Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most successful modern pathogens. The same organism that lives as a commensal and is transmitted in both health-care and community settings is also a leading cause of bacteraemia, endocarditis, skin and soft tissue infections, bone and joint infections and hospital-acquired infections. Genetically diverse, the epidemiology of MRSA is primarily characterized by the serial emergence of epidemic strains. Although its incidence has recently declined in some regions, MRSA still poses a formidable clinical threat, with persistently high morbidity and mortality. Successful treatment remains challenging and requires the evaluation of both novel antimicrobials and adjunctive aspects of care, such as infectious disease consultation, echocardiography and source control. In this Review, we provide an overview of basic and clinical MRSA research and summarize the expansive body of literature on the epidemiology, transmission, genetic diversity, evolution, surveillance and treatment of MRSA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major genomic elements in methicillin-resistant Staphylococcus aureus.
Fig. 2: Global distribution and diversity of methicillin-resistant Staphylococcus aureus.
Fig. 3: Methicillin-resistant Staphylococcus aureus colonization.

Similar content being viewed by others

References

  1. Newsom, S. W. Ogston’s coccus. J. Hosp. Infect. 70, 369–372 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Harkins, C. P. et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 18, 130 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Katayama, Y., Ito, T. & Hiramatsu, K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 44, 1549–1555 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hartman, B. J. & Tomasz, A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in. Staphylococcus aureus. J. Bacteriol. 158, 513–516 (1984).

    CAS  PubMed  Google Scholar 

  5. Tenover, F. C. et al. Characterization of a strain of community-associated methicillin-resistant Staphylococcus aureus widely disseminated in the United States. J. Clin. Microbiol. 44, 108–118 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kennedy, A. D. et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc. Natl Acad. Sci. USA 105, 1327–1332 (2008). This paper represents one of a series of influential genomic analyses examining the evolution of CA-MRSA in the early 2000s.

    Article  CAS  PubMed  Google Scholar 

  7. McAdam, P. R. et al. Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 109, 9107–9112 (2012). This paper represents another influential genomic analysis, this time focusing on the evolution of HA-MRSA strains.

    Article  CAS  PubMed  Google Scholar 

  8. David, M. Z. et al. Staphylococcus aureus bacteremia at 5 US academic medical centers, 2008-2011: significant geographic variation in community-onset infections. Clin. Infect. Dis. 59, 798–807 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Casey, J. A., Curriero, F. C., Cosgrove, S. E., Nachman, K. E. & Schwartz, B. S. High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Intern. Med. 173, 1980–1990 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dantes, R. et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern. Med. 173, 1970–1978 (2013).

    PubMed  Google Scholar 

  11. Wyllie, D. H. et al. Decline of meticillin-resistant Staphylococcus aureus in Oxfordshire hospitals is strain-specific and preceded infection-control intensification. BMJ Open 1, e000160 (2011). This thought-provoking study demonstrates that MRSA infection rates began to decline prior to implementation of widespread infection control measures. These data suggest strain-specific factors have a substantial role in the epidemiology of MRSA.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Clarridge, J. E. 3rd, Harrington, A. T., Roberts, M. C., Soge, O. O. & Maquelin, K. Impact of strain typing methods on assessment of relationship between paired nares and wound isolates of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 51, 224–231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N. Engl. J. Med. 344, 11–16 (2001).

    Article  Google Scholar 

  14. Eells, S. J. et al. Persistent environmental contamination with USA300 methicillin-resistant Staphylococcus aureus and other pathogenic strain types in households with S. aureus skin infections. Infect. Control Hosp. Epidemiol. 35, 1373–1382 (2014).

    Article  PubMed  Google Scholar 

  15. Azarian, T. et al. Intrahost evolution of methicillin-resistant Staphylococcus aureus USA300 among individuals with reoccurring skin and soft-tissue infections. J. Infect. Dis. 214, 895–905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arshad, S. et al. Ceftaroline fosamil monotherapy for methicillin-resistant Staphylococcus aureus bacteremia: a comparative clinical outcomes study. Int. J. Infect. Dis. 57, 27–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Corey, G. R. et al. Pooled analysis of single-dose oritavancin in the treatment of acute bacterial skin and skin-structure infections caused by Gram-positive pathogens, including a large patient subset with methicillin-resistant. Staphylococcus aureus. Int. J. Antimicrob. Agents 48, 528–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. O’Riordan, W. et al. A comparison of the efficacy and safety of intravenous followed by oral delafloxacin with vancomycin plus aztreonam for the treatment of acute bacterial skin and skin structure infections: a phase 3, multinational, double-blind, randomized study. Clin. Infect. Dis. 67, 657–666 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang, D. B. et al. A phase II randomized, double-blind, multicenter study to evaluate efficacy and safety of intravenous iclaprim versus vancomycin for the treatment of nosocomial pneumonia suspected or confirmed to be due to Gram-positive pathogens. Clin. Ther. 39, 1706–1718 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. van Hal, S. J. et al. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev. 25, 362–386 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lindsay, J. A. & Holden, M. T. Staphylococcus aureus: superbug, super genome? Trends Microbiol. 12, 378–385 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ito, T. et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant. Staphylococcus aureus. Antimicrob. Agents Chemother. 45, 1323–1336 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Planet, P. J. et al. Architecture of a species: phylogenomics of Staphylococcus aureus. Trends Microbiol. 25, 153–166 (2017). An overview of the phylogenetics of S. aureus as a species is presented.

    Article  CAS  PubMed  Google Scholar 

  24. Weterings, V. et al. Next-generation sequence analysis reveals transfer of methicillin resistance to a methicillin-susceptible Staphylococcus aureus strain that subsequently caused a methicillin-resistant Staphylococcus aureus outbreak: a descriptive study. J. Clin. Microbiol. 55, 2808–2816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iandolo, J. J. et al. Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene 289, 109–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Malachowa, N. & DeLeo, F. R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 67, 3057–3071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sidhu, M. S., Heir, E., Leegaard, T., Wiger, K. & Holck, A. Frequency of disinfectant resistance genes and genetic linkage with beta-lactamase transposon Tn552 among clinical staphylococci. Antimicrob. Agents Chemother. 46, 2797–2803 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mwangi, M. M. et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc. Natl Acad. Sci. USA 104, 9451–9456 (2007). This paper presents a detailed, truly translational study in which the real-time evolution of drug resistance in a persistent MRSA infection was dissected through repeated whole genome sequencing of isolates from a single individual.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, C. J., Huang, Y. C. & Chiu, C. H. Multiple pathways of cross-resistance to glycopeptides and daptomycin in persistent MRSA bacteraemia. J. Antimicrob. Chemother. 70, 2965–2972 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Weigel, L. M. et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302, 1569–1571 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Rossi, F. et al. Transferable vancomycin resistance in a community-associated MRSA lineage. N. Engl. J. Med. 370, 1524–1531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Uhlemann, A. C. et al. Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community. Proc. Natl Acad. Sci. USA 111, 6738–6743 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Tong, A. et al. Panton-Valentine leukocidin is not the primary determinant of outcome for Staphylococcus aureus skin infections: evaluation from the CANVAS studies. PLOS ONE 7, e37212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, M. et al. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 106, 5883–5888 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Lindsay, J. A. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int. J. Med. Microbiol. 304, 103–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Jamrozy, D. et al. Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics 18, 684 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Boucher, H. W. & Corey, G. R. Epidemiology of methicillin-resistant. Staphylococcus aureus. Clin. Infect. Dis. 46 (Suppl. 5), 344–349 (2008).

    Article  Google Scholar 

  38. Moran, G. J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 355, 666–674 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. David, M. Z., Mennella, C., Mansour, M., Boyle-Vavra, S. & Daum, R. S. Predominance of methicillin-resistant Staphylococcus aureus among pathogens causing skin and soft tissue infections in a large urban jail: risk factors and recurrence rates. J. Clin. Microbiol. 46, 3222–3227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hota, B. et al. Community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infections at a public hospital: do public housing and incarceration amplify transmission? Arch. Intern. Med. 167, 1026–1033 (2007).

    Article  PubMed  Google Scholar 

  41. Klein, E. Y. et al. Trends in methicillin-resistant Staphylococcus aureus hospitalizations in the United States, 2010–2014. Clin. Infect. Dis. 65, 1921–1923 (2017). One of the largest and most up-to-date cross-sectional studies on the burden of MRSA infections in US hospitals is presented.

    Article  PubMed  Google Scholar 

  42. Kallen, A. J. et al. Health care-associated invasive MRSA infections, 2005–2008. JAMA 304, 641–648 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Landrum, M. L. et al. Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system, 2005–2010. JAMA 308, 50–59 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. de Kraker, M. E. et al. The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. Clin. Microbiol. Infect. 19, 860–868 (2013).

    Article  PubMed  Google Scholar 

  45. Sutter, D. E. et al. Changing susceptibility of Staphylococcus aureus in a US pediatric population. Pediatrics 137, e20153099 (2016). This up-to-date cross-sectional study confirms a reduction in the MRSA incidence among the US paediatric population, mirroring adult trends.

    Article  PubMed  Google Scholar 

  46. David, M. Z. & Daum, R. S. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 23, 616–687 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Popovich, K. J. et al. Genomic and epidemiological evidence for community origins of hospital-onset methicillin-resistant Staphylococcus aureus bloodstream infections. J. Infect. Dis. 215, 1640–1647 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. DeLeo, F. R. et al. Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus. Proc. Natl Acad. Sci. USA 108, 18091–18096 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Tenover, F. C. & Goering, R. V. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J. Antimicrob. Chemother. 64, 441–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Centers for Disease Control and Prevention. Methicillin-resistant Staphylococcus aureus skin or soft tissue infections in a state prison—Mississippi, 2000. Morb. Mortal. Wkly Rep. 50, 919–922 (2001).

    Google Scholar 

  51. [No authors listed.] Methicillin-resistant Staphylococcus aureus infections among competitive sports participants — Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000–2003. Conn. Med. 67, 549–551 (2003).

  52. Hageman, J. C. et al. Severe community-acquired pneumonia due to Staphylococcus aureus, 2003–2004 influenza season. Emerg. Infect. Dis. 12, 894–899 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Toleman, M. S. et al. Systematic surveillance detects multiple silent introductions and household transmission of methicillin-resistant Staphylococcus aureus USA300 in the East of England. J. Infect. Dis. 214, 447–453 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Glaser, P. et al. Demography and intercontinental spread of the USA300 community-acquired methicillin-resistant Staphylococcus aureus lineage. mBio 7, e02183-15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van der Mee-Marquet, N. et al. The incidence of Staphylococcus aureus ST8-USA300 among French pediatric inpatients is rising. Eur. J. Clin. Microbiol. Infect. Dis. 34, 935–942 (2015).

    Article  PubMed  Google Scholar 

  56. Planet, P. J. et al. Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America. J. Infect. Dis. 212, 1874–1882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murchan, S. et al. Emergence, spread, and characterization of phage variants of epidemic methicillin-resistant Staphylococcus aureus 16 in England and Wales. J. Clin. Microbiol. 42, 5154–5160 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Neill, G. L., Murchan, S., Gil-Setas, A. & Aucken, H. M. Identification and characterization of phage variants of a strain of epidemic methicillin-resistant Staphylococcus aureus (EMRSA-15). J. Clin. Microbiol. 39, 1540–1548 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Knight, G. M. et al. Shift in dominant hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) clones over time. J. Antimicrob. Chemother. 67, 2514–2522 (2012). The tendency of dominant MRSA strains to shift over time is well documented in this paper.

    Article  CAS  PubMed  Google Scholar 

  60. Johnson, A. P. Methicillin-resistant Staphylococcus aureus: the European landscape. J. Antimicrob. Chemother. 66, iv43–iv48 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Song, J. H. et al. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. J. Antimicrob. Chemother. 66, 1061–1069 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Arias, C. A. et al. A prospective cohort multicenter study of molecular epidemiology and phylogenomics of Staphylococcus aureus bacteremia in nine Latin American countries. Antimicrob. Agents Chemother. 61, e00816-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Blomfeldt, A., Eskesen, A. N., Aamot, H. V., Leegaard, T. M. & Bjornholt, J. V. Population-based epidemiology of Staphylococcus aureus bloodstream infection: clonal complex 30 genotype is associated with mortality. Eur. J. Clin. Microbiol. Infect. Dis. 35, 803–813 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Rolo, J. et al. High genetic diversity among community-associated Staphylococcus aureus in Europe: results from a multicenter study. PLOS ONE 7, e34768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xie, X. et al. Molecular epidemiology and characteristic of virulence gene of community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus isolates in Sun Yat-sen Memorial hospital, Guangzhou, Southern China. BMC Infect. Dis. 16, 339 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Otter, J. A. & French, G. L. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect. Dis. 10, 227–239 (2010).

    Article  PubMed  Google Scholar 

  67. Chuang, Y. Y. & Huang, Y. C. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Asia. Lancet Infect. Dis. 13, 698–708 (2013). This paper presents one of a series of molecular epidemiologic studies that has markedly expanded our understanding of MRSA genetic diversity in Asia, collectively demonstrating generally greater genetic diversity than is seen in the United States.

    Article  PubMed  Google Scholar 

  68. Liu, Y. et al. Molecular evidence for spread of two major methicillin-resistant Staphylococcus aureus clones with a unique geographic distribution in Chinese hospitals. Antimicrob. Agents Chemother. 53, 512–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Zhao, C. et al. Characterization of community acquired Staphylococcus aureus associated with skin and soft tissue infection in Beijing: high prevalence of PVL+ST398. PLOS ONE 7, e38577 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harch, S. A. J. et al. High burden of complicated skin and soft tissue infections in the Indigenous population of Central Australia due to dominant Panton Valentine leucocidin clones ST93-MRSA and CC121-MSSA. BMC Infect. Dis. 17, 405 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Blomfeldt, A. et al. Bengal Bay clone ST772-MRSA-V outbreak: conserved clone causes investigation challenges. J. Hosp. Infect. 95, 253–258 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Casey, J. A. et al. High-density livestock production and molecularly characterized MRSA infections in Pennsylvania. Environ. Health Perspect. 122, 464–470 (2014). A strong example of the One Health approach probing the risk of MRSA infection acquired from livestock is presented.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Witte, W., Strommenger, B., Stanek, C. & Cuny, C. Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg. Infect. Dis. 13, 255–258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smith, T. C. et al. Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U. S. swine and swine workers. PLOS ONE 4, e4258 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sung, J. M., Lloyd, D. H. & Lindsay, J. A. Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 154, 1949–1959 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Alam, M. T. et al. Transmission and microevolution of USA300 MRSA in U. S. households: evidence from whole-genome sequencing. mBio 6, e00054 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Diep, B. A. et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367, 731–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Li, M. et al. Comparative analysis of virulence and toxin expression of global community-associated methicillin-resistant Staphylococcus aureus strains. J. Infect. Dis. 202, 1866–1876 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Holden, M. T. et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 23, 653–664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gorwitz, R. J. et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J. Infect. Dis. 197, 1226–1234 (2008).

    Article  PubMed  Google Scholar 

  81. Lekkerkerk, W. S. N. et al. Newly identified risk factors for MRSA carriage in The Netherlands. PLOS ONE 12, e0188502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lucet, J. C., Chevret, S., Durand-Zaleski, I., Chastang, C. & Regnier, B. Prevalence and risk factors for carriage of methicillin-resistant Staphylococcus aureus at admission to the intensive care unit: results of a multicenter study. Arch. Intern. Med. 163, 181–188 (2003).

    Article  PubMed  Google Scholar 

  83. Shet, A. et al. Colonization and subsequent skin and soft tissue infection due to methicillin-resistant Staphylococcus aureus in a cohort of otherwise healthy adults infected with HIV type 1. J. Infect. Dis. 200, 88–93 (2009).

    Article  PubMed  Google Scholar 

  84. Schechter-Perkins, E. M. et al. Prevalence and predictors of nasal and extranasal staphylococcal colonization in patients presenting to the emergency department. Ann. Emerg. Med. 57, 492–499 (2011).

    Article  PubMed  Google Scholar 

  85. Karanika, S., Kinamon, T., Grigoras, C. & Mylonakis, E. Colonization with methicillin-resistant Staphylococcus aureus and risk for infection among asymptomatic athletes: a systematic review and metaanalysis. Clin. Infect. Dis. 63, 195–204 (2016).

    Article  PubMed  Google Scholar 

  86. Cluzet, V. C. et al. Duration of colonization and determinants of earlier clearance of colonization with methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 60, 1489–1496 (2015).

    Article  PubMed  Google Scholar 

  87. Mollema, F. P. et al. Transmission of methicillin-resistant Staphylococcus aureus to household contacts. J. Clin. Microbiol. 48, 202–207 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Huang, S. S. et al. Strain-relatedness of methicillin-resistant Staphylococcus aureus isolates recovered from patients with repeated infection. Clin. Infect. Dis. 46, 1241–1247 (2008). This study shows that MRSA infection following either initial colonization or prior infection is most often caused by the same strain.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Calderwood, M. S. et al. Staphylococcal enterotoxin P predicts bacteremia in hospitalized patients colonized with methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 209, 571–577 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Patel, A. B., Hill, E., Simpson, E. L. & Hanifin, J. M. Reversion of methicillin-resistant Staphylococcus aureus skin infections to methicillin-susceptible isolates. JAMA Dermatol. 149, 1167–1171 (2013).

    Article  PubMed  Google Scholar 

  91. Iwase, T. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Matheson, A. et al. Nasal swab screening for methicillin-resistant Staphylococcus aureus — how well does it perform? A cross-sectional study. Infect. Control Hosp. Epidemiol. 33, 803–808 (2012).

    Article  PubMed  Google Scholar 

  93. Kelley, P. G., Grabsch, E. A., Howden, B. P., Gao, W. & Grayson, M. L. Comparison of the Xpert methicillin-resistant Staphylococcus aureus (MRSA) assay, BD GeneOhm MRSA assay, and culture for detection of nasal and cutaneous groin colonization by MRSA. J. Clin. Microbiol. 47, 3769–3772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Blanc, D. S. et al. High proportion of wrongly identified methicillin-resistant Staphylococcus aureus carriers by use of a rapid commercial PCR assay due to presence of staphylococcal cassette chromosome element lacking the mecA gene. J. Clin. Microbiol. 49, 722–724 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Warnke, P., Frickmann, H., Ottl, P. & Podbielski, A. Nasal screening for MRSA: different swabs—different results! PLOS ONE 9, e111627 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Shaw, A. G. et al. Detection of methicillin-resistant and methicillin-susceptible Staphylococcus aureus colonization of healthy military personnel by traditional culture, PCR, and mass spectrometry. Scand. J. Infect. Dis. 45, 752–759 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Currie, A. et al. Sensitivities of nasal and rectal swabs for detection of methicillin-resistant Staphylococcus aureus colonization in an active surveillance program. J. Clin. Microbiol. 46, 3101–3103 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Batra, R., Eziefula, A. C., Wyncoll, D. & Edgeworth, J. Throat and rectal swabs may have an important role in MRSA screening of critically ill patients. Intensive Care Med. 34, 1703–1706 (2008).

    Article  PubMed  Google Scholar 

  99. Gagnaire, J. et al. Epidemiology and clinical relevance of Staphylococcus aureus intestinal carriage: a systematic review and meta-analysis. Expert Rev. Anti Infect. Ther. 15, 767–785 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Mermel, L. A., Cartony, J. M., Covington, P., Maxey, G. & Morse, D. Methicillin-resistant Staphylococcus aureus colonization at different body sites: a prospective, quantitative analysis. J. Clin. Microbiol. 49, 1119–1121 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lauderdale, T. L. et al. Carriage rates of methicillin-resistant Staphylococcus aureus (MRSA) depend on anatomic location, the number of sites cultured, culture methods, and the distribution of clonotypes. Eur. J. Clin. Microbiol. Infect. Dis. 29, 1553–1559 (2010).

    Article  PubMed  Google Scholar 

  102. McKinnell, J. A., Huang, S. S., Eells, S. J., Cui, E. & Miller, L. G. Quantifying the impact of extranasal testing of body sites for methicillin-resistant Staphylococcus aureus colonization at the time of hospital or intensive care unit admission. Infect. Control Hosp. Epidemiol. 34, 161–170 (2013).

    Article  PubMed  Google Scholar 

  103. Popovich, K. J. et al. Anatomic sites of colonization with community-associated methicillin-resistant Staphylococcus aureus. Infect. Control Hosp. Epidemiol. 35, 1192–1194 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Vos, M. C. et al. 5 years of experience implementing a methicillin-resistant Staphylococcus aureus search and destroy policy at the largest university medical center in the Netherlands. Infect. Control Hosp. Epidemiol. 30, 977–984 (2009).

    Article  PubMed  Google Scholar 

  105. Bartels, M. D., Kristoffersen, K., Boye, K. & Westh, H. Rise and subsequent decline of community-associated methicillin resistant Staphylococcus aureus ST30-IVc in Copenhagen, Denmark through an effective search and destroy policy. Clin. Microbiol. Infect. 16, 78–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Jain, R. et al. Veterans Affairs initiative to prevent methicillin-resistant Staphylococcus aureus infections. N. Engl. J. Med. 364, 1419–1430 (2011). This study demonstrates that the implementation of a MRSA bundle that couples active surveillance with contact precautions and hand hygiene results in decreased rates of health-care-associated MRSA infections.

    Article  CAS  PubMed  Google Scholar 

  107. Robicsek, A. et al. Topical therapy for methicillin-resistant Staphylococcus aureus colonization: impact on infection risk. Infect. Control Hosp. Epidemiol. 30, 623–632 (2009).

    Article  PubMed  Google Scholar 

  108. Harbarth, S. et al. Universal screening for methicillin-resistant Staphylococcus aureus at hospital admission and nosocomial infection in surgical patients. JAMA 299, 1149–1157 (2008). This study shows no added benefit for universal, rapid MRSA admission screening strategy on nosocomial MRSA infection rates in a surgical department.

    Article  CAS  PubMed  Google Scholar 

  109. Saraswat, M. K. et al. Preoperative Staphylococcus aureus screening and targeted decolonization in cardiac surgery. Ann. Thorac. Surg. 104, 1349–1356 (2017).

    Article  PubMed  Google Scholar 

  110. Jog, S. et al. Impact of preoperative screening for meticillin-resistant Staphylococcus aureus by real-time polymerase chain reaction in patients undergoing cardiac surgery. J. Hosp. Infect. 69, 124–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Huang, S. S. et al. Targeted versus universal decolonization to prevent ICU infection. N. Engl. J. Med. 368, 2255–2265 (2013). This large multicentre study shows that universal decolonization is more effective than targeted decolonization or screening and isolation in reducing rates of MRSA clinical isolates and bloodstream infection in patients in the ICU.

    Article  CAS  PubMed  Google Scholar 

  112. Climo, M. W. et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N. Engl. J. Med. 368, 533–542 (2013). This study shows that daily bathing with chlorhexidine reduces the risks of acquisition of multidrug-resistant organisms and hospital-acquired bloodstream infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lindgren, A. K., Nilsson, A. C., Akesson, P., Gustafsson, E. & Melander, E. Eradication of methicillin-resistant Staphylococcus aureus (MRSA) throat carriage: a randomised trial comparing topical treatment with rifampicin-based systemic therapy. Int. J. Antimicrob. Agents 51, 642–645 (2017).

    Article  PubMed  CAS  Google Scholar 

  114. Kaasch, A. J. et al. Use of a simple criteria set for guiding echocardiography in nosocomial Staphylococcus aureus bacteremia. Clin. Infect. Dis. 53, 1–9 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mermel, L. A. et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 49, 1–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Neely, M. N. et al. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob. Agents Chemother. 58, 309–316 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. van Hal, S. J., Lodise, T. P. & Paterson, D. L. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin. Infect. Dis. 54, 755–771 (2012).

    Article  PubMed  CAS  Google Scholar 

  118. Fowler, V. G. Jr. et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 355, 653–665 (2006). This is one of very few RCTs addressing the treatment of MRSA bacteraemia or endocarditis, proving daptomycin is non-inferior to vancomycin.

    Article  CAS  PubMed  Google Scholar 

  119. Silverman, J. A., Mortin, L. I., Vanpraagh, A. D., Li, T. & Alder, J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J. Infect. Dis. 191, 2149–2152 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Sharma, M., Riederer, K., Chase, P. & Khatib, R. High rate of decreasing daptomycin susceptibility during the treatment of persistent Staphylococcus aureus bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 27, 433–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Gasch, O. et al. Emergence of resistance to daptomycin in a cohort of patients with methicillin-resistant Staphylococcus aureus persistent bacteraemia treated with daptomycin. J. Antimicrob. Chemother. 69, 568–571 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Stryjewski, M. E. et al. A randomized Phase 2 trial of telavancin versus standard therapy in patients with uncomplicated Staphylococcus aureus bacteremia: the ASSURE study. BMC Infect. Dis. 14, 289 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Raad, I. et al. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin. Infect. Dis. 40, 374–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Wilcox, M. H. et al. Complicated skin and skin-structure infections and catheter-related bloodstream infections: noninferiority of linezolid in a phase 3 study. Clin. Infect. Dis. 48, 203–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Casapao, A. M. et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob. Agents Chemother. 58, 2541–2546 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Davis, J. S. et al. Combination of vancomycin and beta-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin. Infect. Dis. 62, 173–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02365493 (2018).

  128. Thwaites, G. E. et al. Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 391, 668–678 (2017). One of the few existing RCTs assessing the treatment of MRSA bacteraemia, ARREST finds no decrease in mortality with combination therapy including rifampin.

    Article  PubMed  Google Scholar 

  129. Cosgrove, S. E. et al. Initial Low-dose Gentamicin for Staphylococcus aureus Bacteremia and Endocarditis Is Nephrotoxic. Clinical Infectious Diseases 2009; 199: 201-8.

    Google Scholar 

  130. Rehm, S. J. et al. Daptomycin versus vancomycin plus gentamicin for treatment of bacteraemia and endocarditis due to Staphylococcus aureus: subset analysis of patients infected with methicillin-resistant isolates. J. Antimicrob. Chemother. 62, 1413–1421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu, C. et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 52, e18–e55 (2011).

    Article  PubMed  Google Scholar 

  132. Holland, T. L. et al. Effect of algorithm-based therapy versus usual care on clinical success and serious adverse events in patients with staphylococcal bacteremia: a randomized clinical trial. JAMA 320, 1249–1258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01792804 (2018).

  134. Tissot, F. et al. Mandatory infectious diseases consultation for MRSA bacteremia is associated with reduced mortality. J. Infect. 69, 226–234 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Jenkins, T. C., Price, C. S., Sabel, A. L., Mehler, P. S. & Burman, W. J. Impact of routine infectious diseases service consultation on the evaluation, management, and outcomes of Staphylococcus aureus bacteremia. Clin. Infect. Dis. 46, 1000–1008 (2008).

    Article  PubMed  Google Scholar 

  136. Baddour, L. M. et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation 132, 1435–1486 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Kang, D. H. et. al. Early surgery versus conventional treatment for infective endocarditis. N. Engl. J. Med. 366, 2466–2473 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Martinez-Aguilar, G., Hammerman, W. A., Mason, E. O. Jr & Kaplan, S. L. Clindamycin treatment of invasive infections caused by community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus in children. Pediatr. Infect. Dis. J. 22, 593–598 (2003).

    PubMed  Google Scholar 

  139. Wunderink, R. G. et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin. Infect. Dis. 54, 621–629 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Conte, J. E. Jr., Golden, J. A., Kipps, J. & Zurlinden, E. Intrapulmonary pharmacokinetics of linezolid. Antimicrob. Agents Chemother. 46, 1475–1480 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kalil, A. C. et al. Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: a systematic review and meta-analysis. Crit. Care Med. 38, 1802–1808 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Dombrowski, J. C. & Winston, L. G. Clinical failures of appropriately-treated methicillin-resistant Staphylococcus aureus infections. J. Infect. 57, 110–115 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Moenster, R. P., Linneman, T. W., Finnegan, P. M. & McDonald, J. R. Daptomycin compared to vancomycin for the treatment of osteomyelitis: a single-center, retrospective cohort study. Clin. Ther. 34, 1521–1527 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Gallagher, J. C. et al. Daptomycin therapy for osteomyelitis: a retrospective study. BMC Infect. Dis. 12, 133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Seaton, R. A. et al. Daptomycin use in patients with osteomyelitis: a preliminary report from the EU-CORE(SM) database. J. Antimicrob. Chemother. 68, 1642–1649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Senneville, E. et al. Effectiveness and tolerability of prolonged linezolid treatment for chronic osteomyelitis: a retrospective study. Clin. Ther. 28, 1155–1163 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03009045 (2018).

  148. Feigin, R. D., Pickering, L. K., Anderson, D., Keeney, R. E. & Shackleford, P. G. Clindamycin treatment of osteomyelitis and septic arthritis in children. Pediatrics 55, 213–223 (1975).

    CAS  PubMed  Google Scholar 

  149. Daver, N. G. et al. Oral step-down therapy is comparable to intravenous therapy for Staphylococcus aureus osteomyelitis. J. Infect. 54, 539–544 (2007).

    Article  PubMed  Google Scholar 

  150. Park, K. H. et al. Optimal duration of antibiotic therapy in patients with hematogenous vertebral osteomyelitis at low risk and high risk of recurrence. Clin. Infect. Dis. 62, 1262–1269 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Bejon, P. et al. Two-stage revision for prosthetic joint infection: predictors of outcome and the role of reimplantation microbiology. J. Antimicrob. Chemother. 65, 569–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zimmerli, W., Trampuz, A. & Ochsner, P. E. Prosthetic-joint infections. N. Engl. J. Med. 351, 1645–1654 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Lora-Tamayo, J. et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin. Infect. Dis. 56, 182–194 (2013).

    Article  PubMed  Google Scholar 

  154. Westberg, M., Grogaard, B. & Snorrason, F. Early prosthetic joint infections treated with debridement and implant retention: 38 primary hip arthroplasties prospectively recorded and followed for median 4 years. Acta Orthop. 83, 227–232 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Daum, R. S. et al. A placebo-controlled trial of antibiotics for smaller skin abscesses. N. Engl. J. Med. 376, 2545–2555 (2017). This is one of the most recent studies to address the need for antibiotics following incision and drainage of a cutaneous abscess. This study finds a reduced risk of recurrence for those receiving oral antibiotics following abscess drainage.

    Article  CAS  PubMed  Google Scholar 

  156. Holland, T. L. et al. A phase 3, randomized, double-blind, multicenter study to evaluate the safety and efficacy of intravenous iclaprim versus vancomycin for treatment of acute bacterial skin and skin structure infections suspected or confirmed to be due to Gram-positive pathogens (REVIVE-2 study). Antimicrob. Agents Chemother. 62, e02580-17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Huang, D. B. et al. A phase 3, randomized, double-blind, multicenter study to evaluate the safety and efficacy of intravenous iclaprim vs vancomycin for the treatment of acute bacterial skin and skin structure infections suspected or confirmed to be due to Gram-positive pathogens: REVIVE-1. Clin. Infect. Dis. 66, 1222–1229 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02877927 (2018).

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02426918 (2018).

  160. Corey, G. R. et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N. Engl. J. Med. 370, 2180–2190 (2014).

    Article  PubMed  CAS  Google Scholar 

  161. Boucher, H. W. et al. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N. Engl. J. Med. 370, 2169–2179 (2014).

    Article  PubMed  CAS  Google Scholar 

  162. Dunne, M. W. et al. A randomized clinical trial of single-dose versus weekly dalbavancin for treatment of acute bacterial skin and skin structure infection. Clin. Infect. Dis. 62, 545–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Shinefield, H. et al. Use of a conjugate vaccine in patients receiving hemodialysis. N. Engl. J. Med. 346, 491–496 (2002).

    Article  PubMed  Google Scholar 

  164. Giersing, B. K., Dastgheyb, S. S., Modjarrad, K. & Moorthy, V. Status of vaccine research and development of vaccines for Staphylococcus aureus. Vaccine 34, 2962–2966 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. https://www.pfizer.com/news/press-release/press-release-detail/independent_data_monitoring_committee_recommends_discontinuation_of_the_phase_2b_strive_clinical_trial_of_stap.

  166. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Omuse, G. et al. Molecular characterization of Staphylococcus aureus isolates from various healthcare institutions in Nairobi, Kenya: a cross sectional study. Ann. Clin. Microbiol. Antimicrob. 15, (51 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Xiao, M. et al. National surveillance of methicillin-resistant Staphylococcus aureus in China highlights a still-evolving epidemiology with 15 novel emerging multilocus sequence types. J. Clin. Microbiol. 51, 3638–3644 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kang, G. S. et al. Prevalence of major methicillin-resistant Staphylococcus aureus clones in Korea between 2001 and 2008. Ann. Lab. Med. 36, 536–541 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Gostev, V. et al. Molecular epidemiology and antibiotic resistance of methicillin-resistant Staphylococcus aureus circulating in the Russian Federation. Infect. Genet. Evol. 53, 189–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Drougka, E. et al. A 12-year survey of methicillin-resistant Staphylococcus aureus infections in Greece: ST80-IV epidemic? Clin. Microbiol. Infect. 20, 796–803 (2014).

    Article  CAS  Google Scholar 

  172. Udo, E. E. & Sarkhoo, E. The dissemination of ST80-SCCmec-IV community-associated methicillin resistant Staphylococcus aureus clone in Kuwait hospitals. Ann. Clin. Microbiol. Antimicrob. 9, 31 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  173. David, M. Z. et al. Comparing pulsed-field gel electrophoresis with multilocus sequence typing, spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and PCR for Panton-Valentine leukocidin, arcA, and opp3 in methicillin-resistant Staphylococcus aureus isolates at a US Medical Center. J. Clin. Microbiol. 51, 814–819 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Diekema, D. J. et al. Continued emergence of USA300 methicillin-reistant Staphylococcus aureus in the United States: results from a nationwide surveillance study. Infect. Control Hosp. Epidemiol. 35, 285–292 (2014).

    Article  PubMed  Google Scholar 

  175. Nichol, K. A. et al. Changing epidemiology of methicillin-resistant Staphylococcus aureus in Canada. J. Antimicrob. Chemother. 68, 47–55 (2013).

    Article  CAS  Google Scholar 

  176. Sharma-Kuinkel, B. K. et al. Potential influence of Staphylococcus aureus clonal complex 30 genotype and transcriptome on hematogenous infections. Open Forum Infect. Dis. 2, ofv093 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Kuroda, M. et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Holden, M. T. et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl Acad. Sci. USA 101, 9786–9791 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Sharma-Kuinkel, B. K., Rude, T. H. & Fowler, V. G. Jr. Pulse field gel electrophoresis. Methods Mol. Biol. 1373, 117–130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Blanc, D. S., Francioli, P. & Hauser, P. M. Poor value of pulsed-field gel electrophoresis to investigate long-term scale epidemiology of methicillin-resistant Staphylococcus aureus. Infect. Genet. Evol. 2, 145–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. & Spratt, B. G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. O’Hara, F. P. et al. spa typing and multilocus sequence typing show comparable performance in a macroepidemiologic study of Staphylococcus aureus in the United States. Microb. Drug Resist. 22, 88–96 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Mathema, B., Mediavilla, J. & Kreiswirth, B. N. Sequence analysis of the variable number tandem repeat in Staphylococcus aureus protein A gene: spa typing. Methods Mol. Biol. 431, 285–305 (2008).

    CAS  PubMed  Google Scholar 

  184. Brandt, K. M. et al. Evaluation of multiple-locus variable number of tandem repeats analysis for typing livestock-associated methicillin-resistant Staphylococcus aureus. PLOS ONE 8, e54425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Garcia-Alvarez, L. et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11, 595–603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ross, T. L., Merz, W. G., Farkosh, M. & Carroll, K. C. Comparison of an automated repetitive sequence-based PCR microbial typing system to pulsed-field gel electrophoresis for analysis of outbreaks of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 43, 5642–5647 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Salipante, S. J. et al. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J. Clin. Microbiol. 53, 1072–1079 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cramton, S. E., Schnell, N. F., Gotz, F. & Bruckner, R. Identification of a new repetitive element in Staphylococcus aureus. Infect. Immun. 68, 2344–2348 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Quelle, L. S., Corso, A., Galas, M. & Sordelli, D. O. STAR gene restriction profile analysis in epidemiological typing of methicillin-resistant Staphylococcus aureus: description of the new method and comparison with other polymerase chain reaction (PCR)-based methods. Diagn. Microbiol. Infect. Dis. 47, 455–464 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Climo, M. W. et al. The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit. Care Med. 37, 1858–1865 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Robicsek, A. et al. Universal surveillance for methicillin-resistant Staphylococcus aureus in 3 affiliated hospitals. Ann. Intern. Med. 148, 409–418 (2008).

    Article  PubMed  Google Scholar 

  192. Dillon, H. C. & Derrick, C. W. Clinical experience with clindamycin hydrochloride: I. Treatment of streptococcal and mixed streptococcal-staphylococcal skin infections. Pediatrics 55, 205–212 (1975).

    CAS  PubMed  Google Scholar 

  193. Frank, A. L., Marcinak, J. F., Mangat, P. D. & Schreckenberger, P. C. Community-acquired and clindamycin-susceptible methicillin-resistant Staphylococcus aureus in children. Pediatr. Infect. Dis. J. 18, 993–1000 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. Arbeit, R. D., Maki, D., Tally, F. P., Campanaro, E. & Eisenstein, B. I. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin. Infect. Dis. 38, 1673–1681 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Byren, I. et al. Randomized controlled trial of the safety and efficacy of Daptomycin versus standard-of-care therapy for management of patients with osteomyelitis associated with prosthetic devices undergoing two-stage revision arthroplasty. Antimicrob. Agents Chemother. 56, 5626–5632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Weigelt, J. et al. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob. Agents Chemother. 49, 2260–2266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shorr, A. F. et al. Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother. 59, 864–871 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02019420 (2018).

  199. Ramani, A. et al. Contemporary use of ceftaroline fosamil for the treatment of community-acquired bacterial pneumonia: CAPTURE study experience. J. Chemother. 26, 229–234 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Corey, G. R. et al. Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin. Infect. Dis. 51, 641–650 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Burnett, Y. J., Echevarria, K. & Traugott, K. A. Ceftaroline as salvage monotherapy for persistent MRSA bacteremia. Ann. Pharmacother. 50, 1051–1059 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Polenakovik, H. M. & Pleiman, C. M. Ceftaroline for meticillin-resistant Staphylococcus aureus bacteraemia: case series and review of the literature. Int. J. Antimicrob. Agents 42, 450–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02335905 (2018).

  204. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01645735 (2016).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01701219 (2014).

  206. Awad, S. S. et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin. Infect. Dis. 59, 51–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Noel, G. J., Bush, K., Bagchi, P., Ianus, J. & Strauss, R. S. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin. Infect. Dis. 46, 647–655 (2008).

    Article  PubMed  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03138733 (2018).

  209. Rubinstein, E. et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin. Infect. Dis. 52, 31–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Stryjewski, M. E. et al. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin. Infect. Dis. 46, 1683–1693 (2008).

    Article  CAS  PubMed  Google Scholar 

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02208063 (2018).

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03426761 (2018).

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02679573 (2018).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03148756 (2018).

  215. Nichols, R. L. et al. Treatment of hospitalized patients with complicated gram-positive skin and skin structure infections: two randomized, multicentre studies of quinupristin/dalfopristin versus cefazolin, oxacillin or vancomycin. Synercid Skin and Skin Structure Infection Group. J. Antimicrob. Chemother. 44, 263–273 (1999).

    Article  CAS  PubMed  Google Scholar 

  216. Fagon, J. et al. Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Nosocomial Pneumonia Group. Am. J. Respir. Crit. Care Med. 161, 753–762 (2000).

    Article  CAS  PubMed  Google Scholar 

  217. Tanaseanu, C. et al. Integrated results of 2 phase 3 studies comparing tigecycline and levofloxacin in community-acquired pneumonia. Diagn. Microbiol. Infect. Dis. 61, 329–338 (2008).

    Article  CAS  PubMed  Google Scholar 

  218. Ellis-Grosse, E. J., Babinchak, T., Dartois, N., Rose, G. & Loh, E. The efficacy and safety of tigecycline in the treatment of skin and skin-structure infections: results of 2 double-blind phase 3 comparison studies with vancomycin-aztreonam. Clin. Infect. Dis. 41 (Suppl. 5), 341–353 (2005).

    Article  Google Scholar 

  219. Gardiner, D., Dukart, G., Cooper, A. & Babinchak, T. Safety and efficacy of intravenous tigecycline in subjects with secondary bacteremia: pooled results from 8 phase III clinical trials. Clin. Infect. Dis. 50, 229–238 (2010).

    Article  PubMed  CAS  Google Scholar 

  220. Shen, F. et al. Efficacy and safety of tigecycline for the treatment of severe infectious diseases: an updated meta-analysis of RCTs. Int. J. Infect. Dis. 39, 25–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02253342 (2015).

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02244827 (2015).

  223. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01875939 (2013).

  224. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02217930 (2015).

  225. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02052388 (2018).

  226. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01211470 (2012).

Download references

Acknowledgements

N.A.T. and T.L.H. were supported, in part, by an Antibacterial Resistance Leadership Group fellowship (National Institute of Allergy and Infectious Diseases, UM1AI104681, from the National Institutes of Health). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. S.A.M. was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (1KL2TR002554). V.G.F. was supported by U01 AI-124319-01, 2R01-AI068804 and K24-AI093969, from the National Institutes of Health.

Reviewer information

Nature Reviews Microbiology thanks M. Otto and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Vance G. Fowler Jr.

Ethics declarations

Competing interests

T.L.H. has been a consultant for Basilea Pharmaceutica, Genentech, The Medicines Company, Motif Biosciences and Theravance Biopharma and has received grant support from Basilea Pharmaceutica and Achaogen. V.G.F. served as Chair of the V710 Scientific Advisory Committee (Merck); has received grant support from Cerexa/Actavis/Allergan, Pfizer, Advanced Liquid Logics, National Institutes of Health (NIH), MedImmune, Basilea Pharmaceutica, Karius, ContraFect, Regeneron Pharmaceuticals and Genentech; has NIH STTR/SBIR grants pending with Affinergy, Locus and Medical Surface; has been a consultant for Achaogen, AmpliPhi Biosciences, Astellas Pharma, Arsanis, Affinergy, Basilea Pharmaceutica, Bayer, Cerexa, ContraFect, Cubist, Debiopharm, Destiny Pharmaceuticals, Durata Therapeutics, Grifols, Genentech, MedImmune, Merck, The Medicines Company, Pfizer, Novartis, NovaDigm Therapeutics, Theravance Biopharma, XBiotech and Integrated BioTherapeutics; has received honoraria from Theravance Biopharma and Green Cross; and has a patent pending in sepsis diagnostics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov database: https://clinicaltrials.gov/

Glossary

Endocarditis

An infection of the interior heart structures or valves.

Osteomyelitis

An infection involving bone.

Methicillin

An anti-staphylococcal penicillin.

Fomite

An object or material capable of carrying or transmitting infection.

Echocardiography

A diagnostic imaging technique in which ultrasound is used to construct images of heart chambers, valves and associated structures.

Mobile genetic elements

Segments of DNA-encoding enzymes that mediate transfer of DNA within and between bacterial genomes.

Clindamycin

An antibiotic in the lincosamide family.

Methicillin-susceptible Staphylococcus aureus

(MSSA). Staphylococcus aureus strains that are susceptible to methicillin, oxacillin and cefoxitin.

Minimum inhibitory concentrations

(MICs). The lowest concentration of a chemical at which bacterial growth is prevented.

Competent

Refers to bacteria capable of taking up DNA from their environment for recombination.

Hyaluronidase

An enzyme that catalyses the degradation of hyaluronic acid; it may play a role in pathogenesis by facilitating the breakdown of host intercellular matrix.

Arginine-catabolic mobile element

(ACME). A mobile genetic element that accompanies staphylococcal cassette chromosome mec (SCCmec) and is believed to have a role in the regulation of growth and survival in Staphylococcus aureus and strain fitness.

Panton–Valentine leukocidin

(PVL). A cytotoxin produced by some strains of Staphylococcus aureus that induces pore formation in the membranes of white blood cells, resulting in cell lysis.

att s sites

Sites targeted by the staphylococcal cassette recombinases.

Gene nurseries

Regions of the genome from which other genes are believed to have originated.

Phenol-soluble modulin

(PSM). A peptide toxin that attracts and lyses white blood cells.

One Health approach

An integrative approach to medicine that recognizes connections between animal, environmental and human health.

Mupirocin

A topical antibiotic with activity against S. aureus.

Transoesophageal

A technique for echocardiography in which the echo probe is positioned within the oesophagus, providing much higher resolution imaging of select heart structures.

Transthoracic

The standard, non-invasive method for echocardiographic imaging of the heart by applying the echo probe to the external chest wall.

Non-inferior

In the specific context of clinical trials, a statistical definition by which an intervention is determined to be no worse than its comparator within a pre-specified range.

Pulmonary surfactant

A lipoprotein substance secreted by the lungs that reduces surface tension and thus prevents collapse of alveoli.

Modified intention-to-treat analysis

A variation on the traditional analysis of clinical trial results in which some subset of patients are excluded after randomization; there is no single definition for how this exclusion occurs, and there is some risk of introduction of bias.

Embolization

The occlusion of a blood vessel by a material travelling within the bloodstream; this may be caused by clot (that is, thrombus) or infectious material.

Pharmacokinetics

The study of the movement and distribution of medications within the body.

Myelosuppression

The inhibition of bone marrow activity resulting in decreased red blood cells, white blood cells and platelets.

Neuropathy

The dysfunction or disease of the peripheral nerves.

Two-stage exchange arthroplasty

A method of joint replacement in which the original infected artificial joint is removed in one operation, antibiotic treatment is given and re-implantation of a new artificial joint is performed at a later date.

Parenteral

Administered by a route other than the gastrointestinal tract; in general, refers to intravenous or injection therapies.

Haematogenous

Blood-borne or carried within the bloodstream.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, N.A., Sharma-Kuinkel, B.K., Maskarinec, S.A. et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17, 203–218 (2019). https://doi.org/10.1038/s41579-018-0147-4

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-018-0147-4

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology