Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fungal biofilms in human health and disease

Abstract

Increased use of implanted medical devices, use of immunosuppressants and an ageing population have driven the rising frequency of fungal biofilm-related diseases. Fungi are now recognized by the World Health Organization (WHO) as an emergent threat to human health, with most medically important species defined as critical or high-priority organisms capable of forming biofilms. Although we strive for a better understanding of diagnostic and therapeutic approaches to detect and treat these fungal diseases more generally, the issue of hard-to-treat biofilms is an ever-increasing problem. These are communities of interspersed cells that are attached to one another on a surface, such as a catheter, or trapped into a cavity such as a paranasal sinus. Biofilms are difficult to detect, difficult to remove and intrinsically tolerant to most antifungal agents. These factors can lead to devastating consequences for the patient, including unnecessary morbidity and mortality, need for reoperations and prolonged hospital stay. This Review describes the breadth and growing impact fungal biofilms have on patient management and explains the mechanisms promoting biofilm formation, focusing on how targeting these can improve therapeutic options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the different anatomical sites for fungal biofilm-related infections associated with abiotic and biotic surfaces.
Fig. 2: Biofilm developmental phases for priority fungal pathogens of critical importance.
Fig. 3: Genetic overview of key proteins and regulators involved in fungal biofilm development.
Fig. 4: Overview of the antifungal tolerance mechanisms in fungal biofilms.

Similar content being viewed by others

References

  1. Camara, M. et al. Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge. NPJ Biofilms Microbiomes 8, 42 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marrie, T. J. & Costerton, J. W. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J. Clin. Microbiol. 19, 687–693 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428–e438 (2024). This work presents a comprehensive literature analysis of an updated global burden of fungal diseases.

    Article  PubMed  Google Scholar 

  4. World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action. WHO https://www.who.int/publications/i/item/9789240060241 (2022).

  5. Ramage, G. et al. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS 131, 636–653 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rumbaugh, K. P. & Bjarnsholt, T. Microbial primer: in vivo biofilm. Microbiology 169, 001407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nett, J. et al. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 51, 510–520 (2007). This pioneering study identifies the function for β-glucans in conferring biofilm tolerance in the ECM.

    Article  CAS  PubMed  Google Scholar 

  9. Sauer, K. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20, 608–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williams, C. & Ramage, G. Fungal biofilms in human disease. Adv. Exp. Med. Biol. 831, 11–27 (2015).

    Article  PubMed  Google Scholar 

  11. Robey, A. B. et al. The changing face of paranasal sinus fungus balls. Ann. Otol. Rhinol. Laryngol. 118, 500–505 (2009).

    Article  PubMed  Google Scholar 

  12. Nguyen, U. T. & Kalan, L. R. Forgotten fungi: the importance of the skin mycobiome. Curr. Opin. Microbiol. 70, 102235 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalan, L. & Grice, E. A. Fungi in the wound microbiome. Adv. Wound Care 7, 247–255 (2018).

    Article  Google Scholar 

  14. Benedict, K., Jackson, B. R., Chiller, T. & Beer, K. D. Estimation of direct healthcare costs of fungal diseases in the United States. Clin. Infect. Dis. 68, 1791–1797 (2019).

    Article  PubMed  Google Scholar 

  15. Ramage, G. et al. in Antibiofilm Strategies: Current and Future Applications to Prevent, Control and Eradicate Biofilms (eds Richter, K. & Kragh, K. N.) 441–465 (Springer, 2022).

  16. Coco, B. J. et al. Mixed Candida albicans and Candida glabrata populations associated with the pathogenesis of denture stomatitis. Oral. Microbiol. Immunol. 23, 377–383 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Parahitiyawa, N. B. et al. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device. APMIS 114, 298–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Nett, J. E., Cain, M. T., Crawford, K. & Andes, D. R. Optimizing a Candida biofilm microtiter plate model for measurement of antifungal susceptibility by tetrazolium salt assay. J. Clin. Microbiol. 49, 1426–1433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Budtz-Jorgensen, E. The significance of Candida albicans in denture stomatitis. Scand. J. Dent. Res. 82, 151–190 (1974).

    CAS  PubMed  Google Scholar 

  20. Ramage, G., Tomsett, K., Wickes, B. L., Lopez-Ribot, J. L. & Redding, S. W. Denture stomatitis: a role for Candida biofilms. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 98, 53–59 (2004).

    Article  PubMed  Google Scholar 

  21. Fujinami, W., Nishikawa, K., Ozawa, S., Hasegawa, Y. & Takebe, J. Correlation between the relative abundance of oral bacteria and Candida albicans in denture and dental plaques. J. Oral. Biosci. 63, 175–183 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. O’Donnell, L. E. et al. The oral microbiome of denture wearers is influenced by levels of natural dentition. PLoS ONE 10, e0137717 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Redfern, J. et al. The denture microbiome in health and disease: an exploration of a unique community. Lett. Appl. Microbiol. 75, 195–209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eidt, G., Waltermann, E. D. M., Hilgert, J. B. & Arthur, R. A. Candida and dental caries in children, adolescents and adults: a systematic review and meta-analysis. Arch. Oral. Biol. 119, 104876 (2020).

    Article  PubMed  Google Scholar 

  25. Slazhneva, E. et al. Candida species detection in patients with chronic periodontitis: a systematic review and meta-analysis. Clin. Exp. Dent. Res. 8, 1354–1375 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Delliere, S. et al. Analysis of microbiota and mycobiota in fungal ball rhinosinusitis: specific interaction between Aspergillus fumigatus and Haemophilus influenza? J. Fungi. https://doi.org/10.3390/jof7070550 (2021).

  27. Hashemi, S. J. et al. A case of fungus ball-type pansinusitis due to Fusarium proliferatum. Mycopathologia 180, 251–255 (2015).

    Article  PubMed  Google Scholar 

  28. Lee, J. T. et al. Fungal and bacterial microbiome in sinus mucosa of patients with and without chronic rhinosinusitis. Laryngoscope 134, 1054–1062 (2024).

    Article  PubMed  Google Scholar 

  29. Nambiar, M. et al. Mycotic infections—mucormycosis and oral candidiasis associated with COVID-19: a significant and challenging association. J. Oral. Microbiol. 13, 1967699 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Roh, D. et al. Sinonasal microbiome and inflammatory profiles in fungal ball and chronic rhinosinusitis. Auris Nasus Larynx 51, 242–250 (2024).

    Article  PubMed  Google Scholar 

  31. Martin, T. J., Kerschner, J. E. & Flanary, V. A. Fungal causes of otitis externa and tympanostomy tube otorrhea. Int. J. Pediatr. Otorhinolaryngol. 69, 1503–1508 (2005).

    Article  PubMed  Google Scholar 

  32. Zhang, X., Sun, X., Wang, Z., Zhang, Y. & Hou, W. Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility. Invest. Ophthalmol. Vis. Sci. 53, 7774–7778 (2012).

    Article  PubMed  Google Scholar 

  33. Muni, I., Behera, H. S., Sahu, S. K., Priyadarshini, S. R. & Das, S. Microbiological profile of culture-positive fungal keratitis. Eye Contact Lens https://doi.org/10.1097/ICL.0000000000001089 (2024).

  34. Abdulkareem, A. F., Lee, H. H., Ahmadi, M. & Martinez, L. R. Fungal serotype-specific differences in bacterial–yeast interactions. Virulence 6, 652–657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aslanyan, L. et al. The crucial role of biofilms in Cryptococcus neoformans survival within macrophages and colonization of the central nervous system. J. Fungi. https://doi.org/10.3390/jof3010010 (2017).

  36. Kolpen, M. et al. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax 77, 1015–1022 (2022).

    Article  PubMed  Google Scholar 

  37. Hong, G. et al. Distinct community structures of the fungal microbiome and respiratory health in adults with cystic fibrosis. J. Cyst. Fibros. 22, 636–643 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cuthbertson, L. et al. The fungal airway microbiome in cystic fibrosis and non-cystic fibrosis bronchiectasis. J. Cyst. Fibros. 20, 295–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amin, R., Dupuis, A., Aaron, S. D. & Ratjen, F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 137, 171–176 (2010).

    Article  PubMed  Google Scholar 

  40. Kean, R. et al. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Front. Microbiol. 8, 258 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sobel, J. D. Editorial commentary: Vaginal biofilm: much ado about nothing, or a new therapeutic challenge? Clin. Infect. Dis. 61, 607–608 (2015).

    Article  PubMed  Google Scholar 

  42. Wu, X. et al. Biofilm formation of Candida albicans facilitates fungal infiltration and persister cell formation in vaginal candidiasis. Front Microbiol 11, 1117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. McKloud, E. et al. Recurrent vulvovaginal candidiasis: a dynamic interkingdom biofilm disease of Candida and Lactobacillus. mSystems 6, e0062221 (2021).

    Article  PubMed  Google Scholar 

  44. Pan, Y. et al. Candida causes recurrent vulvovaginal candidiasis by forming morphologically disparate biofilms on the human vaginal epithelium. Biofilm 6, 100162 (2023). This paper elegantly demonstrates that Candida is able to form biofilms on vaginal mucosa, a continued area of contention that impacts antifungal management.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bumroongthai, K., Chetanachan, P., Niyomtham, W., Yurayart, C. & Prapasarakul, N. Biofilm production and antifungal susceptibility of co-cultured Malassezia pachydermatis and Candida parapsilosis isolated from canine seborrheic dermatitis. Med Mycol. 54, 544–549 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Markantonatou, A. M., Samaras, K. & Vyzantiadis, T. A. Dermatophytic biofilms: characteristics, significance and treatment approaches. J. Fungi. https://doi.org/10.3390/jof9020228 (2023).

  47. Chellan, G. et al. Spectrum and prevalence of fungi infecting deep tissues of lower-limb wounds in patients with type 2 diabetes. J. Clin. Microbiol. 48, 2097–2102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dowd, S. E. et al. Survey of fungi and yeast in polymicrobial infections in chronic wounds. J. Wound Care 20, 40–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Short, B. et al. in Current Clinical Microbiology Reports Vol. 10 (ed. Diezmann, S.) 9–16 (Springer Link, 2023).

  50. Bharti, S., Zakir, F., Mirza, M. A. & Aggarwal, G. Antifungal biofilm strategies: a less explored area in wound management. Curr. Pharm. Biotechnol. 23, 1497–1513 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Sansom, S. E. et al. Rapid environmental contamination with Candida auris and multidrug-resistant bacterial pathogens near colonized patients. Clin. Infect. Dis. 78, 1276–1284 (2024).

    Article  PubMed  Google Scholar 

  52. Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397–409 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. O’Donnell, L. E. et al. Dentures are a reservoir for respiratory pathogens. J. Prosthodont. 25, 99–104 (2016).

    Article  PubMed  Google Scholar 

  54. van Charante, F. et al. Microbial diversity and antimicrobial susceptibility in endotracheal tube biofilms recovered from mechanically ventilated COVID-19 patients. Biofilm 4, 100079 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baidya, S. et al. Biofilm formation by pathogens causing ventilator-associated pneumonia at intensive care units in a tertiary care hospital: an armor for refuge. Biomed. Res Int 2021, 8817700 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Velasquez-Garcia, L., Mejia-Sanjuanelo, A., Viasus, D. & Carratala, J. Causative agents of ventilator-associated pneumonia and resistance to antibiotics in COVID-19 patients: a systematic review. Biomedicines https://doi.org/10.3390/biomedicines10061226 (2022).

  57. Cetinkaya, E. et al. Simultaneous chronic invasive fungal infection and tracheal fungus ball mimicking cancer in an immunocompetent patient. Case Rep. Med. 2016, 2416452 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. McGinniss, J. E. et al. Molecular analysis of the endobronchial stent microbial biofilm reveals bacterial communities that associate with stent material and frequent fungal constituents. PLoS ONE 14, e0217306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, D., Qi, M., Hu, Y., Yu, M. & Liang, Z. The impact of Candida spp airway colonization on clinical outcomes in patients with ventilator-associated pneumonia: a systematic review and meta-analysis. Am. J. Infect. Control 48, 695–701 (2020).

    Article  PubMed  Google Scholar 

  60. Durliat, A., Locatelli-Sanchez, M., Wallet, F. & Allaouchiche, B. Tracheal stent aspergillosis occurring after aortic allograft of the trachea. Transpl. Infect. Dis. 24, e13965 (2022).

    Article  PubMed  Google Scholar 

  61. Tumbarello, M. et al. Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J. Clin. Microbiol. 45, 1843–1850 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Walsh, T. J., Schlegel, R., Moody, M. M., Costerton, J. W. & Salcman, M. Ventriculoatrial shunt infection due to Cryptococcus neoformans: an ultrastructural and quantitative microbiological study. Neurosurgery 18, 373–375 (1986).

    CAS  PubMed  Google Scholar 

  63. Rajendran, R. et al. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection—Scotland, 2012–2013. Clin. Microbiol. Infect. 22, 87–93 (2016). This paper is one of the first to demonstrate that different levels of biofilm formation correlate with clinical outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rajendran, R. et al. A prospective surveillance study of candidaemia: epidemiology, risk factors, antifungal treatment and outcome in hospitalized patients. Front Microbiol 7, 915 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pappas, P. G. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62, e1–e50 (2016).

    Article  PubMed  Google Scholar 

  66. McGhee, W., Michaels, M. G., Martin, J. M., Mazariegos, G. V. & Green, M. Antifungal lock therapy with liposomal amphotericin B: a prospective trial. J. Pediatr. Infect. Dis. Soc. 5, 80–84 (2016).

    Article  Google Scholar 

  67. Paul DiMondi, V., Townsend, M. L., Johnson, M. & Durkin, M. Antifungal catheter lock therapy for the management of a persistent Candida albicans bloodstream infection in an adult receiving hemodialysis. Pharmacotherapy 34, e120–e127 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Walraven, C. J. & Lee, S. A. Antifungal lock therapy. Antimicrob. Agents Chemother. 57, 1–8 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Di Benedetto, G. et al. Giant Candida mycetoma in an ascending aorta tubular graft. J. Card. Surg. 28, 557–560 (2013).

    Article  PubMed  Google Scholar 

  70. Hebert, J., Barr, E. & Magee, C. Pacemaker-related Candida parapsilosis fungaemia in an immunosuppressed renal transplant recipient. BMJ Case Rep. https://doi.org/10.1136/bcr-2021-242917 (2021).

  71. Herndon, C. L. et al. Treatment outcomes of fungal periprosthetic joint infection. J. Arthroplast. 38, 2436–2440.e1 (2023).

    Article  Google Scholar 

  72. Diop, S. et al. Biofilm assessment and metagenomic analysis of venoarterial extracorporeal membrane oxygenation cannulas and membrane oxygenators. ASAIO J. 70, 199–206 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Eyre, D. W. et al. A Candida auris outbreak and its control in an intensive care setting. N. Engl. J. Med. 379, 1322–1331 (2018). This paper demonstrates that C. auris is capable of persisting on surfaces outwith the human body to aid transmission.

    Article  PubMed  Google Scholar 

  74. Biswal, M. et al. Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. J. Hosp. Infect. 97, 363–370 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Weber, D. J., Rutala, W. A., Anderson, D. J. & Sickbert-Bennett, E. E. Biofilms on medical instruments and surfaces: do they interfere with instrument reprocessing and surface disinfection. Am. J. Infect. Control. 51, A114–A119 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Lohse, M. B., Gulati, M., Johnson, A. D. & Nobile, C. J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 16, 19–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Ajesh, K. & Sreejith, K. Cryptococcus laurentii biofilms: structure, development and antifungal drug resistance. Mycopathologia 174, 409–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Fox, E. P. et al. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol. Microbiol. 96, 1226–1239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Harding, M. W., Marques, L. L., Howard, R. J. & Olson, M. E. Can filamentous fungi form biofilms? Trends Microbiol. 17, 475–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Kean, R. et al. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere https://doi.org/10.1128/mSphere.00334-18 (2018).

  81. Laffey, S. F. & Butler, G. Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology 151, 1073–1081 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Lopes, W. et al. Geometrical distribution of Cryptococcus neoformans mediates flower-like biofilm development. Front. Microbiol. 8, 2534 (2017). This paper elegantly shows that C. neoformans is capable of forming defined biofilm structures that aid development and dispersal.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Malinovska, Z., Conkova, E. & Vaczi, P. Biofilm formation in medically important Candida species. J. Fungi. https://doi.org/10.3390/jof9100955 (2023).

  84. Morelli, K. A., Kerkaert, J. D. & Cramer, R. A. Aspergillus fumigatus biofilms: toward understanding how growth as a multicellular network increases antifungal resistance and disease progression. PLoS Pathog. 17, e1009794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ravi, S., Pierce, C., Witt, C. & Wormley, F. L. Jr. Biofilm formation by Cryptococcus neoformans under distinct environmental conditions. Mycopathologia 167, 307–314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Scherer, A. K. et al. Redundant Trojan horse and endothelial-circulatory mechanisms for host-mediated spread of Candida albicans yeast. PLoS Pathog. 16, e1008414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sephton-Clark, P. C. S. & Voelz, K. Spore germination of pathogenic filamentous fungi. Adv. Appl. Microbiol. 102, 117–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Silva, S. et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 36, 288–305 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, T.W. et al. Functional redundancy in Candida auris cell surface adhesins crucial for cell-cell interaction and aggregation. Nat. Commun. 15, 9212 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cota, E. & Hoyer, L. L. The Candida albicans agglutinin-like sequence family of adhesins: functional insights gained from structural analysis. Future Microbiol. 10, 1635–1548 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Dutton, L. C. et al. Transcriptional landscape of trans-kingdom communication between Candida albicans and Streptococcus gordonii. Mol. Oral. Microbiol. 31, 136–161 (2016). This study demonstrates the specific adhesion and interaction between yeasts and bacteria, indicating common partnerships in complex environments.

    Article  CAS  PubMed  Google Scholar 

  92. Sundstrom, P. Adhesion in Candida spp. Cell Microbiol. 4, 461–469 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Golan, N., Schwartz-Perov, S., Landau, M. & Lipke, P. N. Structure and conservation of amyloid spines from the Candida albicans Als5 adhesin. Front. Mol. Biosci. 9, 926959 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lipke, P. N., Klotz, S. A., Dufrene, Y. F., Jackson, D. N. & Garcia-Sherman, M. C. Amyloid-like β-aggregates as force-sensitive switches in fungal biofilms and infections. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00035-17 (2018).

  95. Timmermans, B., De Las Penas, A., Castano, I. & Van Dijck, P. Adhesins in Candida glabrata. J. Fungi. https://doi.org/10.3390/jof4020060 (2018).

  96. Dague, E., Alsteens, D., Latge, J. P. & Dufrene, Y. F. High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys. J. 94, 656–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Upadhyay, S. K. et al. Identification and characterization of a laminin-binding protein of Aspergillus fumigatus: extracellular thaumatin domain protein (AfCalAp). J. Med. Microbiol. 58, 714–722 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, H. et al. Aspergillus fumigatus CalA binds to integrin ɑ5β1 and mediates host cell invasion. Nat. Microbiol. 2, 16211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Martinez, L. R. & Casadevall, A. Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect. Immun. 73, 6350–6362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gonzalez-Ramirez, A. I., Ramirez-Granillo, A., Medina-Canales, M. G., Rodriguez-Tovar, A. V. & Martinez-Rivera, M. A. Analysis and description of the stages of Aspergillus fumigatus biofilm formation using scanning electron microscopy. BMC Microbiol. 16, 243 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nobile, C. J. et al. Complementary adhesin function in C. albicans biofilm formation. Curr. Biol. 18, 1017–1024 (2008). This study identifies the first core regulatory transcriptional network in C. albicans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bing, J. et al. Clinical isolates of Candida auris with enhanced adherence and biofilm formation due to genomic amplification of ALS4. PLoS Pathog. 19, e1011239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Santana, D. J. et al. A Candida auris-specific adhesin, Scf1, governs surface association, colonization, and virulence. Science 381, 1461–1467 (2023). This study categorizes the function of a novel C. auris specific adhesin, Scf1, in relation to colonization, biofilm formation and virulence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Martinez, L. R. & Casadevall, A. Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob. Agents Chemother. 50, 1021–1033 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kowalski, C. H. et al. Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat. Microbiol. 4, 2430–2441 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kowalski, C. H., Morelli, K. A., Stajich, J. E., Nadell, C. D. & Cramer, R. A. A heterogeneously expressed gene family modulates the biofilm architecture and hypoxic growth of Aspergillus fumigatus. mBio https://doi.org/10.1128/mBio.03579-20 (2021).

  107. Pentland, D. R., Davis, J., Muhlschlegel, F. A. & Gourlay, C. W. CO2 enhances the formation, nutrient scavenging and drug resistance properties of C. albicans biofilms. NPJ Biofilms Microbiomes 7, 67 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rossignol, T. et al. Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot. Cell 8, 550–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pierce, C. G. et al. The Candida albicans biofilm matrix: composition, structure and function. J. Fungi. https://doi.org/10.3390/jof3010014 (2017).

  110. Zarnowski, R. et al. A common vesicle proteome drives fungal biofilm development. Proc. Natl Acad. Sci. USA 119, e2211424119 (2022). This study identifies a conserved component across the extracellular vesicle proteome of biofilms formed by various Candida spp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kong, E. F. et al. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. mBio 7, e01365-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Uppuluri, P. et al. Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic cells. mBio https://doi.org/10.1128/mBio.01338-18 (2018).

  113. Uppuluri, P. et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 6, e1000828 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Nobile, C. J. & Mitchell, A. P. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol. 8, 1382–1391 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Kumamoto, C. A. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc. Natl Acad. Sci. USA 102, 5576–5581 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Blankenship, J. R. & Mitchell, A. P. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol. 9, 588–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Nobile, C. J. & Mitchell, A. P. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr. Biol. 15, 1150–1155 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Nobile, C. J. et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148, 126–138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, S., Le Mauff, F., Sheppard, D. C. & Zhang, S. Filamentous fungal biofilms: conserved and unique aspects of extracellular matrix composition, mechanisms of drug resistance and regulatory networks in Aspergillus fumigatus. NPJ Biofilms Microbiomes 8, 83 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Subroto, E., van Neer, J., Valdes, I. & de Cock, H. Growth of Aspergillus fumigatus in biofilms in comparison to Candida albicans. J. Fungi. https://doi.org/10.3390/jof8010048 (2022).

  121. Bom, V. L. et al. The Aspergillus fumigatus sitA phosphatase homologue is important for adhesion, cell wall integrity, biofilm formation, and virulence. Eukaryot. Cell 14, 728–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lin, C. J., Hou, Y. H. & Chen, Y. L. The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus. Med. Mycol. 58, 248–259 (2020).

    CAS  PubMed  Google Scholar 

  123. Robbins, N. et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 7, e1002257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Granger, B. L. Insight into the antiadhesive effect of yeast wall protein 1 of Candida albicans. Eukaryot. Cell 11, 795–805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McCall, A. D., Pathirana, R. U., Prabhakar, A., Cullen, P. J. & Edgerton, M. Author correction: Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes 7, 91 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Baillie, G. S. & Douglas, L. J. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 46, 397–403 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Nett, J. E., Sanchez, H., Cain, M. T. & Andes, D. R. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J. Infect. Dis. 202, 171–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Rajendran, R. et al. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot. Cell 12, 420–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zarnowski, R. et al. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol. 16, e2006872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rizzo, J. et al. Coregulation of extracellular vesicle production and fluconazole susceptibility in Cryptococcus neoformans. mBio 14, e0087023 (2023).

    Article  PubMed  Google Scholar 

  131. Bitencourt, T. A. et al. Fungal extracellular vesicles are involved in intraspecies intracellular communication. mBio 13, e0327221 (2022).

    Article  PubMed  Google Scholar 

  132. Wuyts, J., Van Dijck, P. & Holtappels, M. Fungal persister cells: the basis for recalcitrant infections? PLoS Pathog. 14, e1007301 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rossoni, R. D. et al. The postbiotic activity of Lactobacillus paracasei 28.4 against Candida auris. Front. Cell Infect. Microbiol. 10, 397 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bink, A. et al. Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob. Agents Chemother. 55, 4033–4037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Diezmann, S., Leach, M. D. & Cowen, L. E. Functional divergence of Hsp90 genetic interactions in biofilm and planktonic cellular states. PLoS One 10, e0137947 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Denega, I., d’Enfert, C. & Bachellier-Bassi, S. Candida albicans biofilms are generally devoid of persister cells. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01979-18 (2019).

  137. Fux, C. A., Shirtliff, M., Stoodley, P. & Costerton, J. W. Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol. 13, 58–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Glazier, V. E. et al. The Candida albicans reference strain SC5314 contains a rare, dominant allele of the transcription factor Rob1 that modulates filamentation, biofilm formation, and oral commensalism. mBio 14, e0152123 (2023).

    Article  PubMed  Google Scholar 

  139. Wakade, R. S., Huang, M., Mitchell, A. P., Wellington, M. & Krysan, D. J. Intravital imaging of Candida albicans identifies differential in vitro and in vivo filamentation phenotypes for transcription factor deletion mutants. mSphere 6, e0043621 (2021).

    Article  PubMed  Google Scholar 

  140. Huang, M. Y., Woolford, C. A., May, G., McManus, C. J. & Mitchell, A. P. Circuit diversification in a biofilm regulatory network. PLoS Pathog. 15, e1007787 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cravener, M. V. et al. Reinforcement amid genetic diversity in the Candida albicans biofilm regulatory network. PLoS Pathog. 19, e1011109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Delaney, C. et al. An integrated transcriptomic and metabolomic approach to investigate the heterogeneous Candida albicans biofilm phenotype. Biofilm 5, 100112 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Rajendran, R. et al. Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping. Sci. Rep. 6, 35436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Holland, L. M. et al. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. PLoS Pathog. 10, e1004365 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ramage, G., Rajendran, R., Sherry, L. & Williams, C. Fungal biofilm resistance. Int. J. Microbiol. 2012, 528521 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kuhn, D. M., George, T., Chandra, J., Mukherjee, P. K. & Ghannoum, M. A. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob. Agents Chemother. 46, 1773–1780 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bachmann, S. P. et al. In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob. Agents Chemother. 46, 3591–3596 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bachmann, S. P., Patterson, T. F. & Lopez-Ribot, J. L. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J. Clin. Microbiol. 40, 2228–2230 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jacobson, M. J., Steckelberg, K. E., Piper, K. E., Steckelberg, J. M. & Patel, R. In vitro activity of micafungin against planktonic and sessile Candida albicans isolates. Antimicrob. Agents Chemother. 53, 2638–2639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jacobson, M. J., Piper, K. E., Nguyen, G., Steckelberg, J. M. & Patel, R. In vitro activity of anidulafungin against Candida albicans biofilms. Antimicrob. Agents Chemother. 52, 2242–2243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Carolus, H., Pierson, S., Lagrou, K. & Van Dijck, P. Amphotericin B and other polyenes—discovery, clinical use, mode of action and drug resistance. J. Fungi. https://doi.org/10.3390/jof6040321 (2020).

  152. Li, P., Seneviratne, C. J., Alpi, E., Vizcaino, J. A. & Jin, L. Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters. Antimicrob. Agents Chemother. 59, 6101–6112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sigera, L. S. M. & Denning, D. W. Flucytosine and its clinical usage. Ther. Adv. Infect. Dis. 10, 20499361231161387 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Hoenigl, M. et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs 81, 1703–1729 (2021). This comprehensive review provides a detailed overview of the new pipeline of antifungal drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Neoh, C. F., Jeong, W., Kong, D. C. & Slavin, M. A. The antifungal pipeline for invasive fungal diseases: what does the future hold? Expert. Rev. Anti Infect. Ther. 21, 577–594 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Lanier, C. & Melton, T. C. Oteseconazole for the treatment of recurrent vulvovaginal candidiasis: a drug review. Ann. Pharmacother. 58, 636–644 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Michael, M. The FDA approves new antifungal oteseconazole. Chemical & Engineering News https://cen.acs.org/business/FDA-approves-new-antifungal-oteseconazole/100/i16 (2022).

  158. Sobel, J. D. et al. Efficacy and safety of oteseconazole in recurrent vulvovaginal candidiasis. NEJM Evid. 1, EVIDoa2100055 (2022).

    Article  PubMed  Google Scholar 

  159. Wiederhold, N. P. Pharmacodynamics, mechanisms of action and resistance, and spectrum of activity of new antifungal agents. J. Fungi 8, 857 (2022).

    Article  CAS  Google Scholar 

  160. Wiederhold, N. P. et al. Ibrexafungerp demonstrates in vitro activity against fluconazole-resistant Candida auris and in vivo efficacy with delayed initiation of therapy in an experimental model of invasive Candidiasis. Antimicrob. Agents Chemother. 65, e02694–02620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Larkin, E. et al. The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.02396-16 (2017).

  162. Marcos-Zambrano, L. J., Gomez-Perosanz, M., Escribano, P., Bouza, E. & Guinea, J. The novel oral glucan synthase inhibitor SCY-078 shows in vitro activity against sessile and planktonic Candida spp. J. Antimicrob. Chemother. 72, 1969–1976 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. He, R., Lin, F., Yu, B. & Huang, L. Efficacy and safety of ibrexafungerp in the treatment of vulvovaginal candidiasis: a meta-analysis of randomized controlled trials. Heliyon 10, e28776 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Locke, J. B. et al. Outcomes by Candida spp. in the ReSTORE phase 3 trial of rezafungin versus caspofungin for candidemia and/or invasive candidiasis. Antimicrob. Agents Chemother. 68, e0158423 (2024).

    Article  PubMed  Google Scholar 

  165. Thompson, G. R. 3rd et al. Efficacy and safety of rezafungin and caspofungin in candidaemia and invasive candidiasis: pooled data from two prospective randomised controlled trials. Lancet Infect. Dis. 24, 319–328 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Chandra, J. & Ghannoum, M. A. CD101, a novel echinocandin, possesses potent antibiofilm activity against early and mature Candida albicans biofilms. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01750-17 (2018).

  167. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05421858 (2024).

  168. Shaw, K. J. & Ibrahim, A. S. Fosmanogepix: a review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J. Fungi. 6, 239 (2020).

    Article  CAS  Google Scholar 

  169. Watanabe, N. A. et al. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob. Agents Chemother. 56, 960–971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kriegl, L., Egger, M., Boyer, J., Hoenigl, M. & Krause, R. New treatment options for critically important WHO fungal priority pathogens. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2024.03.006 (2024).

  171. Borba-Santos, L. P. et al. Screening of pandemic response box library reveals the high activity of olorofim against pathogenic sporothrix species. J. Fungi. https://doi.org/10.3390/jof8101004 (2022).

  172. Kirchhoff, L. et al. Inhibition of azole-resistant Aspergillus fumigatus biofilm at various formation stages by antifungal drugs, including olorofim. J. Antimicrob. Chemother. 77, 1645–1654 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Wall, G., Chen, E., Hull, M. V. & Lopez-Ribot, J. L. Screening the CALIBR ReFRAME library in search for inhibitors of Candida auris biofilm formation. Front. Cell Infect. Microbiol. 10, 597931 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wall, G. & Lopez-Ribot, J. L. Screening repurposing libraries for identification of drugs with novel antifungal activity. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00924-20 (2020).

  175. Ajetunmobi, O. H. et al. High-throughput screening of the repurposing hub library to identify drugs with novel inhibitory activity against Candida albicans and Candida auris biofilms. J. Fungi. https://doi.org/10.3390/jof9090879 (2023).

  176. Zhao, M. et al. Turbinmicin inhibits Candida biofilm growth by disrupting fungal vesicle-mediated trafficking. J. Clin. Invest. https://doi.org/10.1172/JCI145123 (2021). This study identifies turbinmicin as a novel extracellular vesicle-targeting antifungal.

  177. Guha, S. et al. Optimization of the antifungal properties of the bacterial peptide EntV by variant analysis. mBio 15, e0057024 (2024).

    Article  PubMed  Google Scholar 

  178. AlJindan, R. & AlEraky, D. M. Silver nanoparticles: a promising antifungal agent against the growth and biofilm formation of the emergent Candida auris. J. Fungi. https://doi.org/10.3390/jof8070744 (2022).

  179. Miyazima, T. Y., Ishikawa, K. H., Mayer, M. P. A., Saad, S. M. I. & Nakamae, A. E. M. Cheese supplemented with probiotics reduced the Candida levels in denture wearers—RCT. Oral. Dis. 23, 919–925 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Chakrabarti, A. et al. Fungal rhinosinusitis: a categorization and definitional schema addressing current controversies. Laryngoscope 119, 1809–1818 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Mello, T. P., Lackner, M., Branquinha, M. H. & Santos, A. L. S. Impact of biofilm formation and azoles’ susceptibility in Scedosporium/Lomentospora species using an in vitro model that mimics the cystic fibrosis patients’ airway environment. J. Cyst. Fibros. 20, 303–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Parize, P. et al. Outcome of patients with cystic fibrosis colonized by Scedosporium and Lomentospora species: a longitudinal cohort study. Med. Mycol. https://doi.org/10.1093/mmy/myad051 (2023).

  183. Grimshaw, S. G. et al. The diversity and abundance of fungi and bacteria on the healthy and dandruff affected human scalp. PLoS ONE 14, e0225796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ghannoum, M. & Isham, N. Fungal nail infections (onychomycosis): a never-ending story? PLoS Pathog. 10, e1004105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Pinto, H., Simoes, M. & Borges, A. Prevalence and impact of biofilms on bloodstream and urinary tract infections: a systematic review and meta-analysis. Antibiotics https://doi.org/10.3390/antibiotics10070825 (2021).

  186. Miesel, L., Cushion Melanie, T., Ashbaugh, A., Lopez Santiago, R. & Ong, V. Efficacy of rezafungin in prophylactic mouse models of invasive candidiasis, aspergillosis, and pneumocystis pneumonia. Antimicrob. Agents Chemother. 65, e01992-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Goje, O. et al. Oral ibrexafungerp for vulvovaginal candidiasis treatment: an analysis of VANISH 303 and VANISH 306. J. Women’s Health 32, 178–186 (2023).

    Article  Google Scholar 

  188. Kirchhoff, L. et al. Antibiofilm activity of antifungal drugs, including the novel drug olorofim, against Lomentospora prolificans. J. Antimicrob. Chemother. 75, 2133–2140 (2020).

    CAS  PubMed  Google Scholar 

  189. Gintjee, T. J., Donnelley, M. A. & Thompson, G. R., III. Aspiring antifungals: review of current antifungal pipeline developments. J. Fungi. https://doi.org/10.3390/jof6010028 (2020).

  190. Kean, R. & Ramage, G. Combined antifungal resistance and biofilm tolerance: the global threat of Candida auris. mSphere https://doi.org/10.1128/mSphere.00458-19 (2019).

  191. Martinez, L. R. & Casadevall, A. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl. Environ. Microbiol. 73, 4592–4601 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Williams, C., Rajendran, R. & Ramage, G. Aspergillus biofilms in human disease. Adv. Exp. Med. Biol. 931, 1–11 (2016).

    Article  PubMed  Google Scholar 

  193. Hoyer, L. L. & Cota, E. Candida albicans agglutinin-like sequence (Als) family vignettes: a review of Als protein structure and function. Front. Microbiol. 7, 280 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Ramage, G., VandeWalle, K., Lopez-Ribot, J. L. & Wickes, B. L. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol. Lett. 214, 95–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Dominguez, E. et al. Conservation and divergence in the Candida species biofilm matrix mannan–glucan complex structure, function, and genetic control. mBio https://doi.org/10.1128/mBio.00451-18 (2018).

  196. Nobile, C. J. et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 7, e1000133 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Dominguez, E. G. et al. Conserved role for biofilm matrix polysaccharides in Candida auris drug resistance. mSphere https://doi.org/10.1128/mSphereDirect.00680-18 (2019).

  198. Bottcher, B. et al. A highly conserved tRNA modification contributes to C. albicans filamentation and virulence. Microbiol. Spectr. 12, e0425522 (2024).

    Article  PubMed  Google Scholar 

  199. Gravelat, F. N. et al. Aspergillus fumigatus MedA governs adherence, host cell interactions and virulence. Cell Microbiol. 12, 473–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  200. Rajendran, R. et al. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob. Agents Chemother. 55, 2092–2097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang, L., Tian, X., Gyawali, R. & Lin, X. Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner. Proc. Natl Acad. Sci. USA 110, 11571–11576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ramage, G. Comparing apples and oranges: considerations for quantifying candidal biofilms with XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] and the need for standardized testing. J. Med. Microbiol. 65, 259–260 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M. Butcher and H. Abduljalil (Glasgow Caledonian University) for their helpful comments and feedback during the development of the figures within this Review.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Gordon Ramage.

Ethics declarations

Competing interests

G.R. has received speaker fees from Gilead and Mundipharma. R.R.-R. has received speaker fees from Mundipharma, Astellas, Basilea, Gilead, Pfizer and Scynexis, and is the principal investigator for phase II clinical trials for Scynexis and F2G. The other authors do not declare any conflict of interest.

Peer review

Peer review information

Nature Reviews Microbiology thanks Yue Qu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramage, G., Kean, R., Rautemaa-Richardson, R. et al. Fungal biofilms in human health and disease. Nat Rev Microbiol 23, 355–370 (2025). https://doi.org/10.1038/s41579-025-01147-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-025-01147-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology