Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clostridioides difficile pathogenesis and control

Abstract

Clostridioides difficile infection (CDI) continues to be a notable burden worldwide, both in terms of patient mortality and morbidity, and the economic costs associated with treatment, diagnosis and management. The epidemiology of C. difficile has changed markedly over the decades, with high CDI rates driven by clinical pressures exacerbated by the severe acute respiratory syndrome coronavirus 2 pandemic, antibiotic resistance and selective pressures caused by antimicrobial use. C. difficile is challenging to diagnose and treat as it forms spores and can persist asymptomatically within the gut. Some strains express multiple virulence factors, including adhesins and toxins. The gut microbiota is crucially important in CDI, as a healthy microbiota is resistant to colonization with C. difficile. Dysbiosis, often caused by antimicrobial exposure, enables C. difficile spores to germinate and produce toxin, causing symptoms that can range from mild diarrhoea to fulminant colitis and death. This Review describes changes in epidemiology and effects on diagnosis, discusses recent breakthroughs in the understanding of pathogenesis and antibiotic resistance and explores the role of microbiota dysbiosis in CDI and novel microbiota therapies in CDI treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Most common C. difficile ribotypes reported according to published data.
Fig. 2: The CDI cycle.
Fig. 3: Summary of pathogenicity factors during CDI and recurrent disease.
Fig. 4: The microbiota in C. difficile infection.

Similar content being viewed by others

References

  1. Lawson, P. A., Citron, D. M., Tyrrell, K. L. & Finegold, S. M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 40, 95–99 (2016).

    Article  PubMed  Google Scholar 

  2. Kuehne, S. A. et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J. Infect. Dis. 209, 83–86 (2014). This article showcases the role of the different CDTs in causing infection.

    Article  CAS  PubMed  Google Scholar 

  3. van Prehn, J. et al. European society of clinical microbiology and infectious diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 27, S1–s21 (2021).

    Article  PubMed  Google Scholar 

  4. Mounsey, A., Lacy Smith, K., Reddy, V. C. & Nickolich, S. Clostridioides difficile infection: update on management. Am. Fam. Physician 101, 168–175 (2020).

    PubMed  Google Scholar 

  5. Hall, I. C. & O’toole, E. Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacillus difficilis. Am. J. Dis. Child. 49, 390–402 (1935).

    Article  Google Scholar 

  6. George, W. L., Sutter, V. L., Goldstein, E. J., Ludwig, S. L. & Finegold, S. M. Aetiology of antimicrobial-agent-associated colitis. Lancet 1, 802–803 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Bartlett, J. G., Moon, N., Chang, T. W., Taylor, N. & Onderdonk, A. B. Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75, 778–782 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Tsigrelis, C. Recurrent Clostridioides difficile infection: recognition, management, prevention. Cleve. Clin. J. Med. 87, 347–359 (2020).

    Article  PubMed  Google Scholar 

  9. Guh, A. Y. et al. Characteristics of patients with initial Clostridioides difficile infection (CDI) that are associated with increased risk of multiple CDI recurrences. Open Forum Infect. Dis. 11, ofae127 (2024).

    Article  PubMed Central  PubMed  Google Scholar 

  10. Olsen, M. A., Yan, Y., Reske, K. A., Zilberberg, M. D. & Dubberke, E. R. Recurrent Clostridium difficile infection is associated with increased mortality. Clin. Microbiol. Infect. 21, 164–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Olsen, M. A., Yan, Y., Reske, K. A., Zilberberg, M. & Dubberke, E. R. Impact of Clostridium difficile recurrence on hospital readmissions. Am. J. Infect. Control. 43, 318–322 (2015).

    Article  PubMed  Google Scholar 

  12. Tresman, R. & Goldenberg, S. D. Healthcare resource use and attributable cost of Clostridium difficile infection: a micro-costing analysis comparing first and recurrent episodes. J. Antimicrob. Chemother. 73, 2851–2855 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Fawley, W. N. et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS ONE 10, e0118150 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Freeman, J. et al. The changing epidemiology of Clostridium difficile infections. Clin. Microbiol. Rev. 23, 529–549 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious diseases society of America (IDSA) and Society for healthcare epidemiology of America (SHEA). Clin. Infect. Dis. 66, e1–e48 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Guh, A. Y. et al. Trends in U.S. burden of Clostridioides difficile infection and outcomes. N. Engl. J. Med. 382, 1320–1330 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Alshannaq, A. F. et al. Diverse sources and latent reservoirs of community-associated Clostridioides difficile infection. Clin. Infect. Dis. 80, 37–42 (2025).

    Article  PubMed  Google Scholar 

  18. Worley, J. et al. Genomic determination of relative risks for Clostridioides difficile infection from asymptomatic carriage in intensive care unit patients. Clin. Infect. Dis. 73, e1727–e1736 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Gilboa, M., Baharav, N., Melzer, E., Regev-Yochay, G. & Yahav, D. Screening for asymptomatic Clostridioides difficile carriage among hospitalized patients: a narrative review. Infect. Dis. Ther. 12, 2223–2240 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  20. Caballero-Flores, G., Pickard, J. M. & Núñez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. 21, 347–360 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Dingle, K. E. et al. Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infect. Dis. 17, 411–421 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Slimings, C. & Riley, T. V. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J. Antimicrob. Chemother. 69, 881–891 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Dingle, K. E. et al. Penicillin binding protein substitutions cooccur with fluoroquinolone resistance in epidemic lineages of multidrug-resistant Clostridioides difficile. mBio 14, e0024323 (2023).

    Article  PubMed  Google Scholar 

  24. Webb, B. J. et al. Antibiotic exposure and risk for hospital-associated Clostridioides difficile infection. Antimicrob. Agents Chemother. 64, e02169-19 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Johnson, S. et al. Clinical practice guideline by the infectious diseases society of America (IDSA) and society for healthcare epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin. Infect. Dis. 73, e1029–e1044 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Buckley, A. M., Moura, I. B. & Wilcox, M. H. The potential of microbiome replacement therapies for Clostridium difficile infection. Curr. Opin. Gastroenterol. 38, 1–6 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Wilcox, M. H. et al. Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin. Infect. Dis. 55, 1056–1063 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Agnew, E. et al. Impact of testing on Clostridioides difficile infection in hospitals across Europe: a mathematical model. Clin. Microbiol. Infect. 29, 796.e1–796.e6 (2023).

    Article  PubMed  Google Scholar 

  29. Tkalec, V. et al. Clostridioides difficile positivity rate and PCR ribotype distribution on retail potatoes in 12 European countries, January to June 2018. Eur. Surveill. 27, 2100417 (2022).

    Article  CAS  Google Scholar 

  30. Rupnik, M. et al. Distribution of Clostridioides difficile ribotypes and sequence types across humans, animals and food in 13 European countries. Emerg. Microbes Infect. 13, 2427804 (2024).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Viprey, V. F. et al. A point-prevalence study on community and inpatient Clostridioides difficile infections (CDI): results from Combatting Bacterial Resistance in Europe CDI (COMBACTE-CDI), July to November 2018. Eur. Surveill. 27, 2100704 (2022). This article offers a detailed description of the rates of community and health-care-associated CDI across Europe, regardless of diagnosis.

    Article  CAS  Google Scholar 

  32. Abdrabou, A. M. M. et al. Implementation of a Clostridioides difficile sentinel surveillance system in Germany: first insights for 2019-2021. Anaerobe 77, 102548 (2022).

    Article  PubMed  Google Scholar 

  33. Marujo, V. & Arvand, M. The largely unnoticed spread of Clostridioides difficile PCR ribotype 027 in Germany after 2010. Infect. Prev. Pract. 2, 100102 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  34. Berger, F. K. et al. Hospital outbreak due to Clostridium difficile ribotype 018 (RT018) in Southern Germany. Int. J. Med. Microbiol. 309, 189–193 (2019).

    Article  PubMed  Google Scholar 

  35. Gateau, C. et al. Local outbreak of Clostridioides difficile PCR-ribotype 018 investigated by multi locus variable number tandem repeat analysis, whole genome multi locus sequence typing and core genome single nucleotide polymorphism typing. Anaerobe 60, 102087 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. UK Health Security Agency. Clostridioides difficile Ribotyping Network (CDRN) for England and Northern Ireland, 2018 to 2023 (UKHSA, 2024).

  37. UKHSA Advisory Board. Update on Preparedness for Infectious Diseases (UKHSA, 2024).

  38. Kachrimanidou, M. et al. Predominance of Clostridioides difficile PCR ribotype 181 in northern Greece, 2016-2019. Anaerobe 76, 102601 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. National Center for Emerging and Zoonotic Infectious Diseases. Emerging Infections Program, Healthcare-Associated Infections — Community Interface Surveillance Report, Clostridioides difficile Infection (CDI), 2021 (CDC, 2023).

  40. Snydman, D. R. et al. A US-based national surveillance study for the susceptibility and epidemiology of Clostridioides difficile isolates with special reference to ridinilazole: 2020–2021. Antimicrob. Agents Chemother. 67, e0034923 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Canadian Nosocomial Infection Surveillance Program. Healthcare-associated infections and antimicrobial resistance in Canadian acute care hospitals, 2017–2021. Can. Commun. Dis. Rep. 49, 235–252 (2023).

    Article  PubMed Central  Google Scholar 

  42. Hong, S. et al. Laboratory-based surveillance of Clostridium difficile infection in Australian health care and community settings, 2013 to 2018. J. Clin. Microbiol. 58, e01552-20 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  43. O’Grady, K. et al. Defining the phylogenetics and resistome of the major Clostridioides difficile ribotypes circulating in Australia. Microb. Genom. 10, 001232 (2024).

    PubMed Central  PubMed  Google Scholar 

  44. Angulo, F. J., Ghia, C., Fletcher, M. A., Ozbilgili, E. & Morales, G. D. C. The burden of Clostridioides difficile infections in South-East Asia and the Western Pacific: a narrative review. Anaerobe 86, 102821 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Brajerova, M., Zikova, J. & Krutova, M. Clostridioides difficile epidemiology in the Middle and the Far East. Anaerobe 74, 102542 (2022).

    Article  PubMed  Google Scholar 

  46. Acuña-Amador, L., Quesada-Gómez, C. & Rodríguez, C. Clostridioides difficile in Latin America: a comprehensive review of literature (1984-2021). Anaerobe 74, 102547 (2022).

    Article  PubMed  Google Scholar 

  47. Morales-Olvera, C. G. et al. Clostridioides Difficile in Latin America: an epidemiological overview. Curr. Microbiol. 80, 357 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Senoh, M. & Kato, H. Molecular epidemiology of endemic Clostridioides difficile infection in Japan. Anaerobe 74, 102510 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Bignardi, G. E., Hill, K., Berrington, A. & Settle, C. D. Two-stage algorithm for Clostridium difficile: glutamate-dehydrogenase-positive toxin-negative enzyme immunoassay results may require further testing. J. Hosp. Infect. 83, 347–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Planche, T. D. et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect. Dis. 13, 936–945 (2013). This article demonstrates how different diagnostic methods correlate with clinical outcomes and was instrumental in the development of optimized two-step diagnostic algorithms.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Iheagwara, C. C. et al. A rare case of polymerase chain reaction-negative severe Clostridioides difficile infection. Cureus 15, e50403 (2023).

    PubMed Central  PubMed  Google Scholar 

  52. Polage, C. R. et al. Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern. Med. 175, 1792–1801 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  53. Bartlett, J. G., Chang, T. W., Gurwith, M., Gorbach, S. L. & Onderdonk, A. B. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N. Engl. J. Med. 298, 531–534 (1978).

    Article  CAS  PubMed  Google Scholar 

  54. Chang, T. W., Gorbach, S. L. & Bartlett, J. B. Neutralization of Clostridium difficile toxin by Clostridium sordellii antitoxins. Infect. Immun. 22, 418–422 (1978).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Trubiano, J. A. et al. Australasian society of infectious diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern. Med. J. 46, 479–493 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Watkin, S., Yongblah, F., Burton, J., Hartley, J. C. & Cloutman-Green, E. Clostridioides difficile detection and infection in children: are they just small adults? J. Med. Microbiol. 73, 001816 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Dalal, R. S. & Allegretti, J. R. Diagnosis and management of Clostridioides difficile infection in patients with inflammatory bowel disease. Curr. Opin. Gastroenterol. 37, 336–343 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Crobach, M. J. et al. European society of clinical microbiology and infectious diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 22, S63–81 (2016).

    Article  PubMed  Google Scholar 

  59. Viprey, V. F. et al. European survey on the current surveillance practices, management guidelines, treatment pathways and heterogeneity of testing of Clostridioides difficile, 2018–2019: results from the Combatting Bacterial Resistance in Europe CDI (COMBACTE-CDI). J. Hosp. Infect. 131, 213–220 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Planche, T. et al. Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect. Dis. 8, 777–784 (2008).

    Article  PubMed  Google Scholar 

  61. Tichota-Lee, J., Jaqua-Stewart, M. J., Benfield, D., Simmons, J. L. & Jaqua, R. A. Effect of age on the sensitivity of cell cultures to Clostridium difficile toxin. Diagn. Microbiol. Infect. Dis. 8, 203–214 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Lyerly, D. M., Sullivan, N. M. & Wilkins, T. D. Enzyme-linked immunosorbent assay for Clostridium difficile toxin A. J. Clin. Microbiol. 17, 72–78 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Borriello, S. P. et al. Molecular, immunological, and biological characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile. Infect. Immun. 60, 4192–4199 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Eastwood, K., Else, P., Charlett, A. & Wilcox, M. Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J. Clin. Microbiol. 47, 3211–3217 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Tenover, F. C. et al. Impact of strain type on detection of toxigenic Clostridium difficile: comparison of molecular diagnostic and enzyme immunoassay approaches. J. Clin. Microbiol. 48, 3719–3724 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  66. Mansfield, M. J. et al. Phylogenomics of 8,839 Clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin A and B. PLoS Pathog. 16, e1009181 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Ramírez-Vargas, G. et al. Novel clade C-I Clostridium difficile strains escape diagnostic tests, differ in pathogenicity potential and carry toxins on extrachromosomal elements. Sci. Rep. 8, 13951 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  68. Shen, E. et al. Subtyping analysis reveals new variants and accelerated evolution of Clostridioides difficile toxin B. Commun. Biol. 3, 347 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Landry, M. L. et al. High agreement between an ultrasensitive Clostridioides difficile toxin assay and a C. difficile laboratory algorithm utilizing GDH-and-toxin enzyme immunoassays and cytotoxin testing. J. Clin. Microbiol. 58, e01629-19 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sandlund, J. et al. Ultrasensitive detection of Clostridioides difficile toxins A and B by use of automated single-molecule counting technology. J. Clin. Microbiol. 56, e00908-18 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Banz, A. et al. Sensitivity of single-molecule array assays for detection of Clostridium difficile toxins in comparison to conventional laboratory testing algorithms. J. Clin. Microbiol. 56, e00452-18 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Shim, J. K., Johnson, S., Samore, M. H., Bliss, D. Z. & Gerding, D. N. Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet 351, 633–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Bouza, E. et al. ‘Second-look’ cytotoxicity: an evaluation of culture plus cytotoxin assay of Clostridium difficile isolates in the laboratory diagnosis of CDAD. J. Hosp. Infect. 48, 233–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Anderson, B. M., Anderson, C. D., Van Tassell, R. L., Lyerly, D. M. & Wilkins, T. D. Purification and characterization of Clostridium difficile glutamate dehydrogenase. Arch. Biochem. Biophys. 300, 483–488 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Shetty, N., Wren, M. W. & Coen, P. G. The role of glutamate dehydrogenase for the detection of Clostridium difficile in faecal samples: a meta-analysis. J. Hosp. Infect. 77, 1–6 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Avni, T. et al. Molecular-based diagnosis of Clostridium difficile infection is associated with reduced mortality. Eur. J. Clin. Microbiol. Infect. Dis. 37, 1137–1142 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Longtin, Y. et al. Impact of the type of diagnostic assay on Clostridium difficile infection and complication rates in a mandatory reporting program. Clin. Infect. Dis. 56, 67–73 (2013).

    Article  PubMed  Google Scholar 

  78. Prosty, C. et al. Clinical outcomes and management of NAAT-positive/toxin-negative Clostridioides difficile infection: a systematic review and meta-analysis. Clin. Infect. Dis. 78, 430–438 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Goret, J. et al. Impact of the introduction of a nucleic acid amplification test for Clostridium difficile diagnosis on stool rejection policies. Gut Pathog. 10, 19 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Yen, C. et al. Reducing Clostridium difficile colitis rates via cost-saving diagnostic stewardship. Infect. Control. Hosp. Epidemiol. 39, 734–736 (2018).

    Article  PubMed  Google Scholar 

  81. Davies, K. A. et al. Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect. Dis. 14, 1208–1219 (2014).

    Article  PubMed  Google Scholar 

  82. Davies, K. et al. Variability in testing policies and impact on reported Clostridium difficile infection rates: results from the pilot longitudinal European Clostridium difficile infection diagnosis surveillance study (LuCID). Eur. J. Clin. Microbiol. Infect. Dis. 35, 1949–1956 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Davies, K. A., Planche, T. & Wilcox, M. H. The predictive value of quantitative nucleic acid amplification detection of Clostridium difficile toxin gene for faecal sample toxin status and patient outcome. PLoS ONE 13, e0205941 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Goldenberg, S. D. & French, G. L. Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic Clostridium difficile. J. Infect. 62, 355–362 (2011).

    Article  PubMed  Google Scholar 

  86. Pollock, N. R. Ultrasensitive detection and quantification of toxins for optimized diagnosis of Clostridium difficile infection. J. Clin. Microbiol. 54, 259–264 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Pollock, N. R. et al. Comparison of Clostridioides difficile stool toxin concentrations in adults with symptomatic infection and asymptomatic carriage using an ultrasensitive quantitative immunoassay. Clin. Infect. Dis. 68, 78–86 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Ford, C. D., Lopansri, B. K., Hunter, B. D., Asch, J. & Hoda, D. Multiplexed gastrointestinal PCR panels for the evaluation of diarrhea in HCT recipients. Transpl. Cell Ther. 30, 814.e1–814.e7 (2024).

    Article  CAS  Google Scholar 

  89. Langhorst, J. & Boone, J. Fecal lactoferrin as a noninvasive biomarker in inflammatory bowel diseases. Drugs Today 48, 149–161 (2012).

    Article  CAS  Google Scholar 

  90. Barbut, F. et al. Faecal lactoferrin and calprotectin in patients with Clostridium difficile infection: a case-control study. Eur. J. Clin. Microbiol. Infect. Dis. 36, 2423–2430 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Swale, A. et al. Calprotectin and lactoferrin faecal levels in patients with Clostridium difficile infection (CDI): a prospective cohort study. PLoS ONE 9, e106118 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  92. Lee, S. H. et al. Fecal calprotectin predicts complete mucosal healing and better correlates with the ulcerative colitis endoscopic index of severity than with the Mayo endoscopic subscore in patients with ulcerative colitis. BMC Gastroenterol. 17, 110 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  93. O’Connor, J. R., Johnson, S. & Gerding, D. N. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 136, 1913–1924 (2009).

    Article  PubMed  Google Scholar 

  94. Wickramage, I., Spigaglia, P. & Sun, X. Mechanisms of antibiotic resistance of Clostridioides difficile. J. Antimicrob. Chemother. 76, 3077–3090 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Vernon, J. J., Wilcox, M. H. & Freeman, J. Antimicrobial resistance progression in the United Kingdom: a temporal comparison of Clostridioides difficile antimicrobial susceptibilities. Anaerobe 70, 102385 (2021).

    Article  Google Scholar 

  96. National Insitute for Health and Care Excellence. Scenario: management of antibiotic associated diarrhoea. NICE https://cks.nice.org.uk/topics/diarrhoea-antibiotic-associated/management/diarrhoea-antibiotic-associated/#suspected-or-confirmed-clostridiodes-difficile-infections (2023).

  97. Gonzales-Luna, A. J. et al. Reduced susceptibility to metronidazole is associated with initial clinical failure in Clostridioides difficile infection. Open Forum Infect. Dis. 8, ofab365 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  98. Freeman, J. et al. The ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011–2014. Clin. Microbiol. Infect. 24, 724–731 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Goudarzi, M. et al. Antimicrobial susceptibility of Clostridium difficile clinical isolates in Iran. Iran. Red. Crescent Med. J. 15, 704–711 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  100. European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0 (EUCAST, 2025).

  101. Peláez, T. et al. Metronidazole resistance in Clostridium difficile is heterogeneous. J. Clin. Microbiol. 46, 3028–3032 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  102. Moura, I., Spigaglia, P., Barbanti, F. & Mastrantonio, P. Analysis of metronidazole susceptibility in different Clostridium difficile PCR ribotypes. J. Antimicrob. Chemother. 68, 362–365 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Baines, S. D. et al. Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J. Antimicrob. Chemother. 62, 1046–1052 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Boekhoud, I. M. et al. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat. Commun. 11, 598 (2020). This article describes a novel plasmid linked to metronidazole resistance in C. difficile.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Imwattana, K., Rodríguez, C., Riley, T. V. & Knight, D. R. A species-wide genetic atlas of antimicrobial resistance in Clostridioides difficile. Microb. Genom. 7, 000696 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Boekhoud, I. M. et al. Haem is crucial for medium-dependent metronidazole resistance in clinical isolates of Clostridioides difficile. J. Antimicrob. Chemother. 76, 1731–1740 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Olaitan, A. O. et al. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat. Commun. 14, 4130 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Ammam, F. et al. The functional vanGCd cluster of Clostridium difficile does not confer vancomycin resistance. Mol. Microbiol. 89, 612–625 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Eubank, T. A., Gonzales-Luna, A. J., Hurdle, J. G. & Garey, K. W. Genetic mechanisms of vancomycin resistance in Clostridioides difficile: a systematic review. Antibiotics 11, 258 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Shen, W. J. et al. Constitutive expression of the cryptic vanGCd operon promotes vancomycin resistance in Clostridioides difficile clinical isolates. J. Antimicrob. Chemother. 75, 859–867 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Buddle, J. E. et al. Identification of pathways to high-level vancomycin resistance in Clostridioides difficile that incur high fitness costs in key pathogenicity traits. PLoS Biol. 22, e3002741 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Tsvetkova, K., Marvaud, J. C. & Lambert, T. Analysis of the mobilization functions of the vancomycin resistance transposon Tn1549, a member of a new family of conjugative elements. J. Bacteriol. 192, 702–713 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Wu, Y. et al. Independent microevolution mediated by mobile genetic elements of individual Clostridium difficile isolates from clade 4 revealed by whole-genome sequencing. mSystems 4, e00252-18 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Pu, M. et al. Plasmid acquisition alters vancomycin susceptibility in Clostridioides difficile. Gastroenterology 160, 941–945.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Saldanha, G. Z. et al. Genetic relatedness, virulence factors and antimicrobial resistance of C. difficile strains from hospitalized patients in a multicentric study in Brazil. J. Glob. Antimicrob. Resist. 22, 117–121 (2020).

    Article  PubMed  Google Scholar 

  116. Eubank, T. A., Dureja, C., Garey, K. W., Hurdle, J. G. & Gonzales-Luna, A. J. Reduced vancomycin susceptibility in Clostridioides difficile is associated with lower rates of initial cure and sustained clinical response. Clin. Infect. Dis. 79, 15–21 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Goldstein, E. J. et al. Comparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against Clostridium difficile infection. Antimicrob. Agents Chemother. 55, 5194–5199 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Schwanbeck, J. et al. Characterization of a clinical Clostridioides difficile isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in rpoB. J. Antimicrob. Chemother. 74, 6–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Marchandin, H. et al. In vivo emergence of a still uncommon resistance to fidaxomicin in the urgent antimicrobial resistance threat Clostridioides difficile. J. Antimicrob. Chemother. 78, 1992–1999 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Aoki, K., Takeda, S., Miki, T., Ishii, Y. & Tateda, K. Antimicrobial susceptibility and molecular characterisation using whole-genome sequencing of Clostridioides difficile collected in 82 hospitals in Japan between 2014 and 2016. Antimicrob. Agents Chemother. 63, e01259-19 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Redmond, S. N. et al. Emergence and spread of Clostridioides difficile isolates with reduced fidaxomicin susceptibility in an acute care hospital. Clin. Infect. Dis. 80, 984–991 (2025).

    Article  CAS  PubMed  Google Scholar 

  122. Toth, M., Stewart, N. K., Smith, C. & Vakulenko, S. B. Intrinsic class D β-lactamases of Clostridium difficile. mBio 9, e01803-18 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  123. Isidro, J. et al. Imipenem resistance in Clostridium difficile ribotype 017, Portugal. Emerg. Infect. Dis. 24, 741–745 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Sacco, M. D. et al. A unique class of Zn2+-binding serine-based PBPs underlies cephalosporin resistance and sporogenesis in Clostridioides difficile. Nat. Commun. 13, 4370 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Curry, S. R. et al. High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin. Infect. Dis. 48, 425–429 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Carman, R. J., Boone, J. H., Grover, H., Wickham, K. N. & Chen, L. In vivo selection of rifamycin-resistant Clostridium difficile during rifaximin therapy. Antimicrob. Agents Chemother. 56, 6019–6020 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Dang, U. T. et al. Rifamycin resistance in Clostridium difficile is generally associated with a low fitness burden. Antimicrob. Agents Chemother. 60, 5604–5607 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Corver, J. et al. Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn6164. BMC Microbiol. 12, 130 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Spigaglia, P., Barbanti, F. & Mastrantonio, P. Tetracycline resistance gene tet(W) in the pathogenic bacterium Clostridium difficile. Antimicrob. Agents Chemother. 52, 770–773 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Deakin, L. J. et al. The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect. Immun. 80, 2704–2711 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Péchiné, S., Denève-Larrazet, C. & Collignon, A. Clostridium difficile adhesins. Methods Mol. Biol. 1476, 91–101 (2016).

    Article  PubMed  Google Scholar 

  132. Papatheodorou, P., Minton, N. P., Aktories, K. & Barth, H. An updated view on the cellular uptake and mode-of-action of Clostridioides difficile toxins. Adv. Exp. Med. Biol. 1435, 219–247 (2024).

    Article  CAS  PubMed  Google Scholar 

  133. Buddle, J. E. & Fagan, R. P. Pathogenicity and virulence of Clostridioides difficile. Virulence 14, 2150452 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  134. Martins, D. et al. CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile. Sci. Rep. 11, 7887 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. DiCandia, M. A. et al. Identification of functional Spo0A residues critical for sporulation in Clostridioides difficile. J. Mol. Biol. 434, 167641 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Lee, C. D. et al. Genetic mechanisms governing sporulation initiation in Clostridioides difficile. Curr. Opin. Microbiol. 66, 32–38 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. DiCandia, M. A. et al. A conserved switch controls virulence, sporulation, and motility in C. difficile. PLoS Pathog. 20, e1012224 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Edwards, A. N., Krall, E. G. & McBride, S. M. Strain-dependent RstA regulation of Clostridioides difficile toxin production and sporulation. J. Bacteriol. 202, e00586-19 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Paredes-Sabja, D., Shen, A. & Sorg, J. A. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol. 22, 406–416 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Montes-Bravo, N. et al. Role of the spore coat proteins CotA and CotB, and the spore surface protein CDIF630_02480, on the surface distribution of exosporium proteins in Clostridioides difficile 630 spores. Microorganisms 10, 1918 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Pizarro-Guajardo, M., Calderón-Romero, P., Castro-Córdova, P., Mora-Uribe, P. & Paredes-Sabja, D. Ultrastructural variability of the exosporium layer of Clostridium difficile spores. Appl. Environ. Microbiol. 82, 2202–2209 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Pizarro-Guajardo, M. et al. Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. Anaerobe 25, 18–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Kochan, T. J. et al. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores. PLoS Pathog. 13, e1006443 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  145. Francis, M. B., Allen, C. A., Shrestha, R. & Sorg, J. A. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog. 9, e1003356 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Shrestha, R., Cochran, A. M. & Sorg, J. A. The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA. PLoS Pathog. 15, e1007681 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Kevorkian, Y. & Shen, A. Revisiting the role of Csp family proteins in regulating Clostridium difficile spore germination. J. Bacteriol. 199, e00266-17 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  148. Rohlfing, A. E. et al. The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genet. 15, e1008224 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  149. Ribis, J. W. et al. Single-spore germination analyses reveal that calcium released during Clostridioides difficile germination functions in a feedforward loop. mSphere 8, e0000523 (2023).

    Article  PubMed  Google Scholar 

  150. Castro-Córdova, P. et al. Redistribution of the novel Clostridioides difficile spore adherence receptor E-cadherin by TcdA and TcdB increases spore binding to adherens junctions. Infect. Immun. 91, e0047622 (2023).

    Article  PubMed  Google Scholar 

  151. Normington, C. et al. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. npj Biofilms Microbiomes 7, 16 (2021). This article demonstrates the role of. C. difficile spores in recurrent CDI and pathogen persistence in the large intestine.

    Article  PubMed Central  PubMed  Google Scholar 

  152. Ðapa, T. et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J. Bacteriol. 195, 545–555 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  153. Donelli, G., Vuotto, C., Cardines, R. & Mastrantonio, P. Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol. Med. Microbiol. 65, 318–325 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Semenyuk, E. G. et al. Analysis of bacterial communities during Clostridium difficile infection in the mouse. Infect. Immun. 83, 4383–4391 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Smith, A. B. et al. Enterococci enhance Clostridioides difficile pathogenesis. Nature 611, 780–786 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Dubois, T. et al. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. npj Biofilms Microbiomes 5, 14 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  157. Kang, J. D. et al. Bile acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit Clostridium difficile: role of secondary bile acids. Cell Chem. Biol. 26, 27–34.e24 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Baban, S. T. et al. The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain. PLoS ONE 8, e73026 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. McKee, R. W., Aleksanyan, N., Garrett, E. M. & Tamayo, R. Type IV Pili promote Clostridium difficile adherence and persistence in a mouse model of infection. Infect. Immun. 86, e00943-17 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Waligora, A. J. et al. Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect. Immun. 69, 2144–2153 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Fagan, R. P. & Fairweather, N. F. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12, 211–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Kirk, J. A., Banerji, O. & Fagan, R. P. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb. Biotechnol. 10, 76–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Tasteyre, A., Barc, M. C., Collignon, A., Boureau, H. & Karjalainen, T. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect. Immun. 69, 7937–7940 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Merrigan, M. M. et al. Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PLoS ONE 8, e78404 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Calabi, E., Calabi, F., Phillips, A. D. & Fairweather, N. F. Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect. Immun. 70, 5770–5778 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Kirk, J. A. et al. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci. Transl Med. 9, eaah6813 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  167. Lanzoni-Mangutchi, P. et al. Structure and assembly of the S-layer in C. difficile. Nat. Commun. 13, 970 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Wang, S. et al. Revealing roles of S-layer protein (SlpA) in Clostridioides difficile pathogenicity by generating the first slpA gene deletion mutant. Microbiol. Spectr. 12, e0400523 (2024).

    Article  PubMed  Google Scholar 

  169. Kirby, J. M. et al. Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J. Biol. Chem. 284, 34666–34673 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Péchiné, S. et al. Immunological properties of surface proteins of Clostridium difficile. J. Med. Microbiol. 54, 193–196 (2005).

    Article  PubMed  Google Scholar 

  171. Wright, A., Drudy, D., Kyne, L., Brown, K. & Fairweather, N. F. Immunoreactive cell wall proteins of Clostridium difficile identified by human sera. J. Med. Microbiol. 57, 750–756 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Zhou, Q. et al. The cwp66 gene affects cell adhesion, stress tolerance, and antibiotic resistance in Clostridioides difficile. Microbiol. Spectr. 10, e0270421 (2022).

    Article  PubMed  Google Scholar 

  173. Schöttelndreier, D., Langejürgen, A., Lindner, R. & Genth, H. Low density lipoprotein receptor-related protein-1 (LRP1) is involved in the uptake of Clostridioides difficile toxin A and serves as an internalizing receptor. Front. Cell Infect. Microbiol. 10, 565465 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  174. Tao, L. et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538, 350–355 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Gupta, P. et al. Functional defects in Clostridium difficile TcdB toxin uptake identify CSPG4 receptor-binding determinants. J. Biol. Chem. 292, 17290–17301 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. LaFrance, M. E. et al. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proc. Natl Acad. Sci. USA 112, 7073–7078 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Luo, J. et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell 185, 980–994.e15 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Manion, J. et al. C. difficile intoxicates neurons and pericytes to drive neurogenic inflammation. Nature 622, 611–618 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Lyras, D. et al. Toxin B is essential for virulence of Clostridium difficile. Nature 458, 1176–1179 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Mileto, S. J. et al. Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc. Natl Acad. Sci. USA 117, 8064–8073 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Lv, X. et al. De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants. Nat. Commun. 15, 8521 (2024).

    Article  PubMed Central  PubMed  Google Scholar 

  182. Eckert, C. et al. Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B. New Microbes New Infect. 3, 12–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Gerding, D. N., Johnson, S., Rupnik, M. & Aktories, K. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 5, 15–27 (2014).

    Article  PubMed  Google Scholar 

  184. Lyon, S. A., Hutton, M. L., Rood, J. I., Cheung, J. K. & Lyras, D. CdtR regulates TcdA and TcdB production in Clostridium difficile. PLoS Pathog. 12, e1005758 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  185. Dong, Q. et al. Virulence and genomic diversity among clinical isolates of ST1 (BI/NAP1/027) Clostridioides difficile. Cell Rep. 42, 112861 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Meza-Torres, J. et al. Clostridioides difficile binary toxin CDT induces biofilm-like persisting microcolonies. Gut Microbes 17, 2444411 (2025).

    Article  PubMed  Google Scholar 

  187. Nabukhotna, K. et al. Purified CDT toxins and a clean deletion within the CDT locus provide novel insights into the contribution of binary toxin in cellular inflammation and Clostridioides difficile infection. PLoS Pathog. 20, e1012568 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Simpson, M. et al. Clostridioides difficile binary toxin binding component increases virulence in a Hamster model. Open Forum Infect. Dis. 10, ofad040 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  189. Nhu, N. T. Q. et al. Flagellar switch inverted repeats impact heterogeneity in flagellar gene expression and thus C. difficile RT027/MLST1 virulence. Cell Rep. 44, 115830 (2025).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Trzilova, D., Anjuwon-Foster, B. R., Torres Rivera, D. & Tamayo, R. Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile. PLoS Pathog. 16, e1008708 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Warren Norris, M. A. H., Plaskon, D. M. & Tamayo, R. Phase variation of flagella and toxins in Clostridioides difficile is mediated by selective Rho-dependent termination. J. Mol. Biol. 436, 168456 (2024).

    Article  CAS  PubMed  Google Scholar 

  192. Trzilova, D., Warren, M. A. H., Gadda, N. C., Williams, C. L. & Tamayo, R. Flagellum and toxin phase variation impacts intestinal colonization and disease development in a mouse model of Clostridioides difficile infection. Gut Microbes 14, 2038854 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  193. Kelly, C. P. & Kyne, L. The host immune response to Clostridium difficile. J. Med. Microbiol. 60, 1070–1079 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Gupta, S. B. et al. Antibodies to toxin B are protective against Clostridium difficile infection recurrence. Clin. Infect. Dis. 63, 730–734 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Rigo, I. et al. The impact of existing total anti-toxin B IgG immunity in outcomes of recurrent Clostridioides difficile infection. Anaerobe 87, 102842 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Janoir, C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 37, 13–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Di Bella, S. et al. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin. Microbiol. Rev. 37, e0013523 (2024).

    Article  PubMed  Google Scholar 

  198. Abt, M. C. et al. Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe 18, 27–37 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Saleh, M. M. & Petri, W. A. Jr. Type 3 immunity during Clostridioides difficile infection: too much of a good thing? Infect. Immun. 88, e00306–19 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  200. Pruss, K. M. & Sonnenburg, J. L. C. difficile exploits a host metabolite produced during toxin-mediated disease. Nature 593, 261–265 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Pi, H. et al. Clostridioides difficile ferrosome organelles combat nutritional immunity. Nature 623, 1009–1016 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Cowardin, C. A. et al. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat. Microbiol. 1, 16108 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  204. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  207. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Cario, E., Gerken, G. & Podolsky, D. K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132, 1359–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    Article  PubMed  Google Scholar 

  210. Hugon, P. et al. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 15, 1211–1219 (2015).

    Article  PubMed  Google Scholar 

  211. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  PubMed Central  Google Scholar 

  212. Shin, J. H. et al. Bacteroides and related species: the keystone taxa of the human gut microbiota. Anaerobe 85, 102819 (2024).

    Article  CAS  PubMed  Google Scholar 

  213. Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015). This study demonstrates a specific bile-acid mediated mechanistic pathway by which C. scindens contributes to gut microbiota colonization resistance against. C. difficile.

    Article  CAS  PubMed  Google Scholar 

  216. Girinathan, B. P. et al. In vivo commensal control of Clostridioides difficile virulence. Cell Host Microbe 29, 1693–1708.e7 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  217. Pruss, K. M. et al. Oxidative ornithine metabolism supports non-inflammatory C. difficile colonization. Nat. Metab. 4, 19–28 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. Arrieta-Ortiz, M. L. et al. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile. Cell Host Microbe 29, 1709–1723.e5 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Theriot, C. M. & Young, V. B. Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection. Gut Microbes 5, 86–95 (2014).

    Article  PubMed  Google Scholar 

  220. Berkell, M. et al. Microbiota-based markers predictive of development of Clostridioides difficile infection. Nat. Commun. 12, 2241 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Vijay, A. & Valdes, A. M. Role of the gut microbiome in chronic diseases: a narrative review. Eur. J. Clin. Nutr. 76, 489–501 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).

    Article  Google Scholar 

  223. Denny, J. E., Flores, J. N., Mdluli, N. V. & Abt, M. C. Standard mouse diets lead to differences in severity in infectious and non-infectious colitis. mBio 16, e0330224 (2025).

    Article  PubMed  Google Scholar 

  224. Seekatz, A. M. et al. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe 53, 64–73 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Seekatz, A. M. et al. Recovery of the gut microbiome following fecal microbiota transplantation. mBio 5, e00893-14 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  226. Gulati, M., Singh, S. K., Corrie, L., Kaur, I. P. & Chandwani, L. Delivery routes for faecal microbiota transplants: available, anticipated and aspired. Pharmacol. Res. 159, 104954 (2020).

    Article  PubMed  Google Scholar 

  227. Tariq, R., Pardi, D. S., Bartlett, M. G. & Khanna, S. Low cure rates in controlled trials of fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Clin. Infect. Dis. 68, 1351–1358 (2019).

    Article  CAS  PubMed  Google Scholar 

  228. Littmann, E. R. et al. Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat. Commun. 12, 755 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  229. Dehlholm-Lambertsen, E. et al. Cost savings following faecal microbiota transplantation for recurrent Clostridium difficile infection. Ther. Adv. Gastroenterol. 12, 1756284819843002 (2019).

    Article  Google Scholar 

  230. Zellmer, C. et al. Shiga toxin-producing Escherichia coli transmission via fecal microbiota transplant. Clin. Infect. Dis. 72, e876–e880 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  232. Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045-15 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  233. Lee, C. et al. Safety of fecal microbiota, live-jslm (REBYOTA) in individuals with recurrent Clostridioides difficile infection: data from five prospective clinical trials. Ther. Adv. Gastroenterol. 16, 17562848231174277 (2023).

    Article  CAS  Google Scholar 

  234. Khanna, S. et al. Efficacy and safety of RBX2660 in PUNCH CD3, a phase III, randomized, double-blind, placebo-controlled trial with a bayesian primary analysis for the prevention of recurrent Clostridioides difficile infection. Drugs 82, 1527–1538 (2022). This phase III, double-blind, randomized, placebo-controlled clinical trial demonstrates that RBX2660 is a safe and effective treatment to reduce recurrent CDI following standard-of-care antibiotic therapy, with a sustained response.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022). This phase III, double-blind, randomized, placebo-controlled clinical trial demonstrates that administration of SER-109 following standard-of-care antibiotic therapy was superior in preventing recurrence of symptoms than placebo.

    Article  CAS  PubMed  Google Scholar 

  236. Cohen, S. H. et al. Extended follow-up of microbiome therapeutic SER-109 through 24 weeks for recurrent Clostridioides difficile infection in a randomized clinical trial. JAMA 328, 2062–2064 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  237. Wilcox, M. H. et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N. Engl. J. Med. 376, 305–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  238. Tkaczyk, C. et al. Anti-toxin B neutralizing monoclonal antibody AZD5148 provides protection in a Clostridioides difficile gnotobiotic piglet model. Open Forum Infect. Dis. 12, ofae631.1244 (2025).

    Article  PubMed Central  Google Scholar 

  239. Hutton, M. L. et al. Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative. Sci. Rep. 7, 3665 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  240. Gerding, D. N. et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA 313, 1719–1727 (2015).

    Article  PubMed  Google Scholar 

  241. Johnson, S. et al. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin. Infect. Dis. 59, 345–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  242. Daley, P. et al. Surotomycin versus vancomycin in adults with Clostridium difficile infection: primary clinical outcomes from the second pivotal, randomized, double-blind, phase 3 trial. J. Antimicrob. Chemother. 72, 3462–3470 (2017).

    Article  CAS  PubMed  Google Scholar 

  243. Gerding, D. N. et al. Cadazolid for the treatment of Clostridium difficile infection: results of two double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials. Lancet Infect. Dis. 19, 265–274 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Okhuysen, P. C. et al. A randomized, double-blind, phase 3 safety and efficacy study of ridinilazole versus vancomycin for treatment of Clostridioides difficile infection: clinical outcomes with microbiome and metabolome correlates of response. Clin. Infect. Dis. 78, 1462–1472 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  245. Fujimoto, K. & Uematsu, S. Phage therapy for Clostridioides difficile infection. Front. Immunol. 13, 1057892 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  246. Riley, T. V., Lyras, D. & Douce, G. R. Status of vaccine research and development for Clostridium difficile. Vaccine 37, 7300–7306 (2019).

    Article  CAS  PubMed  Google Scholar 

  247. Donskey, C. J. et al. CLOVER (CLOstridium difficile Vaccine Efficacy tRial) study: a phase 3, randomized trial investigating the efficacy and safety of a detoxified toxin A/B vaccine in adults 50 years and older at increased risk of Clostridioides difficile infection. Clin. Infect. Dis. 79, 1503–1511 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  248. Alameh, M. G. et al. A multivalent mRNA-LNP vaccine protects against Clostridioides difficile infection. Science 386, 69–75 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  249. Wasels, F., Spigaglia, P., Barbanti, F. & Mastrantonio, P. Clostridium difficile erm(B)-containing elements and the burden on the in vitro fitness. J. Med. Microbiol. 62, 1461–1467 (2013).

    Article  CAS  PubMed  Google Scholar 

  250. Stojković, V. et al. cfr(B), cfr(C), and a new cfr-like gene, cfr(E), in Clostridium difficile strains recovered across Latin America. Antimicrob. Agents Chemother. 64, e01074-19 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  251. Ackermann, G. et al. Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA. Antimicrob. Agents Chemother. 45, 2348–2353 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Drudy, D. et al. High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile. J. Antimicrob. Chemother. 58, 1264–1267 (2006).

    Article  CAS  PubMed  Google Scholar 

  253. Sandhu, B. K., Edwards, A. N., Anderson, S. E., Woods, E. C. & McBride, S. M. Regulation and anaerobic function of the Clostridioides difficile β-lactamase. Antimicrob. Agents Chemother. 64, e01496-19 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  254. Lyras, D. et al. Chloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringens. Antimicrob. Agents Chemother. 42, 1563–1567 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. Persson, S. et al. Sentinel surveillance and epidemiology of Clostridioides difficile in Denmark, 2016 to 2019. Eur. Surveill. 27, 2200244 (2022).

    Article  Google Scholar 

  256. European Centre for Disease Prevention and Control. Clostridioides difficile Infections — Annual Epidemiological Report for 2018–2020 (ECDC, 2024).

  257. Azimirad, M. et al. Clostridioides difficile ribotypes 001 and 126 were predominant in Tehran healthcare settings from 2004 to 2018: a 14-year-long cross-sectional study. Emerg. Microbes Infect. 9, 1432–1443 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  258. Kullin, B., Abratt, V. R., Reid, S. J. & Riley, T. V. Clostridioides difficile infection in Africa: a narrative review. Anaerobe 74, 102549 (2022).

    Article  PubMed  Google Scholar 

  259. Griffiths, D. et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 48, 770–778 (2010).

    Article  CAS  PubMed  Google Scholar 

  260. Huber, C. A., Foster, N. F., Riley, T. V. & Paterson, D. L. Challenges for standardization of Clostridium difficile typing methods. J. Clin. Microbiol. 51, 2810–2814 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  261. European Centre for Disease Prevention and Control. Study Protocol for a Survey of Whole Genome Sequencing of Clostridioides difficile Isolates from Tertiary Acute Care Hospitals, EU/EEA, 2022–2023 (ECDC, 2024).

  262. Baktash, A. et al. Comparison of whole-genome sequence-based methods and PCR ribotyping for subtyping of Clostridioides difficile. J. Clin. Microbiol. 60, e0173721 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Knight, D. R. et al. Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. eLlife 10, e64325 (2021).

    Article  CAS  Google Scholar 

  264. Miles-Jay, A. et al. Longitudinal genomic surveillance of carriage and transmission of Clostridioides difficile in an intensive care unit. Nat. Med. 29, 2526–2534 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  265. Newcomer, E. P. et al. Genomic surveillance of Clostridioides difficile transmission and virulence in a healthcare setting. mBio 15, e0330023 (2024).

    Article  PubMed  Google Scholar 

  266. Coia, C. W., Banks, A. L., Cottom, L. & Fitzpatrick, F. The need for European surveillance of CDI. Adv. Exp. Med. Biol. 1435, 13–31 (2024).

    Article  CAS  PubMed  Google Scholar 

  267. UK Health Security Agency. Annual Epidemiological Commentary: Gram-Negative, MRSA, MSSA Bacteraemia and C. difficile Infections, Up to and Including Financial Year 2022 to 2023 (UKHSA, 2024).

  268. Australian Commission on Safety and Quality in Health Care. Monitoring Clostridioides difficile Infection (CDI) in Australia. Clostridioides difficile Infection — 2020 and 2021 Data Snapshot (ACSQHC, 2023).

  269. Choi, K. B. et al. Trends in Clostridioides difficile infection rates in Canadian hospitals during the coronavirus disease 2019 (COVID-19) pandemic. Infect. Control. Hosp. Epidemiol. 44, 1180–1183 (2023).

    Article  PubMed  Google Scholar 

  270. Karampatakis, T. et al. Implication of COVID-19 pandemic on the incidence of Clostridioides difficile infection in a Greek tertiary hospital. J. Med. Microbiol. https://doi.org/10.1099/jmm.0.001689 (2023).

  271. Maldonado-Barrueco, A. et al. Increase of healthcare-onset Clostridioides difficile infection in adult population since SARS-CoV-2 pandemic: a retrospective cohort study in a tertiary care hospital from 2019 to 2022. Anaerobe 86, 102836 (2024).

    Article  CAS  PubMed  Google Scholar 

  272. Vehreschild, M. et al. Trends in the epidemiology of Clostridioides difficile infection in Germany. Infection 51, 1695–1702 (2023).

    Article  PubMed  Google Scholar 

  273. Tossens, B. et al. Impact of the COVID-19 pandemic on Clostridioides difficile infection in a tertiary healthcare institution in Belgium. Acta Clin. Belg. 78, 459–466 (2023).

    Article  PubMed  Google Scholar 

  274. Merchante, N. et al. Impact of COVID19 pandemic on the incidence of health-care associated Clostridioides difficile infection. Anaerobe 75, 102579 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  275. European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals — 2002–2023 (ECDC, 2024).

  276. Feuerstadt, P., Theriault, N. & Tillotson, G. The burden of CDI in the United States: a multifactorial challenge. BMC Infect. Dis. 23, 132 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

C.H.C., C.N., I.B.M., J.F., K.D. and M.H.W. acknowledge the support of the National Institute for Health and Care Research (NIHR) Leeds Biomedical Research Centre (grant no. NIHR203331). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the UK Health Security Agency (UKHSA) or the Department of Health and Social Care. M.H.W., K.D. and J.F acknowledge the support of the NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance (grant no. NIHR207397), a partnership between the UKHSA and the University of Oxford. M.H.W. and V.V. acknowledge the support of the NIHR Oxford Biomedical Research Centre and the NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance (grant no. NIHR200915), a partnership between the UKHSA and the University of Oxford. K.D. acknowledges the support of the NIHR HealthTech Research Centre in Accelerated Surgical Care.

Author information

Authors and Affiliations

Authors

Contributions

C.H.C. led the review and edit process of this article. The other authors contributed equally to all other aspects of the article.

Corresponding authors

Correspondence to Caroline H. Chilton or Mark H. Wilcox.

Ethics declarations

Competing interests

In the past 3 years, C.H.C. has received research funding from Debiopharm International and the MRC. I.B.M. has received research funding from GSK, Seres Therapeutics and the European Tissue Symposium. A.M.B. has received research funding from Seres Therapeutics. J.F. has received honorarium from Tillotts Pharma UK and grants from ACT-IVD, AJ Biosciences, Crestone, ESCMID, the MRC, the National Institute for Health and Care Research (NIHR), Pfizer and the UK Health Security Agency (UKHSA). K.D. has received honorarium from BD, Tillotts Pharma UK and Tillotts Pharma Europe, and grants from AJ Biosciences, ACT-IVD, AJ Biosciences, the MRC, the NIHR and Pfizer. M.H.W. has received consulting fees from AstraZeneca, Debiopharm, Ferring Pharmaceuticals, GSK, Nestlé, Paion, Pfizer, Phico Therapeutics, Qpex Biopharma, Seres Therapeutics, Summit, The European Tissue Symposium, Tillotts and Vedanta; lecture fees from GSK, Pfizer, Seres Therapeutics and Tillotts; and grant support from Debiopharm, GSK, Pfizer, Seres Therapeutics, Summit, the European Tissue Symposium and Tillotts. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Dena Lyras, who co-reviewed with Steven Mileto; Joseph Zackular; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chilton, C.H., Viprey, V., Normington, C. et al. Clostridioides difficile pathogenesis and control. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-025-01242-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41579-025-01242-2

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology