eLife 13, RP99192 (2024).

    Google Scholar 

  118. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

    PubMed  PubMed Central  Google Scholar 

  119. Eyres, M. et al. Spatially resolved deconvolution of the fibrotic niche in lung fibrosis. Cell Rep. 40, 111230 (2022).

    PubMed  PubMed Central  Google Scholar 

  120. Vannan, A. et al. Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. Nat. Genet. 57, 647–658 (2025).

    PubMed  PubMed Central  Google Scholar 

  121. Abedini, A. et al. Single-cell multi-omic and spatial profiling of human kidneys implicates the fibrotic microenvironment in kidney disease progression. Nat. Genet. 56, 1712–1724 (2024).

    PubMed  PubMed Central  Google Scholar 

  122. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    PubMed  PubMed Central  Google Scholar 

  123. Fischer, D. S., Villanueva, M. A., Winter, P. S. & Shalek, A. K. Adapting systems biology to address the complexity of human disease in the single-cell era. Nat. Rev. Genet. 26, 514–531 (2025).

    PubMed  Google Scholar 

  124. Takahama, M. et al. A pairwise cytokine code explains the organism-wide response to sepsis. Nat. Immunol. 25, 226–239 (2024).

    PubMed  PubMed Central  Google Scholar 

  125. Pierre, A., Lancel, S. & Preau, S. Organ crosstalk and dysfunction in sepsis: harnessing emerging biotechnologies for future breakthroughs. Ann. Intensive Care 14, 161 (2024).

    PubMed  PubMed Central  Google Scholar 

  126. Lilja, S. et al. Multi-organ single-cell analysis reveals an on/off switch system with potential for personalized treatment of immunological diseases. Cell Rep. Med. 4, 100956 (2023).

    PubMed  PubMed Central  Google Scholar 

  127. Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

    PubMed  Google Scholar 

  128. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    PubMed  PubMed Central  Google Scholar 

  129. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    PubMed  PubMed Central  Google Scholar 

  130. Tsagiopoulou, M., Rashmi, S., Aguilar-Fernandez, S., Nieto, J. & Gut, I. G. Multi-organ single-cell transcriptomics of immune cells uncovered organ-specific gene expression and functions. Sci. Data 11, 316 (2024).

    PubMed  PubMed Central  Google Scholar 

  131. Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).

    PubMed  Google Scholar 

  132. Gao, Y. et al. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 42, 1764–1783.e10 (2024).

    PubMed  Google Scholar 

  133. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).

    PubMed  Google Scholar 

  134. Wen, J. et al. The genetic architecture of biological age in nine human organ systems. Nat. Aging 4, 1290–1307 (2024).

    PubMed  PubMed Central  Google Scholar 

  135. Gao, Y. et al. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Carrolo, M. et al. Metastatic organotropism: a brief overview. Front. Oncol. 14, 1358786 (2024).

    PubMed  PubMed Central  Google Scholar 

  137. Dunbar, K. J. et al. Regulation of metastatic organotropism. Trends Cancer 11, 216–231 (2025).

    PubMed  Google Scholar 

  138. Kuett, L. et al. Distant metastases of breast cancer resemble primary tumors in cancer cell composition but differ in immune cell phenotypes. Cancer Res. 85, 15–31 (2025).

    PubMed  Google Scholar 

  139. Klughammer, J. et al. A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features. Nat. Med. 30, 3236–3249 (2024).

    PubMed  PubMed Central  Google Scholar 

  140. Johnson, B. E. et al. An omic and multidimensional spatial atlas from serial biopsies of an evolving metastatic breast cancer. Cell Rep. Med. 3, 100525 (2022).

    PubMed  PubMed Central  Google Scholar 

  141. Brady, L. et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat. Commun. 12, 1426 (2021).

    PubMed  PubMed Central  Google Scholar 

  142. Tagore, S. et al. Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases. Nat. Med. 31, 1351–1363 (2025).

    PubMed  PubMed Central  Google Scholar 

  143. Zhang, Q. et al. The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis. Nat. Commun. 13, 5983 (2022).

    PubMed  PubMed Central  Google Scholar 

  144. Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 614, 555–563 (2023).

    PubMed  PubMed Central  Google Scholar 

  145. Sundar, R. et al. Spatial profiling of gastric cancer patient-matched primary and locoregional metastases reveals principles of tumour dissemination. Gut 70, 1823–1832 (2021).

    PubMed  Google Scholar 

  146. Zhao, J. J. et al. Spatially resolved niche and tumor microenvironmental alterations in gastric cancer peritoneal metastases. Gastroenterology 167, 1384–1398.e4 (2024).

    PubMed  Google Scholar 

  147. Levy, J. J. et al. Identification of spatial proteomic signatures of colon tumor metastasis: a digital spatial profiling approach. Am. J. Pathol. 193, 778–795 (2023).

    PubMed  PubMed Central  Google Scholar 

  148. Sathe, A. et al. Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor-associated SPP1+ macrophages and fibroblasts. Clin. Cancer Res. 29, 244–260 (2023).

    PubMed  Google Scholar 

  149. Wang, F. et al. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Sci. Adv. 9, eadf5464 (2023).

    PubMed  PubMed Central  Google Scholar 

  150. Wu, Y. et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12, 134–153 (2022).

    PubMed  Google Scholar 

  151. Wei, C. et al. Delineating the early dissemination mechanisms of acral melanoma by integrating single-cell and spatial transcriptomic analyses. Nat. Commun. 14, 8119 (2023).

    PubMed  PubMed Central  Google Scholar 

  152. Biermann, J. et al. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell 185, 2591–2608.e30 (2022).

    PubMed  PubMed Central  Google Scholar 

  153. Boe, R. H., Triandafillou, C. G., Lazcano, R., Wargo, J. A.& Raj, A. Spatial transcriptomics reveals influence of microenvironment on intrinsic fates in melanoma therapy resistance. Preprint at bioRxiv https://doi.org/10.1101/2024.06.30.601416 (2024).

  154. Naulaerts, S. et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer. Sci. Transl. Med. 15, eadd1016 (2023).

    PubMed  Google Scholar 

  155. Du, Y., Ding, X. & Ye, Y. The spatial multi-omics revolution in cancer therapy: precision redefined. Cell Rep. Med. 5, 101740 (2024).

    PubMed  PubMed Central  Google Scholar 

  156. Di Mauro, F. & Arbore, G. Spatial dissection of the immune landscape of solid tumors to advance precision medicine. Cancer Immunol. Res. 12, 800–813 (2024).

    PubMed  PubMed Central  Google Scholar 

  157. Bollhagen, A. & Bodenmiller, B. Highly multiplexed tissue imaging in precision oncology and translational cancer research. Cancer Discov. 14, 2071–2088 (2024).

    PubMed  PubMed Central  Google Scholar 

  158. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    PubMed  Google Scholar 

  159. Clifton, K. et al. STalign: alignment of spatial transcriptomics data using diffeomorphic metric mapping. Nat. Commun. 14, 8123 (2023).

    PubMed  PubMed Central  Google Scholar 

  160. [No authors listed] STAligner enables the integration and alignment of multiple spatial transcriptomics datasets. Nat. Comput. Sci. 3, 831–832 (2023).

    Google Scholar 

  161. Mitchel, J., Gao, T., Cole, E., Petukhov, V. & Kharchenko, P. V. Impact of segmentation errors in analysis of spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2025.01.02.631135 (2025).

  162. Park, J. et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat. Commun. 12, 3545 (2021).

    PubMed  PubMed Central  Google Scholar 

  163. Si, Y. et al. FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics. Nat. Methods 21, 1843–1854 (2024).

    PubMed  PubMed Central  Google Scholar 

  164. Alam, S. et al. Popari: modeling multisample variation in spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2025.05.08.652741 (2025).

  165. Holdener, C. & De Vlaminck, I. Smoothie: efficient inference of spatial co-expression networks from denoised spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2025.02.26.640406 (2025).

  166. Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    PubMed  PubMed Central  Google Scholar 

  167. Andersson, A. et al. A landmark-based common coordinate framework for spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2021.11.11.468178 (2021).

  168. Börner, K. et al. Human biomolecular atlas program (HuBMAP): 3D human reference atlas construction and usage. Nat. Methods 22, 845–860 (2025).

    PubMed  PubMed Central  Google Scholar 

  169. Börner, K. et al. Anatomical structures, cell types and biomarkers of the human reference atlas. Nat. Cell Biol. 23, 1117–1128 (2021).

    PubMed  PubMed Central  Google Scholar 

  170. Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13, R5 (2012).

    PubMed  PubMed Central  Google Scholar 

  171. Ekvall, M. et al. Spatial landmark detection and tissue registration with deep learning. Nat. Methods 21, 673–679 (2024).

    PubMed  PubMed Central  Google Scholar 

  172. Lu, M. Y. et al. A visual-language foundation model for computational pathology. Nat. Med. 30, 863–874 (2024).

    PubMed  PubMed Central  Google Scholar 

  173. Wang, X. et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 634, 970–978 (2024).

    PubMed  PubMed Central  Google Scholar 

  174. Chelebian, E., Avenel, C. & Wählby, C. Combining spatial transcriptomics with tissue morphology. Nat. Commun. 16, 4452 (2025).

    PubMed  PubMed Central  Google Scholar 

  175. Jaume, G. et al. HEST-1k: a dataset for spatial transcriptomics and histology image analysis. In 38th Conference on Neural Information Processing Systems (NeurIPS, 2024).

  176. Chelebian, E. et al. Discovery of tumour indicating morphological changes in benign prostate biopsies through AI. Sci. Rep. 15, 30770 (2025).

    PubMed  PubMed Central  Google Scholar 

  177. He, B., Bergenstråhle, L. & Lundeberg, J. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat. Biomed. Eng. 4, 827–834 (2020).

    PubMed  Google Scholar 

  178. Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40, 476–479 (2022).

    PubMed  Google Scholar 

  179. Zhang, D. et al. Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat. Biotechnol. 42, 1372–1377 (2024).

    PubMed  PubMed Central  Google Scholar 

  180. Wang, C. et al. Benchmarking the translational potential of spatial gene expression prediction from histology. Nat. Commun. 16, 1544 (2025).

    PubMed  PubMed Central  Google Scholar 

  181. Hu, J. et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351 (2021).

    PubMed  Google Scholar 

  182. Monjo, T., Koido, M., Nagasawa, S., Suzuki, Y. & Kamatani, Y. Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation. Sci. Rep. 12, 4133 (2022).

    PubMed  PubMed Central  Google Scholar 

  183. Cisternino, F. et al. Self-supervised learning for characterising histomorphological diversity and spatial RNA expression prediction across 23 human tissue types. Nat. Commun. 15, 5906 (2024).

    PubMed  PubMed Central  Google Scholar 

  184. He, S. et al. Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor-immune hubs. Nat. Biotechnol. 43, 223–235 (2025).

    PubMed  Google Scholar 

  185. Chen, W. et al. A visual-omics foundation model to bridge histopathology with spatial transcriptomics. Nat. Methods 22, 1568–1582 (2025).

    PubMed  PubMed Central  Google Scholar 

  186. Hoang, D.-T. et al. A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics. Nat. Cancer 5, 1305–1317 (2024).

    PubMed  PubMed Central  Google Scholar 

  187. Lu, M. Y. et al. A multimodal generative AI copilot for human pathology. Nature 634, 466–473 (2024).

    PubMed  PubMed Central  Google Scholar 

  188. Wang, H. et al. SpatialAgent: an autonomous AI agent for spatial biology. Preprint at bioRxiv https://doi.org/10.1101/2025.04.03.646459 (2025).

  189. Vorontsov, E. et al. A foundation model for clinical-grade computational pathology and rare cancers detection. Nat. Med. 30, 2924–2935 (2024).

    PubMed  PubMed Central  Google Scholar 

  190. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with tangram. Nat. Methods 18, 1352–1362 (2021).

    PubMed  PubMed Central  Google Scholar 

  191. Wenckstern, J. et al. AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery. Preprint at https://doi.org/10.48550/arXiv.2501.06039 (2025).

  192. Bunne, C. et al. How to build the virtual cell with artificial intelligence: priorities and opportunities. Preprint at https://doi.org/10.48550/arXiv.2409.11654 (2024).

  193. Zhang, J. et al. Tahoe-100M: a giga-scale single-cell perturbation atlas for context-dependent gene function and cellular modeling. Preprint at bioRxiv https://doi.org/10.1101/2025.02.20.639398 (2025).

  194. Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

    PubMed  PubMed Central  Google Scholar 

  195. Teo, A. Y. Y. et al. Identification of perturbation-responsive regions and genes in comparative spatial transcriptomics atlases. Preprint at bioRxiv https://doi.org/10.1101/2024.06.13.598641 (2024).

  196. Megas, S. et al. Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling. Preprint at https://doi.org/10.48550/arXiv.2409.05804 (2024).

  197. Frey, N.C. et al. Lab-in-the-loop therapeutic antibody design with deep learning. Preprint at bioRxiv https://doi.org/10.1101/2025.02.19.639050 (2025).

  198. Laubenbacher, R., Mehrad, B., Shmulevich, I. & Trayanova, N. Digital twins in medicine. Nat. Comput. Sci. 4, 184–191 (2024).

    PubMed  PubMed Central  Google Scholar 

  199. Bhatia, H. S. et al. Spatial proteomics in three-dimensional intact specimens. Cell 185, 5040–5058.e19 (2022).

    PubMed  Google Scholar 

  200. Kanatani, S. et al. Whole-brain spatial transcriptional analysis at cellular resolution. Science 386, 907–915 (2024).

    PubMed  Google Scholar 

  201. Gandin, V. et al. Deep-tissue transcriptomics and subcellular imaging at high spatial resolution. Science 388, eadq2084 (2025).

    PubMed  PubMed Central  Google Scholar 

  202. Fang, R. et al. Three-dimensional single-cell transcriptome imaging of thick tissues. eLife 12, RP90029 (2024).

    PubMed  PubMed Central  Google Scholar 

  203. Ertürk, A. Deep 3D histology powered by tissue clearing, omics and AI. Nat. Methods 21, 1153–1165 (2024).

    PubMed  Google Scholar 

  204. Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. 1, 0084 (2017).

    PubMed  PubMed Central  Google Scholar 

  205. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    PubMed  PubMed Central  Google Scholar 

  206. Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567–575 (2022).

    PubMed  PubMed Central  Google Scholar 

  207. Qiu, X. et al. Spatiotemporal modeling of molecular holograms. Cell 187, 7351–7373.e61 (2024).

    PubMed  Google Scholar 

  208. Almagro-Pérez, C. et al. AI-driven 3D spatial transcriptomics. Preprint at https://doi.org/10.48550/arXiv.2502.17761 (2025).

  209. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    PubMed  Google Scholar 

  210. Liu, X. et al. Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications. J. Hematol. Oncol. 17, 72 (2024).

    PubMed  PubMed Central  Google Scholar 

  211. Kiessling, P. & Kuppe, C. Spatial multi-omics: novel tools to study the complexity of cardiovascular diseases. Genome Med. 16, 14 (2024).

    PubMed  PubMed Central  Google Scholar 

  212. Eisenstein, M. Seven technologies to watch in 2022. Nature 601, 658–661 (2022).

    PubMed  Google Scholar 

  213. Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with MUSE. Nat. Biotechnol. 40, 1200–1209 (2022).

    PubMed  Google Scholar 

  214. Long, Y. et al. Deciphering spatial domains from spatial multi-omics with SpatialGlue. Nat. Methods 21, 1658–1667 (2024).

    PubMed  PubMed Central  Google Scholar 

  215. Coleman, K. et al. Resolving tissue complexity by multimodal spatial omics modeling with MISO. Nat. Methods 22, 530–538 (2025).

    PubMed  PubMed Central  Google Scholar 

  216. Wang, S., Lin, S. & Yang, C. The dawn of spatiotemporal transcriptomics. Biomed. Anal. 1, 154–161 (2024).

    Google Scholar 

  217. Velten, B. & Stegle, O. Principles and challenges of modeling temporal and spatial omics data. Nat. Methods 20, 1462–1474 (2023).

    PubMed  Google Scholar 

  218. Ren, J. et al. Spatiotemporally resolved transcriptomics reveals the subcellular RNA kinetic landscape. Nat. Methods 20, 695–705 (2023).

    PubMed  PubMed Central  Google Scholar 

  219. Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. Nat. Commun. 12, 3358 (2021).

    PubMed  PubMed Central  Google Scholar 

  220. Rietjens, R. G. J. & Heijs, B. In situ isotope tracing at single-cell resolution using mass spectrometry imaging. Methods Mol. Biol. 2855, 523–535 (2025).

    PubMed  Google Scholar 

  221. Wang, L. et al. Spatially resolved isotope tracing reveals tissue metabolic activity. Nat. Methods 19, 223–230 (2022).

    PubMed  PubMed Central  Google Scholar 

  222. Buglakova, E. et al. Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Nat. Metab. 6, 1695–1711 (2024).

    PubMed  PubMed Central  Google Scholar 

  223. Ratz, M. et al. Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nat. Neurosci. 25, 285–294 (2022).

    PubMed  PubMed Central  Google Scholar 

  224. Chow, K.-H. K. et al. Imaging cell lineage with a synthetic digital recording system. Science 372, eabb3099 (2021).

    PubMed  Google Scholar 

  225. He, Z. et al. Lineage recording in human cerebral organoids. Nat. Methods 19, 90–99 (2022).

    PubMed  Google Scholar 

  226. Tong, L. et al. Patient-derived organoids in precision cancer medicine. Med 5, 1351–1377 (2024).

    PubMed  Google Scholar 

  227. Wahle, P. et al. Multimodal spatiotemporal phenotyping of human retinal organoid development. Nat. Biotechnol. 41, 1765–1775 (2023).

    PubMed  PubMed Central  Google Scholar 

  228. Chiaradia, I. et al. Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell 30, 1351–1367.e10 (2023).

    PubMed  PubMed Central  Google Scholar 

  229. Legnini, I. et al. Spatiotemporal, optogenetic control of gene expression in organoids. Nat. Methods 20, 1544–1552 (2023).

    PubMed  PubMed Central  Google Scholar 

  230. You, Y. et al. Systematic comparison of sequencing-based spatial transcriptomic methods. Nat. Methods 21, 1743–1754 (2024).

    PubMed  PubMed Central  Google Scholar 

  231. Ren, P. et al. Systematic benchmarking of high-throughput subcellular spatial transcriptomics platforms. Preprint at bioRxiv https://doi.org/10.1101/2024.12.23.630033 (2024).

  232. Wang, H. et al. Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. Preprint at bioRxiv https://doi.org/10.1101/2023.12.07.570603 (2023).

  233. Kim, Y. et al. Seq-Scope protocol: repurposing illumina sequencing flow cells for high-resolution spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2024.03.29.587285 (2024).

  234. Poovathingal, S. et al. Nova-ST: nano-patterned ultra-dense platform for spatial transcriptomics. Cell Rep. Methods 4, 100831 (2024).

    PubMed  PubMed Central  Google Scholar 

  235. Schott, M. et al. Open-ST: high-resolution spatial transcriptomics in 3D. Cell 187, 3953–3972.e26 (2024).

    PubMed  Google Scholar 

  236. Liao, R. et al. Sequencing-based spatial transcriptomics with scRNA-seq sensitivity. Preprint at bioRxiv https://doi.org/10.1101/2025.01.15.633111 (2025).

  237. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    PubMed  PubMed Central  Google Scholar 

  238. Lebrigand, K. et al. The spatial landscape of gene expression isoforms in tissue sections. Nucleic Acids Res. 51, e47 (2023).

    PubMed  PubMed Central  Google Scholar 

  239. Zou, L. S. et al. Detection of allele-specific expression in spatial transcriptomics with spASE. Genome Biol. 25, 180 (2024).

    PubMed  PubMed Central  Google Scholar 

  240. Ma, C. et al. Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics. Nat. Methods 21, 2239–2247 (2024).

    PubMed  PubMed Central  Google Scholar 

  241. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    PubMed  PubMed Central  Google Scholar 

  242. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    PubMed  PubMed Central  Google Scholar 

  243. Llorens-Bobadilla, E. et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nat. Biotechnol. 41, 1085–1088 (2023).

    PubMed  PubMed Central  Google Scholar 

  244. Guo, P. et al. Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues. Nat. Methods 22, 520–529 (2025).

    PubMed  PubMed Central  Google Scholar 

  245. Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    PubMed  Google Scholar 

  246. Seferbekova, Z., Lomakin, A., Yates, L. R. & Gerstung, M. Spatial biology of cancer evolution. Nat. Rev. Genet. 24, 295–313 (2023).

    PubMed  Google Scholar 

  247. [No authors listed] Method of the year 2024: spatial proteomics. Nat. Methods 21, 2195–2196 (2024).

    Google Scholar 

  248. Mund, A., Brunner, A.-D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022).

    PubMed  Google Scholar 

  249. de Souza, N., Zhao, S. & Bodenmiller, B. Multiplex protein imaging in tumour biology. Nat. Rev. Cancer 24, 171–191 (2024).

    PubMed  Google Scholar 

  250. Jhaveri, N. et al. Mapping the spatial proteome of head and neck tumors: key immune mediators and metabolic determinants in the tumor microenvironment. GEN Biotechnol. 2, 418–434 (2023).

    Google Scholar 

  251. Yagnik, G., Liu, Z., Rothschild, K. J. & Lim, M. J. Highly multiplexed immunohistochemical MALDI-MS imaging of biomarkers in tissues. J. Am. Soc. Mass. Spectrom. 32, 977–988 (2021).

    PubMed  PubMed Central  Google Scholar 

  252. Claes, B. S. R. et al. MALDI-IHC-guided in-depth spatial proteomics: targeted and untargeted MSI combined. Anal. Chem. 95, 2329–2338 (2023).

    PubMed  PubMed Central  Google Scholar 

  253. Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).

    PubMed  Google Scholar 

  254. Quardokus, E. M. et al. Organ mapping antibody panels: a community resource for standardized multiplexed tissue imaging. Nat. Methods 20, 1174–1178 (2023).

    PubMed  PubMed Central  Google Scholar 

  255. Mund, A. et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

    PubMed  PubMed Central  Google Scholar 

  256. Zhang, H. et al. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. npj Imaging 2, 20 (2024).

    PubMed  PubMed Central  Google Scholar 

  257. Alexandrov, T. Spatial metabolomics: from a niche field towards a driver of innovation. Nat. Metab. 5, 1443–1445 (2023).

    PubMed  Google Scholar 

  258. Saharuka, V. et al. Large-scale evaluation of spatial metabolomics protocols and technologies. Preprint at bioRxiv https://doi.org/10.1101/2024.01.29.577354 (2024).

  259. Singhal, V. et al. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nat. Genet. 56, 431–441 (2024).

    PubMed  PubMed Central  Google Scholar 

  260. Li, H. et al. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1548 (2023).

    PubMed  PubMed Central  Google Scholar 

  261. Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19, 662–670 (2022).

    PubMed  Google Scholar 

  262. Armingol, E., Baghdassarian, H. M. & Lewis, N. E. The diversification of methods for studying cell-cell interactions and communication. Nat. Rev. Genet. 25, 381–400 (2024).

    PubMed  PubMed Central  Google Scholar 

  263. Plummer, J. T., Vlachos, I. S. & Martelotto, L. G. Introducing the global alliance for spatial technologies (GESTALT). Nat. Genet. 57, 275–279 (2025).

    PubMed  Google Scholar 

  264. Lim, J. et al. Transitioning single-cell genomics into the clinic. Nat. Rev. Genet. 24, 573–584 (2023).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank B. Ayoglu, L. Bergenstråhle and M. Vicari for their technical insights, M. He and S. Saarenpää for their general comments on the manuscript and M. Karlén for his work on the presented illustrations. The authors are supported by the Erling-Persson Foundation, the Swedish Cancer Society, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, and an ERC Advanced grant TWIGA 101021019/EC | EU Framework Programme for Research and Innovation H2020.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Enikő Lázár or Joakim Lundeberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Iwijn De Vlaminck, Kai Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

HuBMAP programme: www.hubmapconsortium.org

Human Cell Atlas: www.humancellatlas.org

Glossary

AI assistants

Artificial intelligence (AI) tools designed to support or automate specific research or clinical tasks through learned reasoning or prediction.

Cancer-associated fibroblasts

Stromal cells within the tumour microenvironment that support tumour growth, immune evasion and extracellular matrix remodelling.

Cell segmentation

The process of identifying and delineating individual cells in microscopy or spatial omics images.

Clonal barcoding

A technique that labels individual cells with unique genetic identifiers to trace lineage and clonal expansion.

Common coordinate frameworks

(CCFs). Standardized spatial reference maps that allow integration and comparison of tissue data across samples or studies.

Digital twin

A dynamic, computational replica of a biological system that integrates multi-scale data to simulate and predict biological behaviour.

Epithelial–mesenchymal transition

(EMT). A cellular process whereby epithelial cells acquire mesenchymal features, crucial in development and promoting invasion, metastasis and resistance in cancer.

Explainable AI

Artificial intelligence (AI) systems designed to make their decision-making processes transparent and understandable to humans.

Foundation models

Large-scale pre-trained artificial intelligence models that can be fine-tuned for various downstream tasks across domains.

Generative models

Machine learning models that learn to generate new data samples resembling the training distribution.

Immune checkpoint

Regulatory molecule in immune cells that modulates immune responses and can be targeted to enhance antitumour immunity.

Imputation

The prediction of missing or unmeasured values based on patterns learned from observed data.

Lab-in-the-loop

A research workflow in which experimental and computational processes iteratively inform and refine each other in real time.

Machine learning

A set of algorithms that learn patterns from data to make predictions or decisions without explicit programming.

Organoid models

3D mini-tissues grown from embryonic or induced pluripotent stem cells or patient-derived cells that recapitulate the structure and function of the original tissue or tumour.

Organotropism

The tendency of cancer cells to preferentially metastasize to specific organs.

Regression models

Statistical or machine learning models that estimate relationships between variables to predict continuous outcomes.

Spatial metatranscriptomics

Mapping of microbial and host transcripts across tissue sections to study host–microbiome interactions in situ.

Spatial multi-omics

Integration of multiple molecular modalities (for example, transcriptomics, proteomics, metabolomics) with spatial resolution in tissues.

Spatial trajectory analysis

Computational reconstruction of cellular differentiation or migration paths within their native spatial context.

Spatial transcriptomic clock

A machine learning model that uses spatially resolved single-cell gene expression data to predict biological age within tissue context, capturing how cell types and their local interactions contribute to ageing and rejuvenation.

Spatial V(D)J sequencing

A method that maps immune receptor sequences to their spatial location in a tissue, enabling the study of localized immune repertoires.

Spatiotemporal perturbation

Experimental or computational disruption of biological systems with controlled variation across space and time.

Tertiary lymphoid structures

(TLSs). Ectopic lymphoid aggregates that form in chronically inflamed tissues or tumours and contribute to local immune responses.

TLS scoring

Quantitative assessment of the presence and maturity of tertiary lymphoid structures (TLSs) in tissue samples.

Tumour microenvironment

(TME). The complex cellular and molecular milieu that surrounds tumour cells and includes immune cells, fibroblasts, vasculature and extracellular matrix, influencing cancer progression.

Tumour-associated macrophages

Macrophages within tumours that often adopt pro-tumoural functions, such as promoting angiogenesis and suppressing immunity.

Virtual cell models

Computational abstractions that simulate the behaviour or state of a cell by integrating spatial and molecular data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lázár, E., Lundeberg, J. Spatial architecture of development and disease. Nat Rev Genet 27, 118–136 (2026). https://doi.org/10.1038/s41576-025-00892-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00892-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing