Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SARS-CoV-2 variants: biology, pathogenicity, immunity and control

Abstract

More than 5 years have passed since the emergence of the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet this virus continues to circulate globally, undergoing evolutionary changes. The effective control of SARS-CoV-2 necessitates an understanding of its antigenicity, replicative capacity, pathogenicity and transmissibility, as well as the development of preventive and treatment options. In this Review, we describe the origins and evolution of SARS-CoV-2, and outline variant and subvariant-specific characteristics. We also discuss the challenges faced in implementing prevention and treatment methods, such as the emergence of antigenically distinct variants and the phenomenon of immune imprinting. This Review provides insights into combating the ongoing COVID-19 pandemic and guidance for future research and vaccine development efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Severe acute respiratory syndrome coronavirus 2 variant transitions between 15 February 2020 and 23 July 2025.
Fig. 2: Divergence of the spike protein sequences in major severe acute respiratory syndrome coronavirus 2 variants.
Fig. 3: The effect of variant-specific substitutions on the life cycle of severe acute respiratory syndrome coronavirus 2.
Fig. 4: Humoral immune response outcomes after exposure to viral antigens.

Similar content being viewed by others

References

  1. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). Identified a novel coronavirus from patients with pneumonia and proposed a probable bat origin for SARS-CoV-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pekar, J. E. et al. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science 377, 960–966 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Holmes, E. C. The emergence and evolution of SARS-CoV-2. Annu. Rev. Virol. 11, 21–42 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Worobey, M. et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 377, 951–959 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, W. J. et al. Surveillance of SARS-CoV-2 at the Huanan Seafood Market. Nature 631, 402–408 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Bloom, J. D. Importance of quantifying the number of viral reads in metagenomic sequencing of environmental samples from the Huanan Seafood Market. Virus Evol. 10, vead089 (2024).

    Article  PubMed  Google Scholar 

  7. Crits-Christoph, A. et al. Genetic tracing of market wildlife and viruses at the epicenter of the COVID-19 pandemic. Cell 187(5468-5482), e5411 (2024).

    Google Scholar 

  8. World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19 – 11 March 2020 https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (WHO, 2020). Marked the date the WHO officially declared the COVID-19 outbreak a global pandemic.

  9. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021). Confirmed the high efficacy and safety profile of the Moderna mRNA-1273 COVID-19 vaccine.

    Article  CAS  PubMed  Google Scholar 

  11. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020). Demonstrated the safety and efficacy of the Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine.

    Article  CAS  PubMed  Google Scholar 

  12. Steele, M. K. et al. Estimated number of COVID-19 infections, hospitalizations, and deaths prevented among vaccinated persons in the US, december 2020 to september 2021. JAMA Netw. Open 5, e2220385 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baggen, J., Vanstreels, E., Jansen, S. & Daelemans, D. Cellular host factors for SARS-CoV-2 infection. Nat. Microbiol. 6, 1219–1232 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. V’Kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2021).

    Article  PubMed  Google Scholar 

  15. Steiner, S. et al. SARS-CoV-2 biology and host interactions. Nat. Rev. Microbiol. 22, 206–225 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. DeGrace, M. M. et al. Defining the risk of SARS-CoV-2 variants on immune protection. Nature 605, 640–652 (2022). Defined how different SARS-CoV-2 variants affect immune protection, particularly vaccine effectiveness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mellis, I. A. et al. Do existing COVID-19 vaccines need to be updated in 2025? Preprint at bioRxiv https://doi.org/10.1101/2025.05.02.651777 (2025).

  18. Guo, C. et al. Antigenic and virological characteristics of SARS-CoV-2 variants BA.3.2, XFG, and NB.1.8.1. Lancet Infect. Dis. 25, e374–e377 (2025).

    Article  CAS  PubMed  Google Scholar 

  19. Khare, S. et al. GISAID’s role in pandemic response. China CDC Wkly 3, 1049–1051 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Chall. 1, 33–46 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Q. et al. KP.2-based monovalent mRNA vaccines robustly boost antibody responses to SARS-CoV-2. Lancet Infect. Dis. 25, e133–e134 (2025).

    Article  CAS  PubMed  Google Scholar 

  23. Mallajosyula, V. et al. CD8+ T cells specific for conserved coronavirus epitopes correlate with milder disease in COVID-19 patients. Sci. Immunol. 6, eabg5669 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Augusto, D. G. et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 620, 128–136 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson, D. E. et al. Lack of cross-neutralization by SARS patient sera towards SARS-CoV-2. Emerg. Microbes Infect. 9, 900–902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e819 (2020). Tracked the spike D614G mutation; showed it increased the infectivity of the COVID-19 virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116–121 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Weissman, D. et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29, 23–31.e24 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Roemer, C. et al. SARS-CoV-2 evolution in the Omicron era. Nat. Microbiol. 8, 1952–1959 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Fischer, W. et al. HIV-1 and SARS-CoV-2: patterns in the evolution of two pandemic pathogens. Cell Host Microbe 29, 1093–1110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill, V. et al. The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evol. 8, veac080 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shen, X. et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe 29, 529–539.e523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130–135 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Gellenoncourt, S. et al. The spike-stabilizing D614G mutation interacts with S1/S2 cleavage site mutations to promote the infectious potential of SARS-CoV-2 variants. J. Virol. 96, e0130122 (2022).

    Article  PubMed  Google Scholar 

  36. Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020). Determined the structural basis for SARS-CoV-2 spike protein binding to the human ACE2 receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, P. et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 29, 747–751.e744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815–821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dejnirattisai, W. et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 184, 2939–2954.e2939 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 184, 2348–2361.e2346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cox, M. et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat. Rev. Microbiol. 21, 112–124 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Lopez Bernal, J. et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N. Engl. J. Med. 385, 585–594 (2021).

    Article  PubMed  Google Scholar 

  44. Andrews, N. et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N. Engl. J. Med. 386, 1532–1546 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Abu-Raddad, L. J., Chemaitelly, H., Butt, A. A. & National Study Group for, C.-V. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 variants. N. Engl. J. Med. 385, 187–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Olawoye, I. B. et al. Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria. Nat. Commun. 14, 811 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Halfmann, P. J. et al. Characterization of the SARS-CoV-2 B.1.621 (Mu) variant. Sci. Transl. Med. 14, eabm4908 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Cherian, S. et al. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms 9, 1542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Furusawa, Y. et al. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. EBioMedicine 91, 104561 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, Y. et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep. 39, 110829 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuzmina, A. et al. Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity. Heliyon 9, e16750 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ridgway, H. et al. Molecular epidemiology of SARS-CoV-2: the dominant role of arginine in mutations and infectivity. Viruses 15, 309 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Tada, T. et al. Partial resistance of SARS-CoV-2 Delta variants to vaccine-elicited antibodies and convalescent sera. iScience 24, 103341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, J. et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature 596, 273–275 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, C. et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 184, 4220–4236.e4213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603, 679–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Cheng, S. M. S. et al. Neutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat. Med. 28, 486–489 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carreno, J. M. et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 602, 682–688 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022). Revealed that the Omicron variant escapes most SARS-CoV-2 neutralizing antibodies.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Zhou, T. et al. Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science 376, eabn8897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, X. et al. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct. Target. Ther. 6, 430 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qu, P. et al. Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant. Cell Host Microbe 30, 1518–1526.e1514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. US Food and Drug Administration. Update on COVID-19 Vaccine Booster Composition https://www.fda.gov/vaccines-blood-biologics/update-covid-19-vaccine-booster-composition (US FDA, 2023).

  68. Planas, D. et al. Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies. Nat. Commun. 14, 824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Uraki, R. et al. Humoral immune evasion of the omicron subvariants BQ.1.1 and XBB. Lancet Infect. Dis. 23, 30–32 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279–286.e278 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Uraki, R. et al. Antiviral efficacy against and replicative fitness of an XBB.1.9.1 clinical isolate. iScience 26, 108147 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yamasoba, D. et al. Virological characteristics of the SARS-CoV-2 omicron XBB.1.16 variant. Lancet Infect. Dis. 23, 655–656 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Uraki, R. et al. Characterization of a SARS-CoV-2 EG.5.1 clinical isolate in vitro and in vivo. Cell Rep. 42, 113580 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Jian, F. et al. Convergent evolution of SARS-CoV-2 XBB lineages on receptor-binding domain 455-456 synergistically enhances antibody evasion and ACE2 binding. PLoS Pathog. 19, e1011868 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Q. E. et al. SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition. Mol. Cell 84, 2747–2764.e2747 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Uriu, K. et al. Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. Lancet Infect. Dis. 23, e460–e461 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Q. et al. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature 624, 639–644 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, X. et al. Immune escape of BA.2.86 is comparable to XBB subvariants from the plasma of BA.5- and BA.5-XBB-convalescent subpopulations. J. Med. Virol. 96, e29417 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Qu, P. et al. Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA.2.86 and FLip variants. Cell 187, 585–595.e586 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, Y. et al. Lineage-specific pathogenicity, immune evasion, and virological features of SARS-CoV-2 BA.2.86/JN.1 and EG.5.1/HK.3. Nat. Commun. 15, 8728 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kaku, Y. et al. Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect. Dis. 24, e82 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, S. et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect. Dis. 24, e70–e72 (2024).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, Q. et al. Antibody evasiveness of SARS-CoV-2 subvariants KP.3.1.1 and XEC. Cell Rep. 44, 115543 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. World Health Organization Technical Advisory Group on Virus Evolution. Risk Evaluation for SARS-CoV-2 Variant Under Monitoring: NB.1.8.1 https://www.who.int/publications/m/item/risk-evaluation-for-sars-cov-2-variant-under-monitoring-nb.1.8.1 (WHO, 2025).

  85. World Health Organization Technical Advisory Group on Virus Evolution. Risk Evaluation for SARS-CoV-2 Variant Under Monitoring: XFG https://www.who.int/publications/m/item/risk-evaluation-for-sars-cov-2-variant-under-monitoring-xfg (WHO, 2025).

  86. Mellis, I. A. et al. Antibody evasion and receptor binding of SARS-CoV-2 LP.8.1.1, NB.1.8.1, XFG, and related subvariants. Cell Rep. 44, 116440 (2025).

    Article  CAS  PubMed  Google Scholar 

  87. Dong, E. et al. The Johns Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard: data collection process, challenges faced, and lessons learned. Lancet Infect. Dis. 22, e370–e376 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ghosh, S. et al. Beta-coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 183, 1520–1535.e1514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, D. et al. ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Dev. Cell 56, 3250–3263.e3255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vaarala, M. H., Porvari, K. S., Kellokumpu, S., Kyllonen, A. P. & Vihko, P. T. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J. Pathol. 193, 134–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. da Costa, C. H. S., de Freitas, C. A. B., Alves, C. N. & Lameira, J. Assessment of mutations on RBD in the spike protein of SARS-CoV-2 Alpha, Delta and Omicron variants. Sci. Rep. 12, 8540 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Taylor, A. L. & Starr, T. N. Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant. Virus Evol. 10, veae067 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yajima, H. et al. Structural basis for receptor-binding domain mobility of the spike in SARS-CoV-2 BA.2.86 and JN.1. Nat. Commun. 15, 8574 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tamura, T. et al. Virological characteristics of the SARS-CoV-2 BA.2.86 variant. Cell Host Microbe 32, 170–180.e112 (2024).

    Article  CAS  PubMed  Google Scholar 

  97. Tamura, T. et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat. Commun. 14, 2800 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ito, J. et al. Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nat. Commun. 14, 2671 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim, S. M. et al. SARS-CoV-2 variants with NSP12 P323L/G671S mutations display enhanced virus replication in ferret upper airways and higher transmissibility. Cell Rep. 42, 113077 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Taha, T. Y. et al. Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6. Nat. Commun. 14, 2308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taha, T. Y. et al. Enhanced RNA replication and pathogenesis in recent SARS-CoV-2 variants harboring the L260F mutation in NSP6. PLoS Pathog. 21, e1013020 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Furusawa, Y., Iwatsuki-Horimoto, K., Yamayoshi, S. & Kawaoka, Y. The NSP6-L260F substitution in SARS-CoV-2 BQ.1.1 and XBB.1.16 lineages compensates for the reduced viral polymerase activity caused by mutations in NSP13 and NSP14. J. Virol. 99, e0065625 (2025).

    Article  PubMed  Google Scholar 

  103. Reuschl, A. K. et al. Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants. Nat. Microbiol. 9, 451–463 (2024). Showed the evolution of the enhanced innate immune suppression capabilities by newer SARS-CoV-2 Omicron subvariants.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang, S., Wang, L. & Cheng, G. The battle between host and SARS-CoV-2: innate immunity and viral evasion strategies. Mol. Ther. 30, 1869–1884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kanneganti, T. D. Intracellular innate immune receptors: life inside the cell. Immunol. Rev. 297, 5–12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nie, Y. et al. SARS-CoV-2 ORF3a positively regulates NF-kB activity by enhancing IKKβ–NEMO interaction. Virus Res. 328, 199086 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu, H. et al. SARS-CoV-2 viroporin encoded by ORF3a triggers the NLRP3 inflammatory pathway. Virology 568, 13–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, J. et al. Severe acute respiratory syndrome coronavirus 2 ORF8 protein inhibits type I interferon production by targeting HSP90B1 signaling. Front. Cell Infect. Microbiol. 12, 899546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Theobald, S. J. et al. Long-lived macrophage reprogramming drives spike protein-mediated inflammasome activation in COVID-19. EMBO Mol. Med. 13, e14150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zheng, M. et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 22, 829–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Campbell, G. R., To, R. K., Hanna, J. & Spector, S. A. SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience 24, 102295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barnett, K. C. et al. An epithelial–immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2. Cell Host Microbe 31, 243–259.e246 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Yamada, T. et al. RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells. Nat. Immunol. 22, 820–828 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Yin, X. et al. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep. 34, 108628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, K. et al. Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Sci. Adv. 7, eabe7386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Freitas, R. S., Crum, T. F. & Parvatiyar, K. SARS-CoV-2 spike antagonizes innate antiviral immunity by targeting interferon regulatory factor 3. Front. Cell Infect. Microbiol. 11, 789462 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Moustaqil, M. et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg. Microbes Infect. 10, 178–195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Naik, N. G., Lee, S. C., Veronese, B. H. S., Ma, Z. & Toth, Z. Interaction of HDAC2 with SARS-CoV-2 NSP5 and IRF3 Is not required for NSP5-Mediated inhibition of type I interferon signaling pathway. Microbiol. Spectr. 10, e0232222 (2022).

    Article  PubMed  Google Scholar 

  119. Hsu, J. C., Laurent-Rolle, M., Pawlak, J. B., Wilen, C. B. & Cresswell, P. Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proc. Natl Acad. Sci. USA 118, e2101161118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kato, K. et al. Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex. Biochem. Biophys. Res. Commun. 536, 59–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Wu, J. et al. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Rep. 34, 108761 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xia, H. et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33, 108234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yuen, C. K. et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect. 9, 1418–1428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moriyama, M., Lucas, C., Monteiro, V. S., Iwasaki, A., & Yale SARS-CoV-2 Genomic Surveillance Initiative. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proc. Natl Acad. Sci. USA 120, e2221652120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, Y. et al. The R203M and D377Y mutations of the nucleocapsid protein promote SARS-CoV-2 infectivity by impairing RIG-I-mediated antiviral signaling. PLoS Pathog. 21, e1012886 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Miao, G. et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev. Cell 56, 427–442.e425 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Shi, Y. et al. Mutations accumulated in the spike of SARS-CoV-2 Omicron allow for more efficient counteraction of the restriction factor BST2/Tetherin. PLoS Pathog. 20, e1011912 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu, H. et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe 29, 1788–1801.e1786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Syed, A. M. et al. Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. Proc. Natl Acad. Sci. USA 119, e2200592119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cochin, M. et al. The SARS-CoV-2 Alpha variant exhibits comparable fitness to the D614G strain in a Syrian hamster model. Commun. Biol. 5, 225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603, 687–692 (2022). Demonstrated that the SARS-CoV-2 Omicron variant causes attenuated (milder) disease in mice and hamsters relative to earlier strains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603, 693–699 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 603, 700–705 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Uraki, R. et al. Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents. Nature 612, 540–545 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Tamura, T. et al. Comparative pathogenicity of SARS-CoV-2 Omicron subvariants including BA.1, BA.2, and BA.5. Commun. Biol. 6, 772 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Imbiakha, B. et al. Age-dependent acquisition of pathogenicity by SARS-CoV-2 Omicron BA.5. Sci. Adv. 9, eadj1736 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stewart, R. et al. SARS-CoV-2 omicron BA.5 and XBB variants have increased neurotropic potential over BA.1 in K18-hACE2 mice and human brain organoids. Front. Microbiol. 14, 1320856 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Rizvi, Z. A. et al. Omicron sub-lineage BA.5 infection results in attenuated pathology in hACE2 transgenic mice. Commun. Biol. 6, 935 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Uraki, R. et al. Characterization of SARS-CoV-2 Omicron BA.2.75 clinical isolates. Nat. Commun. 14, 1620 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Case, J. B. et al. Characterization of the SARS-CoV-2 BA.5.5 and BQ.1.1 Omicron variants in mice and hamsters. J. Virol. 97, e0062823 (2023).

    Article  PubMed  Google Scholar 

  144. Halfmann, P. J. et al. Characterization of Omicron BA.4.6, XBB, and BQ.1.1 subvariants in hamsters. Commun. Biol. 7, 331 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Halfmann, P. J. et al. Transmission and re-infection of Omicron variant XBB.1.5 in hamsters. EBioMedicine 93, 104677 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tamura, T. et al. Virological characteristics of the SARS-CoV-2 Omicron XBB.1.5 variant. Nat. Commun. 15, 1176 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Izadi, A. et al. Protective non-neutralizing anti-N-terminal domain mAb maintains Fc-mediated function against SARS-COV-2 variants up to BA.2.86-JN.1 with superfluous in vivo protection against JN.1 due to attenuated virulence. J. Immunol. 213, 678–689 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wolter, N. et al. Clinical severity of SARS-CoV-2 Omicron BA.4 and BA.5 lineages compared to BA.1 and Delta in South Africa. Nat. Commun. 13, 5860 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wolter, N., Jassat, W., von Gottberg, A., Cohen, C. & DATCOV-Gen author group. Clinical severity of omicron lineage BA.2 infection compared with BA.1 infection in South Africa. Lancet 400, 93–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mefsin, Y. M. et al. Epidemiology of Infections with SARS-CoV-2 Omicron BA.2 variant, Hong Kong, January–March 2022. Emerg. Infect. Dis. 28, 1856–1858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Port, J. R. et al. Increased small particle aerosol transmission of B.1.1.7 compared with SARS-CoV-2 lineage A in vivo. Nat. Microbiol. 7, 213–223 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Munoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Port, J. R. et al. SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nat. Commun. 12, 4985 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602, 294–299 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. Zhou, B. et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592, 122–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Boon, A. C. M. et al. Reduced airborne transmission of SARS-CoV-2 BA.1 Omicron virus in Syrian hamsters. PLoS Pathog. 18, e1010970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Su, W. et al. Reduced pathogenicity and transmission potential of omicron BA.1 and BA.2 sublineages compared with the early severe acute respiratory syndrome coronavirus 2 D614G variant in syrian hamsters. J. Infect. Dis. 227, 1143–1152 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Hall, V. et al. Protection against SARS-CoV-2 after Covid-19 vaccination and previous infection. N. Engl. J. Med. 386, 1207–1220 (2022). A large-scale analysis of the level of protection achieved through inoculation and prior infection.

    Article  CAS  PubMed  Google Scholar 

  159. Tseng, H. F. et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat. Med. 28, 1063–1071 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Watanabe, A., Iwagami, M., Yasuhara, J., Takagi, H. & Kuno, T. Protective effect of COVID-19 vaccination against long COVID syndrome: a systematic review and meta-analysis. Vaccine 41, 1783–1790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nguyen, D. C. et al. SARS-CoV-2-specific plasma cells are not durably established in the bone marrow long-lived compartment after mRNA vaccination. Nat. Med. https://doi.org/10.1038/s41591-024-03278-y (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Liang, C. Y. et al. Imprinting of serum neutralizing antibodies by Wuhan-1 mRNA vaccines. Nature 630, 950–960 (2024). Demonstrated that ancestor-strain mRNA vaccination imprints the human immune response to Omicron boosters, focusing cross-neutralizing antibodies effective against diverse variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yisimayi, A. et al. Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting. Nature 625, 148–156 (2024). Demonstrated that repeated exposure to Omicron can override the immune imprinting caused by ancestral SARS-CoV-2 vaccines.

    Article  CAS  PubMed  Google Scholar 

  164. Johnston, T. S. et al. Immunological imprinting shapes the specificity of human antibody responses against SARS-CoV-2 variants. Immunity 57, 912–925.e914 (2024). Demonstrated that prior antigen exposure constrains how a person’s circulating immune defenses focus their fight against newly evolved viral forms.

    Article  CAS  PubMed  Google Scholar 

  165. World Health Organization. Statement on the Antigen Composition of COVID-19 Vaccines https://www.who.int/news/item/26-04-2024-statement-on-the-antigen-composition-of-covid-19-vaccines (WHO, 2024).

  166. World Health Organization. Statement on the Antigen Composition of COVID-19 Vaccines https://www.who.int/news/item/15-05-2025-statement-on-the-antigen-composition-of-covid-19-vaccines (WHO, 2025).

  167. Rydyznski Moderbacher, C. et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183, 996–1012.e1019 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Oja, A. E. et al. Divergent SARS-CoV-2-specific T- and B-cell responses in severe but not mild COVID-19 patients. Eur. J. Immunol. 50, 1998–2012 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. de Silva, T. I. et al. The impact of viral mutations on recognition by SARS-CoV-2 specific T cells. iScience 24, 103353 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kim, G. J. et al. A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population. Front. Immunol. 15, 1357731 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tye, E. X. C. et al. Mutations in SARS-CoV-2 spike protein impair epitope-specific CD4+ T cell recognition. Nat. Immunol. 23, 1726–1734 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. da Silva Antunes, R. et al. Evolution of SARS-CoV-2 T cell responses as a function of multiple COVID-19 boosters. Cell Rep. 44, 115907 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zhuang, Z. et al. Harnessing T-cells for enhanced vaccine development against viral infections. Vaccines 12, 478 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Weinreich, D. M. et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. N. Engl. J. Med. 384, 238–251 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Dong, J. et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat. Microbiol. 6, 1233–1244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Takashita, E. et al. Efficacy of antibodies and antiviral drugs against COVID-19 omicron variant. N. Engl. J. Med. 386, 995–998 (2022).

    Article  PubMed  Google Scholar 

  178. Takashita, E. et al. Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2. N. Engl. J. Med. 386, 1475–1477 (2022).

    Article  PubMed  Google Scholar 

  179. Takashita, E. et al. Efficacy of antiviral agents against the Omicron subvariant BA.2.75. N. Engl. J. Med. 387, 1236–1238 (2022).

    Article  PubMed  Google Scholar 

  180. Takashita, E. et al. In vitro efficacy of antiviral agents against Omicron subvariant BA.4.6. N. Engl. J. Med. 387, 2094–2097 (2022).

    Article  PubMed  Google Scholar 

  181. Takashita, E. et al. Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N. Engl. J. Med. 387, 468–470 (2022).

    Article  PubMed  Google Scholar 

  182. Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep. 39, 110812 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Imai, M. et al. Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB. N. Engl. J. Med. 388, 89–91 (2023).

    Article  PubMed  Google Scholar 

  184. Uraki, R. et al. Antiviral and bivalent vaccine efficacy against an Omicron XBB.1.5 isolate. Lancet Infect. Dis. 23, 402–403 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bock, A. New guidance helps clinicians use pemivibart to protect immunocompromised patients from COVID-19. JAMA https://doi.org/10.1001/jama.2024.18589 (2024).

    Article  PubMed  Google Scholar 

  186. Planas, D. et al. Escape of SARS-CoV-2 variants KP.1.1, LB.1, and KP3.3 From approved monoclonal antibodies. Pathog. Immun. 10, 1–11 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wang, Q., Guo, Y., Ho, J. & Ho, D. D. Activity of research-grade pemivibart against recent SARS-CoV-2 JN.1 sublineages. N. Engl. J. Med. 391, 1863–1864 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cihlar, T. & Mackman, R. L. Journey of remdesivir from the inhibition of hepatitis C virus to the treatment of COVID-19. Antivir. Ther. 27, 13596535221082773 (2022).

    Article  PubMed  Google Scholar 

  189. Sheahan, T. P. et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9, eaal3653 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Agostini, M. L. et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 9, e00221–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Murphy, B. G. et al. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet. Microbiol. 219, 226–233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cho, A. et al. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg. Med. Chem. Lett. 22, 2705–2707 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Beigel, J. H. et al. Remdesivir for the treatment of COVID-19 — final report. N. Engl. J. Med. 383, 1813–1826 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Li, G., Hilgenfeld, R., Whitley, R. & De Clercq, E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug. Discov. 22, 449–475 (2023). Summarized the rapid advancements in COVID-19 drug discovery; discussed small-molecule antivirals, monoclonal antibodies and immunomodulatory agents; and detailed the essential lessons learned to help combat future outbreaks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sanderson, T. et al. A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature 623, 594–600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Iketani, S. et al. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature 613, 558–564 (2023).

    Article  CAS  PubMed  Google Scholar 

  199. Owen, D. R. et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586–1593 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Unoh, Y. et al. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 65, 6499–6512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yotsuyanagi, H. et al. Efficacy and safety of 5-day oral ensitrelvir for patients with mild to moderate COVID-19: the SCORPIO-SR randomized clinical trial. JAMA Netw. Open. 7, e2354991 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Heyer, A. et al. Remdesivir-induced emergence of SARS-CoV2 variants in patients with prolonged infection. Cell Rep. Med. 3, 100735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zuckerman, N. S., Bucris, E., Keidar-Friedman, D., Amsalem, M. & Brosh-Nissimov, T. Nirmatrelvir resistance — de dovo E166V/L50V mutations in an immunocompromised patient treated with prolonged nirmatrelvir/ritonavir monotherapy leading to clinical and virological treatment failure — a case report. Clin. Infect. Dis. 78, 352–355 (2024).

    Article  CAS  PubMed  Google Scholar 

  204. Raglow, Z. et al. SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis. Lancet Microbe 5, e235–e246 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 40, 413–442 (2022).

    Article  CAS  PubMed  Google Scholar 

  206. Matz, H. C., McIntire, K. M. & Ellebedy, A. H. ‘Persistent germinal center responses: slow-growing trees bear the best fruits’. Curr. Opin. Immunol. 83, 102332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Francis, T. On the doctrine of original antigenic sin. Proc. Am. Philos. Soc. 104, 572–578 (1960).

    Google Scholar 

  208. Monto, A. S., Malosh, R. E., Petrie, J. G. & Martin, E. T. The doctrine of original antigenic sin: separating good from evil. J. Infect. Dis. 215, 1782–1788 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Koutsakos, M. & Ellebedy, A. H. Immunological imprinting: understanding COVID-19. Immunity 56, 909–913 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Christensen, P. A. et al. Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with coronavirus disease 2019 caused by the omicron variant of severe acute respiratory syndrome coronavirus 2 in Houston, Texas. Am. J. Pathol. 192, 642–652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang, Q. et al. Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6. Lancet Infect. Dis. 23, e397–e398 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Ying, B. et al. Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. Cell 185, 1572–1587.e1511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Scheaffer, S. M. et al. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nat. Med. https://doi.org/10.1038/s41591-022-02092-8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Reynolds, C. J. et al. Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science 377, eabq1841 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Park, Y. J. et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science 378, 619–627 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Gagne, M. et al. mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell 185, 1556–1571.e1518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Alsoussi, W. B. et al. SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. Nature 617, 592–598 (2023).

    Article  CAS  PubMed  Google Scholar 

  218. Tortorici, M. A. et al. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 57, 904–911.e904 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Pušnik, J. et al. Vaccination impairs de novo immune response to Omicron breakthrough infection, a precondition for the original antigenic sin. Nat. Commun. 15, 3102 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Voss, W. N. et al. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep. Med. 5, 101668 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chen, Y. et al. SARS-CoV-2 Omicron infection augments the magnitude and durability of systemic and mucosal immunity in triple-dose CoronaVac recipients. mBio 15, e0240723 (2024).

    Article  PubMed  Google Scholar 

  222. Jin, L., Li, Z., Zhang, X., Li, J. & Zhu, F. CoronaVac: a review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2. Hum. Vaccin. Immunother. 18, 2096970 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Schiepers, A. et al. Molecular fate-mapping of serum antibody responses to repeat immunization. Nature 615, 482–489 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang, Q. et al. XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1. Cell Host Microbe 32, 315–321.e313 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Huang, C. Q., Vishwanath, S., Carnell, G. W., Chan, A. C. Y. & Heeney, J. L. Immune imprinting and next-generation coronavirus vaccines. Nat. Microbiol. 8, 1971–1985 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Kim, J. H., Davis, W. G., Sambhara, S. & Jacob, J. Strategies to alleviate original antigenic sin responses to influenza viruses. Proc. Natl Acad. Sci. USA 109, 13751–13756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Costa Rocha, V. P. et al. A polyvalent RNA vaccine reduces the immune imprinting phenotype in mice and induces neutralizing antibodies against omicron SARS-CoV-2. Heliyon 10, e25539 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Musunuri, S., Weidenbacher, P. A. B. & Kim, P. S. Bringing immunofocusing into focus. npj Vaccines 9, 11 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Dugan, H. L. et al. Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity 54, 1290–1303.e1297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Topol, E. J. & Iwasaki, A. Operation nasal vaccine-lightning speed to counter COVID-19. Sci. Immunol. 7, eadd9947 (2022).

    Article  PubMed  Google Scholar 

  231. Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kuroda, M. et al. SARS-CoV-2 virus lacking the envelope and membrane open-reading frames as a vaccine platform. Nat. Commun. 16, 4453 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Schon, J. et al. A safe, effective and adaptable live-attenuated SARS-CoV-2 vaccine to reduce disease and transmission using one-to-stop genome modifications. Nat. Microbiol. 9, 2099–2112 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Tang, R. et al. Safety and immunogenicity of aerosolised Ad5-nCoV, intramuscular Ad5-nCoV, or inactivated COVID-19 vaccine CoronaVac given as the second booster following three doses of CoronaVac: a multicentre, open-label, phase 4, randomised trial. Lancet Respir. Med. 11, 613–623 (2023).

    Article  CAS  PubMed  Google Scholar 

  235. Li, J. X. et al. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCoV after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: a randomised, open-label, single-centre trial. Lancet Respir. Med. 10, 739–748 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Singh, C. et al. Phase III pivotal comparative clinical trial of intranasal (iNCOVACC) and intramuscular COVID 19 vaccine (Covaxin). npj Vaccines 8, 125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Carvalho, T. Intranasal COVID-19 vaccine fails to induce mucosal immunity. Nat. Med. 28, 2439–2440 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. EBioMedicine 85, 104298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhu, F. et al. Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 11, 1075–1088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Bachmann, M. F., Mohsen, M. O., Zha, L., Vogel, M. & Speiser, D. E. SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. npj Vaccines 6, 2 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Slifka, M. K. & Amanna, I. J. Role of multivalency and antigenic threshold in generating protective antibody responses. Front. Immunol. 10, 956 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Pardi, N. et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J. Exp. Med. 215, 1571–1588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data — from vision to reality. Eur. Surveill. 22, 30494 (2017).

    Article  Google Scholar 

  244. de Bernardi Schneider, A. et al. SARS-CoV-2 lineage assignments using phylogenetic placement/UShER are superior to pangoLEARN machine-learning method. Virus Evol. 10, vead085 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Hinrichs, A., Ye, C., Turakhia, Y. & Corbett-Detig, R. The ongoing evolution of UShER during the SARS-CoV-2 pandemic. Nat. Genet. 56, 4–7 (2024).

    Article  CAS  PubMed  Google Scholar 

  246. Hui, K. P. Y. et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature 603, 715–720 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Hoffmann, M. et al. Omicron subvariant BA.5 efficiently infects lung cells. Nat. Commun. 14, 3500 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Midgley, C. M. et al. An in-depth analysis of original antigenic sin in Dengue virus infection. J. Virol. 85, 410–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  249. St John, A. L. & Rathore, A. P. S. Adaptive immune responses to primary and secondary dengue virus infections. Nat. Rev. Immunol. 19, 218–230 (2019).

    Article  Google Scholar 

  250. McCray, P. B. Jr. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).

    Article  CAS  PubMed  Google Scholar 

  251. Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589, 603–607 (2021).

    Article  CAS  PubMed  Google Scholar 

  253. Pons-Grifols, A. et al. A human-ACE2 knock-in mouse model for SARS-CoV-2 infection recapitulates respiratory disorders but avoids neurological disease associated with the transgenic K18-hACE2 model. mBio 16, e0072025 (2025).

    Article  PubMed  Google Scholar 

  254. Hassan, A. O. et al. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182, 744–753.e744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Israelow, B. et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J. Exp. Med. 217, e20201241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Dinnon, K. H. 3rd et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183, 1070–1085.e1012 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Enkirch, T. & von Messling, V. Ferret models of viral pathogenesis. Virology 479–480, 259–270 (2015).

    Article  PubMed  Google Scholar 

  260. Johnston, S. C. et al. Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure. PLoS ONE 16, e0246366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Lu, S. et al. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduct. Target. Ther. 5, 157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Singh, D. K. et al. Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nat. Microbiol. 6, 73–86 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge all GISAID data contributors, that is, the authors and their originating laboratories responsible for obtaining the specimens, and their submitting laboratories for generating the genetic sequence and metadata and sharing via the GISAID Initiative, on which the information in this Review is based. The complete set of GISAID metadata available through to 23 July 2025 was used to generate Fig. 1 and Supplementary Figs. 3–5243. This included metadata associated with 17,385,806 sequences available via the EPI_SET identifier: EPI_SET_250725aw, located at https://doi.org/10.55876/gis8.250725aw. For the phylogenetic tree in Supplmentary Fig. 1, the 7,249 SARS-CoV-2 full-length genomes were used; GISAID accession numbers are available via the EPI_SET identifier EPI_SET_250726xe, located at https://doi.org/10.55876/gis8.250726xe. We thank S. Watson (Obsidia Communications LLC.) for language editing. We also thank C.-Y. Liang (Washington University School of Medicine, St Louis) for preparing Fig. 4. We thank J. Theiler and W. Fischer (Los Alamos National Laboratory) for helping with Fig. 1 and Supplementary Figs. 1, 3, 4 and 5; W. Fischer and H. Yoon (Los Alamos National Laboratory) for processing the GISAID data; and the GISAID team for supporting our studies. We also thank the Pango nomenclature team for upkeep of the naming system used here, C. Roemer for his lineage notes, and A. Hinrichs for phylogenetic confirmation of the Pango designations using Usher. The authors acknowledge the support of grants from the Japan Program for Infectious Diseases Research and Infrastructure (no. JP20wm0125002), the Japan Initiative for World-leading Vaccine Research and Development Centers (no. JP223fa627001) and the Program on R&D of new generation vaccine including new modality application (no. JP223fa827005) from the Japan Agency for Medical Research and Development (AMED). B.K. acknowledges the support of the Gates Foundation grant nos. INV-048656 and INV-042469 and NIH, NIAID, DMID grant no. P01 AI158571. M.S.D. acknowledges the support of grants and contracts from the NIH (nos. P01 AI168347, R01 AI157155, CEIRR 75N93021C00017 and 75N93021C00014).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Bette Korber, Michael S. Diamond or Yoshihiro Kawaoka.

Ethics declarations

Competing interests

Y.K. has received grant support from Daiichi Sankyo Pharmaceutical, Toyama Chemical, Tauns Laboratories, Shionogi, Otsuka Pharmaceutical, KM Biologics, Kyoritsu Seiyaku, Shinya Corporation and Fuji Rebio. Y.K. is a co-founder of FluGen. M.S.D. is a consultant or adviser for Inbios, Moderna, IntegerBio, Merck, GlaxoSmithKline and Akagera Medicines. The laboratory of M.S.D. has received unrelated funding support in sponsored research agreements from Moderna, Vir Biotechnology and IntegerBio. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Volker Thiel, who co-reviewed with G. Tuba Barut; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

64 vaccines have been approved: https://www.unicef.org/supply/covid-19-market-dashboard

COVID-19 cases were tracked until March 2023: https://github.com/CSSEGISandData/COVID-19

‘Embers’ tool: https://cov.lanl.gov/

Global Initiative on Sharing All Influenza Data: https://gisaid.org/

Pango lineage designations: https://github.com/cov-lineages/pango-designation/blob/master/lineage_notes.txt

WHO continues to monitor and assess variants: https://www.who.int/groups/technical-advisory-group-on-virus-evolution

WHO COVID-19 dashboard: https://covid19.who.int/

WHO nomenclature: https://www.who.int/activities/tracking-SARS-CoV-2-variants

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uraki, R., Korber, B., Diamond, M.S. et al. SARS-CoV-2 variants: biology, pathogenicity, immunity and control. Nat Rev Microbiol 24, 8–28 (2026). https://doi.org/10.1038/s41579-025-01255-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-025-01255-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology