Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA delivery by extracellular vesicles in mammalian cells and its applications

Abstract

The term ‘extracellular vesicles’ refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell–cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of functional cell communication by extracellular vesicle RNA.
Fig. 2: RNA packaging into extracellular vesicles and their release into the extracellular space.
Fig. 3: Extracellular vesicle RNA cargo interaction with recipient cells and its functional delivery.
Fig. 4: Different strategies for using extracellular vesicles for therapeutic applications.

Similar content being viewed by others

References

  1. Danielson, K. M. et al. Plasma circulating extracellular RNAs in left ventricular remodeling post-myocardial infarction. EBioMedicine https://doi.org/10.1016/j.ebiom.2018.05.013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Varcianna, A. et al. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine https://doi.org/10.1016/j.ebiom.2018.11.067 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abels, E. R. et al. Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21. Cell Rep. https://doi.org/10.1016/j.celrep.2019.08.036 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature https://doi.org/10.1038/nature15756 (2015). This article shows that extracellular vesicles derived from tumour cells are taken up by specific recipient cells in distant organs, whereby they prepare a niche that encourages metastasis of the tumour cells.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. https://doi.org/10.1038/s41556-018-0250-9 (2019).

    Article  PubMed  Google Scholar 

  6. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles https://doi.org/10.1080/20013078.2018.1535750 (2018). This is an extensive overview of current methods for isolating, purifying and analysing extracellular vesicles.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Deun, J. & Hendrix, A. Is your article EV-TRACKed? J. Extracell. Vesicles https://doi.org/10.1080/20013078.2017.1379835 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee, K. et al. Multiplexed profiling of single extracellular vesicles. ACS Nano https://doi.org/10.1021/acsnano.7b07060 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1521230113 (2016). In this study, different subtypes of extracellular vesicles are separated by fractionating conditioned medium from human dendritic cell cultures by differential centrifugation followed by density gradient ultracentrifugation, as well as immunoaffinity isolation with proteomic analysis, showing that endosomal proteins are enriched in small extracellular vesicles that also carry the tetraspanin CD9, with or without CD81 and CD63, suggesting subtypes of exosomes.

    Article  PubMed  Google Scholar 

  10. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell https://doi.org/10.1016/j.cell.2019.02.029 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Murillo, O. D. et al. exRNA atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell https://doi.org/10.1016/j.cell.2019.02.018 (2019). Unsupervised deconvolution analysis of more than 2,000 small RNA-sequencing profiles acquired from exRNA samples from five human biofluids (cerebrospinal fluid, plasma, saliva, serum and urine) reveals six cargo types with significant sample-to-sample variation that is resolved by deconvolution.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wei, Z., Batagov, A. O., Carter, D. R. F. & Krichevsky, A. M. Fetal bovine serum RNA interferes with the cell culture derived extracellular. RNA. Sci. Rep. https://doi.org/10.1038/srep31175 (2016). This study confirms the presence of coding and small non-coding RNAs, such as miRNA, rRNA fragments and snoRNA in extracellular vesicles from fetal bovine serum used in cell culture.

    Article  PubMed  Google Scholar 

  13. Lehrich, B. M., Liang, Y. & Fiandaca, M. S. Response to “Technical approaches to reduce interference of fetal calf serum derived RNA in the analysis of extracellular vesicle RNA from cultured cells”. J. Extracell. Vesicles https://doi.org/10.1080/20013078.2019.1599681 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Srinivasan, S. et al. Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell https://doi.org/10.1016/j.cell.2019.03.024 (2019). Systematic small RNA-sequencing profiling performed on exRNAs isolated by ten RNA isolation methods across five human biofluids shows substantial method-to-method and biofluid-to-biofluid variation, with the differences in the relative proportion of these component profiles being a major contributor to variation.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Karttunen, J. et al. Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs. J. Extracell. Vesicles https://doi.org/10.1080/20013078.2018.1555410 (2019).

    Article  PubMed  Google Scholar 

  16. Van Deun, J. et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles https://doi.org/10.3402/jev.v3.24858 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. https://doi.org/10.1038/ncb2210 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1019055108 (2011).

    Article  PubMed  Google Scholar 

  19. Guerreiro, E. M. et al. Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One https://doi.org/10.1371/journal.pone.0204276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. https://doi.org/10.1038/s41556-018-0040-4 (2018). This study identifies of a population of secreted non-membranous nanoparticles called ‘exomeres’ (roughly 35 nm) which exhibit distinct biological functions compared with other types of extracellular vesicles.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Q. et al. Transfer of functional cargo in exomeres. Cell Rep. https://doi.org/10.1016/j.celrep.2019.01.009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shah, R., Patel, T. & Freedman, J. E. Circulating extracellular vesicles in human disease. N. Engl. J. Med. https://doi.org/10.1056/NEJMra1704286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. https://doi.org/10.1038/ncb1596 (2007). Extracellular vesicles are shown to deliver functional mRNA and miRNA to recipient cells.

    Article  PubMed  Google Scholar 

  24. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. https://doi.org/10.1038/ncb1800 (2008). Extracellular vesicles are shown to deliver functional mRNA to recipient cells, and to contain mutant RNA from brain tumours in the serum.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ekström, K. et al. Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. J. Extracell. Vesicles https://doi.org/10.3402/jev.v1i0.18389 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang, X. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics https://doi.org/10.1186/1471-2164-14-319 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Van Balkom, B. W. M., Eisele, A. S., Michiel Pegtel, D., Bervoets, S. & Verhaar, M. C. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J. Extracell. Vesicles https://doi.org/10.3402/jev.v4.26760 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chakrabortty, S. K., Prakash, A., Nechooshtan, G., Hearn, S. & Gingeras, T. R. Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA. RNA https://doi.org/10.1261/rna.053629.115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Clancy, J. W., Zhang, Y., Sheehan, C. & D’Souza-Schorey, C. An ARF6–exportin-5 axis delivers pre-miRNA cargo to tumour microvesicles. Nat. Cell Biol. https://doi.org/10.1038/s41556-019-0345-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Melo, S. A. et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell https://doi.org/10.1016/j.ccell.2014.09.005 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Squadrito, M. L. et al. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. https://doi.org/10.1016/j.celrep.2014.07.035 (2014).

    Article  PubMed  Google Scholar 

  32. Karimi, N. et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-018-2773-4 (2018). This study demonstrates that by combining density gradient ultracentrifugation and size-exclusion chromatography, it is possible to separate extracellular vesicles and lipoprotein particles.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu, R., Greening, D. W., Rai, A., Ji, H. & Simpson, R. J. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods https://doi.org/10.1016/j.ymeth.2015.04.008 (2015).

    Article  PubMed  Google Scholar 

  34. McKenzie, A. J. et al. KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. https://doi.org/10.1016/j.celrep.2016.03.085 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li, M. et al. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2013.0502 (2014).

    Article  Google Scholar 

  36. Wang, J. et al. Circular RNA expression in exosomes derived from breast cancer cells and patients. Epigenomics https://doi.org/10.2217/epi-2018-0111 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, H. et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene https://doi.org/10.1038/s41388-018-0619-z (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, H. et al. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int. J. Cancer https://doi.org/10.1002/ijc.31977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. He, J. et al. Exosomal circular RNA as a biomarker platform for the early diagnosis of immune-mediated demyelinating disease. Front. Genet. https://doi.org/10.3389/fgene.2019.00860 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fanale, D., Taverna, S., Russo, A. & Bazan, V. Circular RNA in exosomes. Adv. Exp. Med. Biol. https://doi.org/10.1007/978-981-13-1426-1_9 (2018).

    Article  PubMed  Google Scholar 

  41. Sork, H. et al. Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Sci. Rep. https://doi.org/10.1038/s41598-018-28485-9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baglio, S. R. et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther. https://doi.org/10.1186/s13287-015-0116-z (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guduric-Fuchs, J. et al. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics https://doi.org/10.1186/1471-2164-13-357 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. https://doi.org/10.1038/ncomms1285 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pigati, L. et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One https://doi.org/10.1371/journal.pone.0013515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nolte’T Hoen, E. N. M. et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. https://doi.org/10.1093/nar/gks658 (2012).

    Article  PubMed  Google Scholar 

  47. Chiou, N. T., Kageyama, R. & Ansel, K. M. Selective export into extracellular vesicles and function of tRNA fragments during T cell activation. Cell Rep. https://doi.org/10.1016/j.celrep.2018.11.073 (2018). Specific tRNA fragments are found in extracellular vesicles that influence T cell activation.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Matsuzaki, J. & Ochiya, T. Extracellular microRNAs and oxidative stress in liver injury: a systematic mini review. J. Clin. Biochem. Nutr. https://doi.org/10.3164/jcbn.17-123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Beninson, L. A. et al. Acute stressor exposure modifies plasma exosome-associated heat shock protein 72 (Hsp72) and microRNA (miR-142-5p and miR-203). PLoS One https://doi.org/10.1371/journal.pone.0108748 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ma, C. et al. Moderate exercise enhances endothelial progenitor cell exosomes release and function. Med. Sci. Sports Exerc. https://doi.org/10.1249/MSS.0000000000001672 (2018).

    Article  PubMed  Google Scholar 

  51. D’souza, R. F. et al. Circulatory exosomal miRNA following intense exercise is unrelated to muscle and plasma miRNA abundances. Am. J. Physiol. Endocrinol. Metab. https://doi.org/10.1152/ajpendo.00138.2018 (2018).

    Article  PubMed  Google Scholar 

  52. Aoi, W. et al. Muscle-enriched micro RNA miR-486 decreases in circulation in response to exercise in young men. Front. Physiol. https://doi.org/10.3389/fphys.2013.00080 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/nrm.2017.125 (2018).

    Article  PubMed  Google Scholar 

  54. Pollet, H., Conrard, L., Cloos, A. S. & Tyteca, D. Plasma membrane lipid domains as platforms for vesicle biogenesis and shedding? Biomolecules https://doi.org/10.3390/biom8030094 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mittelbrunn, M., Vicente-Manzanares, M. & Sánchez-Madrid, F. Organizing polarized delivery of exosomes at synapses. Traffic https://doi.org/10.1111/tra.12258 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sinha, S. et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J. Cell Biol. https://doi.org/10.1083/jcb.201601025 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hoshino, D. et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. https://doi.org/10.1016/j.celrep.2013.10.050 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Minciacchi, V. R., Freeman, M. R. & Di Vizio, D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2015.02.010 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meehan, B., Rak, J. & Di Vizio, D. Oncosomes - large and small: what are they, where they came from? J. Extracell. Vesicles https://doi.org/10.3402/jev.v5.33109 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Caruso, S. & Poon, I. K. H. Apoptotic cell-derived extracellular vesicles: more than just debris. Front. Immunol. https://doi.org/10.3389/fimmu.2018.01486 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Das, S. et al. The Extracellular RNA Communication Consortium: establishing foundational knowledge and technologies for extracellular RNA research. Cell https://doi.org/10.1016/j.cell.2019.03.023 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Di Liegro, C. M., Schiera, G. & Di Liegro, I. Regulation of mRNA transport, localizationand translation in the nervous system of mammals (review). Int. J. Mol. Med. https://doi.org/10.3892/ijmm.2014.1629 (2014).

    Article  PubMed  Google Scholar 

  63. Eliscovich, C., Buxbaum, A. R., Katz, Z. B. & Singer, R. H. mRNA on the move: the road to its biological destiny. J. Biol. Chem. https://doi.org/10.1074/jbc.R113.452094 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gerstberger, S., Hafner, M., Ascano, M. & Tuschl, T. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Adv. Exp. Med. Biol. https://doi.org/10.1007/978-1-4939-1221-6_1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ragusa, M. et al. Asymmetric RNA distribution among cells and their secreted exosomes: biomedical meaning and considerations on diagnostic applications. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2017.00066 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mateescu, B. et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J. Extracell. Vesicles https://doi.org/10.1080/20013078.2017.1286095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. https://doi.org/10.1074/jbc.M110.107821 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Khvorova, A., Kwak, Y. G., Tamkun, M., Majerfeld, I. & Yarus, M. RNAs that bind and change the permeability of phospholipid membranes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.96.19.10649 (1999).

    Article  PubMed  Google Scholar 

  69. Janas, T., Janas, M. M., Sapoń, K. & Janas, T. Mechanisms of RNA loading into exosomes. FEBS Lett. https://doi.org/10.1016/j.febslet.2015.04.036 (2015).

    Article  PubMed  Google Scholar 

  70. Iavello, A. et al. Role of Alix in miRNA packaging during extracellular vesicle biogenesis. Int. J. Mol. Med. https://doi.org/10.3892/ijmm.2016.2488 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hagiwara, K., Katsuda, T., Gailhouste, L., Kosaka, N. & Ochiya, T. Commitment of annexin A2 in recruitment of microRNAs into extracellular vesicles. FEBS Lett. https://doi.org/10.1016/j.febslet.2015.11.036 (2015).

    Article  PubMed  Google Scholar 

  72. Otake, K., Kamiguchi, H. & Hirozane, Y. Identification of biomarkers for amyotrophic lateral sclerosis by comprehensive analysis of exosomal mRNAs in human cerebrospinal fluid. BMC Med. Genomics https://doi.org/10.1186/s12920-019-0473-z (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Teng, Y. et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat. Commun. https://doi.org/10.1038/ncomms14448 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Statello, L. et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS One https://doi.org/10.1371/journal.pone.0195969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mukherjee, K. et al. Reversible HuR‐micro RNA binding controls extracellular export of miR‐122 and augments stress response. EMBO Rep. https://doi.org/10.15252/embr.201541930 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. https://doi.org/10.1038/ncomms3980 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shurtleff, M. J., Temoche-Diaz, M. M., Karfilis, K. V., Ri, S. & Schekman, R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife https://doi.org/10.7554/eLife.19276 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yanshina, D. D. et al. Structural features of the interaction of the 3′-untranslated region of mRNA containing exosomal RNA-specific motifs with YB-1, a potential mediator of mRNA sorting. Biochimie https://doi.org/10.1016/j.biochi.2017.11.007 (2018).

    Article  PubMed  Google Scholar 

  79. Kossinova, O. A. et al. Cytosolic YB-1 and NSUN2 are the only proteins recognizing specific motifs present in mRNAs enriched in exosomes. Biochim. Biophys. Acta https://doi.org/10.1016/j.bbapap.2017.03.010 (2017).

    Article  Google Scholar 

  80. Santangelo, L. et al. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. https://doi.org/10.1016/j.celrep.2016.09.031 (2016).

    Article  PubMed  Google Scholar 

  81. Hobor, F. et al. A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets. Nat. Commun. https://doi.org/10.1038/s41467-018-03182-3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Temoche-Diaz, M. M. et al. Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. Elife https://doi.org/10.7554/eLife.47544 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ashley, J. et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell https://doi.org/10.1016/j.cell.2017.12.022 (2018). This article shows that fly Arc1 forms capsid-like structures that can bind its mRNA and functionally transfer it to recipient cells with an implicated role in synaptic plasticity.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. https://doi.org/10.1038/s41556-019-0450-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bolukbasi, M. F. et al. miR-1289 and ‘zipcode’-like sequence enrich mRNAs in microvesicles. Mol. Ther. Nucleic Acids https://doi.org/10.1038/mtna.2011.2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shurtleff, M. J. et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1712108114 (2017).

    Article  PubMed  Google Scholar 

  87. Ahadi, A., Brennan, S., Kennedy, P. J., Hutvagner, G. & Tran, N. Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Sci. Rep. https://doi.org/10.1038/srep24922 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liu, X. et al. A microRNA precursor surveillance system in quality control of microRNA synthesis. Mol. Cell https://doi.org/10.1016/j.molcel.2014.07.017 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gibbings, D. J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. https://doi.org/10.1038/ncb1929 (2009).

    Article  PubMed  Google Scholar 

  90. Murphy, D. E. et al. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp. Mol. Med. https://doi.org/10.1038/s12276-019-0223-5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. György, B., Hung, M. E., Breakefield, X. O. & Leonard, J. N. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu. Rev. Pharmacol. Toxicol. https://doi.org/10.1146/annurev-pharmtox-010814-124630 (2015).

    Article  PubMed  Google Scholar 

  92. Mulcahy, L. A., Pink, R. C. & Carter, D. R. F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles https://doi.org/10.3402/jev.v3.24641 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Panasiuk, M., Rychłowski, M., Derewońko, N. & Bieńkowska-Szewczyk, K. Tunneling nanotubes as a novel route of cell-to-cell spread of herpesviruses. J. Virol. https://doi.org/10.1128/jvi.00090-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science https://doi.org/10.1126/science.1093133 (2004). This article shows that nanotubular structures form between cells and facilitate the transfer of extracellular vesicles, demonstrating another method of cell-to-cell communication.

    Article  PubMed  Google Scholar 

  95. Haimovich, G. et al. Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1706365114 (2017).

    Article  PubMed  Google Scholar 

  96. Shukla, D. et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell https://doi.org/10.1016/S0092-8674(00)80058-6 (1999).

    Article  PubMed  Google Scholar 

  97. Christianson, H. C., Svensson, K. J., Van Kuppevelt, T. H., Li, J. P. & Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1304266110 (2013).

    Article  PubMed  Google Scholar 

  98. Hurwitz, S. N. & Meckes, D. G. Extracellular vesicle integrins distinguish unique cancers. Proteomes https://doi.org/10.3390/proteomes7020014 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature https://doi.org/10.1038/nature06307 (2007).

    Article  PubMed  Google Scholar 

  100. Iversen, T. G., Skotland, T. & Sandvig, K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today https://doi.org/10.1016/j.nantod.2011.02.003 (2011).

    Article  Google Scholar 

  101. Hung, M. E. & Leonard, J. N. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J. Extracell. Vesicles https://doi.org/10.3402/jev.v5.31027 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Toribio, V. et al. Development of a quantitative method to measure EV uptake. Sci. Rep. 9, 10522 (2019).

    Article  Google Scholar 

  103. Bala, S. et al. Biodistribution and function of extracellular miRNA-155 in mice. Sci. Rep. https://doi.org/10.1038/srep10721 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mannerström, B. et al. Extracellular small non-coding RNA contaminants in fetal bovine serum and serum-free media. Sci. Rep. https://doi.org/10.1038/s41598-019-41772-3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gaurivaud, P. et al. Mycoplasmas are no exception to extracellular vesicles release: revisiting old concepts. PLoS One https://doi.org/10.1371/journal.pone.0208160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hardy, M. P. et al. Apoptotic endothelial cells release small extracellular vesicles loaded with immunostimulatory viral-like RNAs. Sci. Rep. https://doi.org/10.1038/s41598-019-43591-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liu, C. G., Song, J., Zhang, Y. Q. & Wang, P. C. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol. Med. Rep. https://doi.org/10.3892/mmr.2014.2484 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Morel, L. et al. Neuronal exosomal mirna-dependent translational regulation of astroglial glutamate transporter glt1. J. Biol. Chem. https://doi.org/10.1074/jbc.M112.410944 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature https://doi.org/10.1038/nature15376 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chen, C. C. et al. Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell. Mol. Bioeng. https://doi.org/10.1007/s12195-016-0458-3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Alexander, M. et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun. https://doi.org/10.1038/ncomms8321 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wei, Z. et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun. https://doi.org/10.1038/s41467-017-01196-x (2017). Size filtration of conditioned medium from glioblastoma stem-like cell cultures is performed together with RNA sequencing and reveals that: microvesicles are enriched in mRNAs and most closely reflect cellular transcriptome, exosomes have the highest fraction of miRNA, while ribonucleoproteins are enriched in tRNAs and Y RNAs.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hoen, E. N., Cremer, T., Gallo, R. C. & Margolis, L. B. Extracellular vesicles and viruses: Are they close relatives? Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1605146113 (2016).

    Article  Google Scholar 

  114. Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. https://doi.org/10.1038/ncomms8029 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ridder, K. et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001874 (2014). With use of Cre–loxP technology, cell-to-cell transfer and translation of extracellular vesicle Cre mRNA is demonstrated in vivo.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell https://doi.org/10.1016/j.cell.2015.04.042 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. De La Cuesta, F. et al. Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Commun. Signal. https://doi.org/10.1186/s12964-019-0449-9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Maugeri, M. et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat. Commun. https://doi.org/10.1038/s41467-019-12275-6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Usman, W. M. et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. https://doi.org/10.1038/s41467-018-04791-8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang, J. et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. https://doi.org/10.1093/nar/gkq285 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell https://doi.org/10.1016/j.devcel.2013.03.002 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 39 UTRs via Alu elements. Nature https://doi.org/10.1038/nature09701 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Long, Y., Wang, X., Youmans, D. T. & Cech, T. R. How do lncRNAs regulate transcription? Sci. Adv. https://doi.org/10.1126/sciadv.aao2110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kenneweg, F. et al. Long noncoding RNA-enriched vesicles secreted by hypoxic cardiomyocytes drive cardiac fibrosis. Mol. Ther. Nucleic Acids https://doi.org/10.1016/j.omtn.2019.09.003 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Chen, F. et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat. Cell Biol. https://doi.org/10.1038/s41556-019-0299-0 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Maute, R. L. et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1206761110 (2013).

    Article  PubMed  Google Scholar 

  127. Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell https://doi.org/10.1016/j.cell.2015.02.053 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Driedonks, T. A. P. et al. Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-018-2842-8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Rimer, J. M. et al. Long-range function of secreted small nucleolar RNAs that direct 2-O-methylation. J. Biol. Chem. https://doi.org/10.1074/jbc.RA118.003410 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Tsatsaronis, J. A., Franch-Arroyo, S., Resch, U. & Charpentier, E. Extracellular vesicle RNA: a universal mediator of microbial communication? Trends Microbiol. https://doi.org/10.1016/j.tim.2018.02.009 (2018).

    Article  PubMed  Google Scholar 

  131. Schorey, J. & Cheng, Y. Extracellular vesicles promote host immunity during an M. tuberculosis infection through RNA sensing. bioRxiv https://doi.org/10.1101/346254 (2018).

    Article  Google Scholar 

  132. Baglio, S. R. et al. Sensing of latent EBV infection through exosomal transfer of 5’pppRNA. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1518130113 (2016).

    Article  PubMed  Google Scholar 

  133. Nabet, B. Y. et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell https://doi.org/10.1016/j.cell.2017.06.031 (2017). exRNA is shown to induce pathogen recognition receptor activation in extracellular vesicle communication between fibroblasts and breast cancer cells.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Boelens, M. C. et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell https://doi.org/10.1016/j.cell.2014.09.051 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lässer, C. et al. Two distinct extracellular RNA signatures released by a single cell type identified by microarray and next-generation sequencing. RNA Biol. https://doi.org/10.1080/15476286.2016.1249092 (2017).

    Article  PubMed  Google Scholar 

  136. Persson, H. et al. The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat. Cell Biol. https://doi.org/10.1038/ncb1972 (2009).

    Article  PubMed  Google Scholar 

  137. Horos, R. et al. The small non-coding vault RNA1-1 acts as a riboregulator of autophagy. Cell https://doi.org/10.1016/j.cell.2019.01.030 (2019).

    Article  PubMed  Google Scholar 

  138. Blasius, A. L. & Beutler, B. Intracellular Toll-like receptors. Immunity https://doi.org/10.1016/j.immuni.2010.03.012 (2010).

    Article  PubMed  Google Scholar 

  139. Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1209414109 (2012).

    Article  PubMed  Google Scholar 

  140. Joerger-Messerli, M. S. et al. Extracellular vesicles derived from Wharton’s jelly mesenchymal stem cells prevent and resolve programmed cell death mediated by perinatal hypoxia-ischemia in neuronal cells. Cell Transplant. https://doi.org/10.1177/0963689717738256 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bayraktar, R., Bertilaccio, M. T. S. & Calin, G. A. The interaction between two worlds: microRNAs and Toll-like receptors. Front. Immunol. https://doi.org/10.3389/fimmu.2019.01053 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Lehmann, S. M. et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. https://doi.org/10.1038/nn.3113 (2012).

    Article  PubMed  Google Scholar 

  143. Buonfiglioli, A. et al. let-7 microRNAs regulate microglial function and suppress glioma growth through Toll-like receptor 7. Cell Rep. https://doi.org/10.1016/j.celrep.2019.11.029 (2019).

    Article  PubMed  Google Scholar 

  144. Atayde, V. D. et al. Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat. Microbiol. https://doi.org/10.1038/s41564-018-0352-y (2019).

    Article  PubMed  Google Scholar 

  145. Ramakrishnaiah, V. et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1221899110 (2013).

    Article  PubMed  Google Scholar 

  146. Feng, Z. et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature https://doi.org/10.1038/nature12029 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Longatti, A., Boyd, B. & Chisari, F. V. Virion-independent transfer of replication-competent hepatitis C virus RNA between permissive cells. J. Virol. https://doi.org/10.1128/jvi.02721-14 (2015).

    Article  PubMed  Google Scholar 

  148. Bukong, T. N., Momen-Heravi, F., Kodys, K., Bala, S. & Szabo, G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004424 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Pastuzyn, E. D. et al. The neuronal gene arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell https://doi.org/10.1016/j.cell.2017.12.024 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wiklander, O. P. B., Brennan, M., Lötvall, J., Breakefield, X. O. & Andaloussi, S. E. L. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aav8521 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Martin-Rufino, J. D., Espinosa-Lara, N., Osugui, L. & Sanchez-Guijo, F. Targeting the Immune system with mesenchymal stromal cell-derived extracellular vesicles: what is the cargo’s mechanism of action? Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2019.00308 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kuo, W. P., Tigges, J. C., Toxavidis, V. & Ghiran, I. Red blood cells: a source of extracellular vesicles. Methods Mol. Biol. https://doi.org/10.1007/978-1-4939-7253-1_2 (2017).

    Article  PubMed  Google Scholar 

  153. Tkach, M. et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J. https://doi.org/10.15252/embj.201696003 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Poon, I. K. H., Gregory, C. D. & Kaparakis-Liaskos, M. Editorial: the immunomodulatory properties of extracellular vesicles from pathogens, immune cells, and non-immune. Cells. Front. Immunol. https://doi.org/10.3389/fimmu.2018.03024 (2018).

    Article  PubMed  Google Scholar 

  155. Choi, D. et al. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2017.01.003 (2017).

    Article  PubMed  Google Scholar 

  156. Ohno, S. I. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microrna to breast cancer cells. Mol. Ther. https://doi.org/10.1038/mt.2012.180 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ridder, K. et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology (2015). 10.1080/2162402X2015.1008371

  158. Jang, S. C. et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano https://doi.org/10.1021/nn402232g (2013). This study demonstrates that the yields of extracellular vesicles can be increased by filtering monocytes and macrophages through pores to create uniform particles capable of carrying therapeutic cargo.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Shen, B., Wu, N., Yang, M. & Gould, S. J. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J. Biol. Chem. https://doi.org/10.1074/jbc.M110.208660 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tutucci, E. et al. An improved MS2 system for accurate reporting of the mRNA life cycle. Nat. Methods https://doi.org/10.1038/nmeth.4502 (2018).

    Article  PubMed  Google Scholar 

  161. Kojima, R. et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. https://doi.org/10.1038/s41467-018-03733-8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wang, Q. et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. https://doi.org/10.1038/s41467-018-03390-x (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Flynn, A. D. & Yin, H. Lipid-targeting peptide probes for extracellular vesicles. J. Cell. Physiol. https://doi.org/10.1002/jcp.25354 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Gori, A. et al. Membrane-binding peptides for extracellular vesicles on-chip analysis. chemRxiv https://doi.org/10.26434/chemrxiv.9885167.v3 (2020).

    Article  Google Scholar 

  165. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. https://doi.org/10.1038/nbt.1807 (2011).

    Article  PubMed  Google Scholar 

  166. Kooijmans, S. A. A. et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control. Rel. https://doi.org/10.1016/j.jconrel.2013.08.014 (2013).

    Article  Google Scholar 

  167. Pomatto, M. A. C. et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol. Ther. Methods Clin. Dev. https://doi.org/10.1016/j.omtm.2019.01.001 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature https://doi.org/10.1038/nature22341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Shtam, T. A. et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun. Signal. (2013). 10.1186/1478-811X-11-88

  170. Lamichhane, T. N. et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell. Mol. Bioeng. https://doi.org/10.1007/s12195-016-0457-4 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Didiot, M. C. et al. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol. Ther. https://doi.org/10.1038/mt.2016.126 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Haraszti, R. A. et al. Optimized cholesterol-siRNA chemistry improves productive loading onto extracellular vesicles. Mol. Ther. https://doi.org/10.1016/j.ymthe.2018.05.024 (2018). This study demonstrates that chemically stabilized siRNA conjugated to lipophilic cholesterol can be efficiently loaded into isolated extracellular vesicles.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gimona, M., Pachler, K., Laner-Plamberger, S., Schallmoser, K. & Rohde, E. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18061190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Edgar, J. R., Manna, P. T., Nishimura, S., Banting, G. & Robinson, M. S. Tetherin is an exosomal tether. Elife https://doi.org/10.7554/eLife.17180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I. & Sanderson, R. D. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J. Biol. Chem. https://doi.org/10.1074/jbc.C112.444562 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Savina, A., Furlán, M., Vidal, M. & Colombo, M. I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. https://doi.org/10.1074/jbc.M301642200 (2003).

    Article  PubMed  Google Scholar 

  177. Glebov, K. et al. Serotonin stimulates secretion of exosomes from microglia cells. Glia https://doi.org/10.1002/glia.22772 (2015).

    Article  PubMed  Google Scholar 

  178. Jabbari, N., Nawaz, M. & Rezaie, J. Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: a possible way to communicate resistance against radiotherapy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20153649 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. King, H. W., Michael, M. Z. & Gleadle, J. M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer https://doi.org/10.1186/1471-2407-12-421 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Atienzar-Aroca, S. et al. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells. J. Cell. Mol. Med. https://doi.org/10.1111/jcmm.12834 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Parolini, I. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. https://doi.org/10.1074/jbc.M109.041152 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Mangeot, P. E. et al. Protein transfer into human cells by VSV-G-induced nanovesicles. Mol. Ther. https://doi.org/10.1038/mt.2011.138 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Meyer, C. et al. Pseudotyping exosomes for enhanced protein delivery in mammalian cells. Int. J. Nanomed. https://doi.org/10.2147/IJN.S133430 (2017).

    Article  Google Scholar 

  184. Jhan, Y. Y. et al. Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery. Int. J. Pharm. https://doi.org/10.1016/j.ijpharm.2019.118802 (2020).

    Article  PubMed  Google Scholar 

  185. Khan, F. M. et al. Inhibition of exosome release by ketotifen enhances sensitivity of cancer cells to doxorubicin. Cancer Biol. Ther. https://doi.org/10.1080/15384047.2017.1394544 (2018).

    Article  PubMed  Google Scholar 

  186. Im, E. J. et al. Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat. Commun. https://doi.org/10.1038/s41467-019-09387-4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Datta, A. et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: a drug repurposing strategy for advanced cancer. Sci. Rep. https://doi.org/10.1038/s41598-018-26411-7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Marleau, A. M., Chen, C. S., Joyce, J. A. & Tullis, R. H. Exosome removal as a therapeutic adjuvant in cancer. J. Transl. Med. https://doi.org/10.1186/1479-5876-10-134 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Lai, C. P. et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano https://doi.org/10.1021/nn404945r (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Gangadaran, P. et al. A new bioluminescent reporter system to study the biodistribution of systematically injected tumor-derived bioluminescent extracellular vesicles in mice. Oncotarget https://doi.org/10.18632/oncotarget.22493 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Wiklander, O. P. B. et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles https://doi.org/10.3402/jev.v4.26316 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kooijmans, S. A. A. et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J. Control. Rel. https://doi.org/10.1016/j.jconrel.2016.01.009 (2016).

    Article  Google Scholar 

  193. Armstrong, J. P. K., Holme, M. N. & Stevens, M. M. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano https://doi.org/10.1021/acsnano.6b07607 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Kooijmans, S. A. A. et al. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J. Extracell. Vesicles https://doi.org/10.3402/jev.v5.31053 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kooijmans, S. A. A., Gitz-Francois, J. J. J. M., Schiffelers, R. M. & Vader, P. Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells: a plug-and-play approach. Nanoscale https://doi.org/10.1039/c7nr06966a (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zou, X. et al. Extracellular vesicles expressing a single-chain variable fragment of an HIV-1 specific antibody selectively target Env+ tissues. Theranostics https://doi.org/10.7150/thno.33925 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Gao, X. et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aat0195 (2018). This multifaceted approach shows increased efficiency of therapeutic antisense oligonucleotide delivery via extracellular vesicles to skeletal muscle in a mouse model of Duchenne muscular dystrophy.

    Article  PubMed  Google Scholar 

  198. Antes, T. J. et al. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J. Nanobiotechnol. https://doi.org/10.1186/s12951-018-0388-4 (2018).

    Article  Google Scholar 

  199. Pi, F. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. https://doi.org/10.1038/s41565-017-0012-z (2018).

    Article  PubMed  Google Scholar 

  200. Zou, J. et al. Aptamer-functionalized exosomes: elucidating the cellular uptake mechanism and the potential for cancer-targeted chemotherapy. Anal. Chem. https://doi.org/10.1021/acs.analchem.8b05204 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Luo, Z. W. et al. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale https://doi.org/10.1039/c9nr02791b (2019).

    Article  PubMed  Google Scholar 

  202. Zaborowski, M. P. et al. Membrane-bound Gaussia luciferase as a tool to track shedding of membrane proteins from the surface of extracellular vesicles. Sci. Rep. https://doi.org/10.1038/s41598-019-53554-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Rupp, A. K. et al. Loss of EpCAM expression in breast cancer derived serum exosomes: role of proteolytic cleavage. Gynecol. Oncol. https://doi.org/10.1016/j.ygyno.2011.04.035 (2011).

    Article  PubMed  Google Scholar 

  204. Royo, F., Cossío, U., Ruiz De Angulo, A., Llop, J. & Falcon-Perez, J. M. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. Nanoscale https://doi.org/10.1039/c8nr03900c (2019).

    Article  PubMed  Google Scholar 

  205. Williams, C. et al. Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Sci. Rep. https://doi.org/10.1038/s41598-019-48499-1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Williams, C. et al. Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. J. Extracell. Vesicles https://doi.org/10.1080/20013078.2018.1442985 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Nakase, I. & Futaki, S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci. Rep. https://doi.org/10.1038/srep10112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Nakase, I. et al. Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Sci. Rep. https://doi.org/10.1038/s41598-017-02014-6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Nakase, I., Kobayashi, N. B., Takatani-Nakase, T. & Yoshida, T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci. Rep. https://doi.org/10.1038/srep10300 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Prada, I. & Meldolesi, J. Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets. Int. J. Mol. Sci. https://doi.org/10.3390/ijms17081296 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Soares, A. R. et al. Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci. Rep. https://doi.org/10.1038/srep13243 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  212. van Dongen, H. M., Masoumi, N., Witwer, K. W. & Pegtel, D. M. Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/mmbr.00063-15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Grove, J. & Marsh, M. The cell biology of receptor-mediated virus entry. J. Cell Biol. https://doi.org/10.1083/jcb.201108131 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Schnell, J. R. & Chou, J. J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature https://doi.org/10.1038/nature06531 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Montecalvo, A. et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood https://doi.org/10.1182/blood-2011-02-338004 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Tweten, R. K. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect. Immun. https://doi.org/10.1128/IAI.73.10.6199-6209.2005 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Jiang, J., Pentelute, B. L., Collier, R. J. & Hong Zhou, Z. Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature https://doi.org/10.1038/nature14247 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Geoffroy, C., Gaillard, J. L., Alouf, J. E. & Berche, P. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun. 55, 1641–1646 (1987).

    Article  CAS  Google Scholar 

  219. Heath, N. et al. Endosomal escape enhancing compounds facilitate functional delivery of extracellular vesicle cargo. Nanomedicine https://doi.org/10.2217/nnm-2019-0061 (2019).

    Article  PubMed  Google Scholar 

  220. Ragelle, H. et al. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J. Control. Rel. https://doi.org/10.1016/j.jconrel.2013.12.026 (2014).

    Article  Google Scholar 

  221. Antimisiaris, S. G., Mourtas, S. & Marazioti, A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics https://doi.org/10.3390/pharmaceutics10040218 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Quinn, J. F. et al. Extracellular RNAs: development as biomarkers of human disease. J. Extracell. Vesicles https://doi.org/10.3402/jev.v4.27495 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Sadik, N. et al. Extracellular RNAs: a new awareness of old perspectives. Methods Mol. Biol. https://doi.org/10.1007/978-1-4939-7652-2_1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Reátegui, E. et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat. Commun. https://doi.org/10.1038/s41467-017-02261-1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Shao, H. et al. New technologies for analysis of extracellular vesicles. Chem. Rev. https://doi.org/10.1021/acs.chemrev.7b00534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Akers, J. C. et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget https://doi.org/10.18632/oncotarget.18332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Burgos, K. et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One https://doi.org/10.1371/journal.pone.0094839 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Hannafon, B. N. et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. https://doi.org/10.1186/s13058-016-0753-x (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Antoury, L. et al. Analysis of extracellular mRNA in human urine reveals splice variant biomarkers of muscular dystrophies. Nat. Commun. https://doi.org/10.1038/s41467-018-06206-0 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. De Gonzalo-Calvo, D. et al. Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci. Rep. https://doi.org/10.1038/srep37354 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Giles, F. J. & Albitar, M. Plasma-based testing as a new paradigm for clinical testing in hematologic diseases. Expert. Rev. Mol. Diagnostics https://doi.org/10.1586/14737159.7.5.615 (2007).

    Article  Google Scholar 

  232. McKiernan, J. et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2–10 ng/ml at initial biopsy. Eur. Urol. https://doi.org/10.1016/j.eururo.2018.08.019 (2018).

    Article  PubMed  Google Scholar 

  233. Tao, Y. et al. Exploration of serum exosomal LncRNA TBILA and AGAP2-AS1 as promising biomarkers for diagnosis of non-small cell lung cancer. Int. J. Biol. Sci. https://doi.org/10.7150/ijbs.39123 (2020).

    Article  Google Scholar 

  234. Rohde, E., Pachler, K. & Gimona, M. Manufacturing and characterization of extracellular vesicles from umbilical cord–derived mesenchymal stromal cells for clinical testing. Cytotherapy https://doi.org/10.1016/j.jcyt.2018.12.006 (2019).

    Article  PubMed  Google Scholar 

  235. Witwer, K. W. et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J. Extracell. Vesicles https://doi.org/10.1080/20013078.2019.1609206 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Otero-Ortega, L. et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage. J. Cereb. Blood Flow. Metab. (2018). 10.1177/0271678X17708917

  237. Grange, C. et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int. J. Mol. Med. https://doi.org/10.3892/ijmm.2014.1663 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Yin, K., Wang, S. & Zhao, R. C. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomarker Res. https://doi.org/10.1186/s40364-019-0159-x (2019).

    Article  Google Scholar 

  239. Mendt, M. et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight https://doi.org/10.1172/jci.insight.99263 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Zhang, D. X., Kiomourtzis, T., Lam, C. K. & Le, M. T. N. The biology and therapeutic applications of red blood cell extracellular vesicles. Erythrocyte https://doi.org/10.5772/intechopen.81758 (2019).

    Article  Google Scholar 

  241. Zhu, X. et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J. Extracell. Vesicles https://doi.org/10.1080/20013078.2017.1324730 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Munagala, R., Aqil, F., Jeyabalan, J. & Gupta, R. C. Bovine milk-derived exosomes for drug delivery. Cancer Lett. https://doi.org/10.1016/j.canlet.2015.10.020 (2016).

    Article  PubMed  Google Scholar 

  243. Wang, Q. et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-14-3095 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Quesenberry, P. J. et al. Potential functional applications of extracellular vesicles: a report by the NIH common fund extracellular RNA communication consortium. J. Extracell. Vesicles https://doi.org/10.3402/jev.v4.27575 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Granchi, D. et al. Biomarkers of bone healing induced by a regenerative approach based on expanded bone marrow–derived mesenchymal stromal cells. Cytotherapy https://doi.org/10.1016/j.jcyt.2019.06.002 (2019).

    Article  PubMed  Google Scholar 

  246. Bhaskaran, V. et al. The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nat. Commun. https://doi.org/10.1038/s41467-019-08390-z (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Saleh, A. F. et al. Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale https://doi.org/10.1039/c8nr08720b (2019).

    Article  PubMed  Google Scholar 

  248. Heusermann, W. et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J. Cell Biol. https://doi.org/10.1083/jcb.201506084 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  249. György, B. et al. Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol. Ther. https://doi.org/10.1016/j.ymthe.2016.12.010 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Kim, S. M. et al. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Rel. https://doi.org/10.1016/j.jconrel.2017.09.013 (2017).

    Article  Google Scholar 

  251. Lin, Y. et al. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. https://doi.org/10.1002/advs.201700611 (2018).

    Article  Google Scholar 

  252. Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase 1 clinical trial. J. Transl. Med. https://doi.org/10.1186/1479-5876-3-10 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Van Craenenbroeck, A. H. et al. Induction of cytomegalovirus-specific T cell responses in healthy volunteers and allogeneic stem cell recipients using vaccination with messenger RNA-transfected dendritic cells. Transplantation https://doi.org/10.1097/TP.0000000000000272 (2015).

    Article  PubMed  Google Scholar 

  254. Markov, O., Oshchepkova, A. & Mironova, N. Immunotherapy based on dendritic cell-targeted/-derived extracellular vesicles — a novel strategy for enhancement of the anti-tumor immune response. Front. Pharmacol. https://doi.org/10.3389/fphar.2019.01152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Song, P. et al. Lipidoid-siRNA nanoparticle-mediated IL-1β gene silencing for systemic arthritis therapy in a mouse model. Mol. Ther. https://doi.org/10.1016/j.ymthe.2019.05.002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Liu, J. et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv. Mater. https://doi.org/10.1002/adma.201902575 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Haraszti, R. A. et al. Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience https://doi.org/10.1016/j.isci.2019.05.029 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Ghamloush, F. et al. The PAX3-FOXO1 oncogene alters exosome miRNA content and leads to paracrine effects mediated by exosomal miR-486. Sci. Rep. https://doi.org/10.1038/s41598-019-50592-4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Lucero, R. et al. Glioma-derived miRNA-containing extracellular vesicles induce angiogenesis by reprogramming brain endothelial cells. Cell Rep. https://doi.org/10.1016/j.celrep.2020.01.073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Liu, Q., Peng, F. & Chen, J. The role of exosomal microRNAs in the tumor microenvironment of breast cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20163884 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Shen, M. et al. Chemotherapy-induced extracellular vesicle miRNAs promote breast cancer stemness by targeting OneCUT2. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-18-4055 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Wang, L. et al. Role of cardiac progenitor cell-derived exosome-mediated microRNA-210 in cardiovascular disease. J. Cell. Mol. Med. https://doi.org/10.1111/jcmm.14562 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Yu, H. & Wang, Z. Cardiomyocyte-derived exosomes: biological functions and potential therapeutic implications. Front. Physiol. https://doi.org/10.3389/fphys.2019.01049 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Ma, Y. et al. Exosomes released from neural progenitor cells and induced neural progenitor cells regulate neurogenesis through miR-21a. Cell Commun. Signal. https://doi.org/10.1186/s12964-019-0418-3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Ying, W. et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell https://doi.org/10.1016/j.cell.2017.08.035 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Chen, S. et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. https://doi.org/10.1111/cpr.12669 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature https://doi.org/10.1038/nature21365 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Miyauchi, K., Kim, Y., Latinovic, O., Morozov, V. & Melikyan, G. B. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell https://doi.org/10.1016/j.cell.2009.02.046 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Tian, T., Wang, Y., Wang, H., Zhu, Z. & Xiao, Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell. Biochem. https://doi.org/10.1002/jcb.22733 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Koga, K. et al. Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res. 25, 3703–3707 (2005).

    CAS  PubMed  Google Scholar 

  271. Mondal, A., Ashiq, K. A., Phulpagar, P., Singh, D. K. & Shiras, A. Effective visualization and easy tracking of extracellular vesicles in glioma cells. Biol. Proced. Online https://doi.org/10.1186/s12575-019-0092-2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Planchon, D. et al. MT1-MMP targeting to endolysosomes is mediated by upregulation of flotillins. J. Cell Sci. https://doi.org/10.1242/jcs.218925 (2018).

    Article  PubMed  Google Scholar 

  273. Escrevente, C., Keller, S., Altevogt, P. & Costa, J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer https://doi.org/10.1186/1471-2407-11-108 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Gray, W. D., Mitchell, A. J. & Searles, C. D. An accurate, precise method for general labeling of extracellular vesicles. MethodsX https://doi.org/10.1016/j.mex.2015.08.002 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Morales-Kastresana, A. et al. High-fidelity detection and sorting of nanoscale vesicles in viral disease and cancer. J. Extracell. Vesicles https://doi.org/10.1080/20013078.2019.1597603 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. https://doi.org/10.1038/nbt.3298 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Da Poian, A. T., André, A. M. & Coelho-Sampaio, T. Kinetics of intracellular viral disassembly and processing probed by Bodipy fluorescence dequenching. J. Virol. Methods https://doi.org/10.1016/S0166-0934(97)00166-3 (1998).

    Article  PubMed  Google Scholar 

  278. Struck, D. K., Hoekstra, D. & Pagano, R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry https://doi.org/10.1021/bi00517a023 (1981).

    Article  PubMed  Google Scholar 

  279. Herrmann, A. et al. Effect of erythrocyte transbilayer phospholipid distribution on fusion with vesicular stomatitis virus. Biochemistry https://doi.org/10.1021/bi00469a005 (1990).

    Article  PubMed  Google Scholar 

  280. Wahlberg, J. M., Bron, R., Wilschut, J. & Garoff, H. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J. Virol. 66, 7309–7318 (1992).

    Article  CAS  Google Scholar 

  281. Sung, B. H., Pelletier, R. & Weaver, A. M. pHluo_M153R-CD63, a bright, versatile live cell reporter of exosome secretion and uptake, reveals pathfinding behavior of migrating cells. bioRxiv https://doi.org/10.1101/577346 (2019).

    Article  Google Scholar 

  282. Yuhua, H. et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett. https://doi.org/10.1021/nl071542i (2007).

    Article  Google Scholar 

  283. Jones, D. M. & Padilla-Parra, S. The β-lactamase assay: harnessing a FRET biosensor to analyse viral fusion mechanisms. Sensors https://doi.org/10.3390/s16070950 (2016).

    Article  PubMed  Google Scholar 

  284. Lönn, P. et al. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci. Rep. https://doi.org/10.1038/srep32301 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Godoy, P. M. et al. Large differences in small RNA composition between human biofluids. SSRN Electron. J. https://doi.org/10.2139/ssrn.3155656 (2018).

    Article  Google Scholar 

  286. Freedman, J. E. et al. Diverse human extracellular RNAs are widely detected in human plasma. Nat. Commun. https://doi.org/10.1038/ncomms11106 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Giraldez, M. D. et al. Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol. https://doi.org/10.1038/nbt.4183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Godoy, P. M. et al. Comparison of reproducibility, accuracy, sensitivity, and specificity of miRNA quantification platforms. Cell Rep. https://doi.org/10.1016/j.celrep.2019.11.078 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Yeri, A. et al. Evaluation of commercially available small RNASeq library preparation kits using low input RNA. BMC Genomics https://doi.org/10.1186/s12864-018-4726-6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Crescitelli, R. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles https://doi.org/10.3402/jev.v2i0.20677 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Gámbaro, F. et al. Stable tRNA halves can be sorted into extracellular vesicles and delivered to recipient cells in a concentration-dependent manner. RNA Biol. https://doi.org/10.1080/15476286.2019.1708548 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Chevillet, J. R. et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1408301111 (2014).

    Article  PubMed  Google Scholar 

  293. Grabarek, A. D., Weinbuch, D., Jiskoot, W. & Hawe, A. Critical evaluation of microfluidic resistive pulse sensing for quantification and sizing of nanometer- and micrometer-sized particles in biopharmaceutical products. J. Pharm. Sci. https://doi.org/10.1016/j.xphs.2018.08.020 (2019).

    Article  PubMed  Google Scholar 

  294. Akers, J. C. et al. Comparative analysis of technologies for quantifying extracellular vesicles (EVs) in clinical cerebrospinal fluids (CSF). PLoS One https://doi.org/10.1371/journal.pone.0149866 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  295. van der Pol, E. et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. https://doi.org/10.1111/jth.12602 (2014).

    Article  PubMed  Google Scholar 

  296. Oleksiuk, O. et al. Single-molecule localization microscopy allows for the analysis of cancer metastasis-specific miRNA distribution on the nanoscale. Oncotarget https://doi.org/10.18632/oncotarget.6297 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Breakefield laboratory acknowledges grant support from the US National Institutes of Health National Cancer Institute (P01 CA069246 and R35 CA232103). S.U. acknowledges financial support from Associazione Italiana per la Ricerca sul Cancro (grant IG 20210) to S. Giordano. L.C.L. is supported by US National Institutes of Health grant U01HL126494. The authors thank M. Brennan for insights on mesenchymal stem cells and S. McDavitt for skilled editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article, with K.O’B. and K.B. doing the major draft writing.

Corresponding authors

Correspondence to Louise C. Laurent or Xandra O. Breakefield.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Biotechnology companies: https://www.evaluate.com/vantage/articles/news/snippets/exosomes-start-deliver-deals

ClinicalTrials.gov: https://www.clinicaltrials.gov/

exRNA Atlas: https://exrna-atlas.org/

Supplementary information

Glossary

Astrocytes

Glial cells of the central nervous system.

Large oncosomes

Extracellular vesicles between 1,000 nm and 10,000 nm in diameter derived from tumour cells that contain abnormal and transforming macromolecules, in addition to other cargo.

Lipoproteins

Macromolecular aggregates of proteins (apoproteins) and different classes of hydrophobic and amphipathic biomolecules that range in size from 10 nm to 1 μm. These aggregates have the function of collecting and transporting lipids, triglycerides, free cholesterol (unesterified cholesterol) and esterified cholesterol in blood plasma.

Ribonucleoproteins

Proteins structurally associated with nucleic acids, the prosthetic group (nucleic acid) of which contains ribose.

High-resolution density gradient centrifugation

A method in which extracellular vesicles and particles are centrifuged in a gradient medium (for example, iodixanol) and separated primarily on the basis of their density.

Size-exclusion chromatography

A technique in which a porous stationary phase is used to sort extracellular vesicles from proteins on the basis of the larger size of the former.

Asymmetric field-flow fractionation

A technique that separates differentially sized particles ranging from 1 nm to 100 μm in a fluid suspension where the rate of laminar flow is not uniform. A force is applied in a perpendicular direction, facilitating the separation of particles on the basis of size.

Immunoaffinity purification

A method of isolation of extracellular vesicles using antibodies, typically conjugated to magnetic beads, that recognize proteins exposed on the surface of extracellular vesicles.

Antisense oligonucleotides

Sequences of DNA or RNA roughly 15–25 nucleotides in length that hybridize to complementary RNA targets, resulting in altered splicing or degradation of the targeted RNA.

Guide RNAs

RNAs with a specific sequence that recognize and aid nucleases, such as Cas9, in cutting the genomic DNA region of interest for targeted genome engineering.

Self-amplifying RNAs

Engineered viral genomes encoding proteins involved in the replication mechanism and therefore capable of directing their own replication.

Small nuclear RNAs

Short sequences (about 150 nucleotides) of ribonucleic acid, usually very rich in uracil, involved in the maturation of mRNA in the cell nucleus.

Small nucleolar RNAs

(snoRNAs). RNA species consisting of 60–300 nucleotides capable of promoting certain chemical modifications and maturation of many cellular RNAs.

PIWI-interacting RNAs

(piRNAs). RNAs approximately 21–35 nucleotides long representing a class of RNAs that form protein–RNA complexes by interacting with PIWI proteins. These piRNA complexes have been linked to the transcriptional silencing of retrotransposons and other genetic elements in germ line cells.

Y RNAs

Small non-coding RNAs essential for the initiation of chromosomal DNA replication. When bound to the RO60, they are involved in RNA stability and cellular responses to stress.

Vault RNAs

(vtRNAs). Small RNA components of the vault ribonucleoprotein complex. Approximately 100 nucleotides in length, they function as the intracellular and nucleocytoplasmic transporters.

Dicer

The RNase III known as Dicer is involved in the cleavage of double-stranded RNA and microRNA precursor molecules forming short double-stranded fragments called ‘small interfering RNAs’ or ‘microRNAs’.

Argonaute

The Argonaute protein family has a critical role in the RNA-induced silencing complex. These proteins form complexes with microRNAs, small interfering RNAs and PIWI-interacting RNAs, interfering with mRNA translation and/or degrading target mRNAs.

Circular RNAs

Single-stranded, non-coding RNAs that may play a role in transcriptional regulation and in mediating protein interactions. They are characterized by a covalently closed loop feature without 5′-end caps or 3′ poly(A) tails.

tRNA fragments

Transfer RNA (tRNA)-derived fragments are cleaved from either mature or precursor tRNAs. Functionally, they can act through RNA interference pathways, participate in the formation of stress granules, move mRNA from RNA-binding proteins and/or inhibit translation.

Multivesicular bodies

(MVBs). Represent a late endosomal compartment, which contains luminal vesicles. Vesicles within the MVBs either can be degraded when MVBs fuse with lysosomes or can be secreted as exosomes when MVBs fuse with the plasma membrane.

Lipid rafts

Subdomains of the plasma membrane represented by accumulations of proteins and lipids, with high concentrations of cholesterol and glycosphingolipids.

Blebbing

A bulging of the plasma membrane accompanied by membrane decoupling from the underlying cytoskeleton, which has the potential to release vesicles surrounded by the plasma membrane.

Secretory autophagy

The transportation of proteins via the autophagosome to the plasma membrane, multivesicular bodies or secretory lysosomes resulting in extracellular release of proteins.

Macropinocytosis

An endocytic process that results in the cellular uptake of fluid and particles less than 0.2 μm in diameter via invaginated membranes that then form intracellular vesicles.

Tunnelling nanotubes

Dynamic actin-driven protrusions from the plasma membrane of cells that form connections between cells more than 100 μm away to facilitate intercellular communication.

Proteoglycans

Highly glycosylated proteins that form the major component of the extracellular matrix. Glycosaminoglycans of proteoglycans are divided into seven main classes: hyaluronic acid, chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, keratan sulfate I, keratan sulfate II and heparin. Proteoglycans act as molecular filters, regulating movement of macromolecules, such as albumin and immunoglobulins, throughout the matrix.

Liposomes

Small spherical nanoparticles that contain an aqueous core solution and at least one phospholipid bilayer. They can be prepared from biological membranes and are often used for drug delivery.

Amyloid precursor protein

A transmembrane protein that is a precursor of β-amyloid, a protein involved in the pathology of Alzheimer disease.

Mesenchymal stem cells

Multipotent stromal progenitor cells found in a number of different tissues that are capable of self-renewal and differentiation into a variety of cell types.

Cre recombinase

A type I topoisomerase from bacteriophage P1 that catalyses cleavage and ligation of DNA at specific loxP recognition sites.

RIG-I-like receptors

Intracellular pattern recognition receptors that belong to the RNA box helicase family that function as cytoplasmic sensors of pathogen-associated molecular patterns elicited by viral RNA.

NOD-like receptor family

Cytoplasmic receptors expressed by innate immune and other cells. They are part of the family of intracellular pattern recognition receptors and can recognize structures associated with pathogenic microorganisms (pathogen-associated molecular patterns) or with cell damage (damage-associated molecular patterns), thereby activating the innate immune response and inflammation.

Type I interferon

A large subgroup of cytokines that help to regulate the activity of the immune system. They act to degrade viral DNA and proteins in infected cells and provide protection to surrounding cells through interaction with and signalling from interferon receptors.

Toll-like receptors

(TLRs). A class of transmembrane proteins involved in the defence of the organism through innate immunity. They are mainly expressed on the membrane of sentinel cells, such as macrophages and dendritic cells, and recognize certain typical structures of pathogens and microorganisms.

Lysosome-associated membrane protein 2B

A particular isoform of LAMP2 — a protein that associates with the membrane of multivesicular bodies and lysosomes.

Tetraspanin

A family of membrane proteins consisting of four transmembrane domains, with intracellular N and C terminals and two extracellular domains. Tetraspanins are present in the membranes of extracellular vesicles.

‘Zipcode’ sequences

Sequences typically found in the 3′ untranslated regions of mRNA transcripts that can be recognized by specific RNA-binding proteins.

Lipofectamine

A transfection reagent, composed of a cationic tail and a lipid region. Lipofectamine binds exogenous DNA and RNA, creating liposomes that, once in contact with the plasma membrane of the cells, merge with it and facilitate entry of nucleic acids into the cytoplasm.

V-ATPase

Vacuolar-type H-ATPase. A transmembrane protein found mainly in intracellular organelles and the plasma membrane. It catalyses the hydrolysis of ATP, allowing transport of solutes and acidification of organelles.

Heparanase

Heparanases are a group of enzymes that act both at the cell surface and within the extracellular matrix to degrade polymeric heparan sulfate molecules into shorter chain length oligosaccharides.

Gene therapy

A variety of methods resulting in alterations in the genome and/or transcriptome of cells in order to correct deficiency or dominant negative effects caused by genetic mutations or infections.

RNA aptamers

Small oligonucleotides that bind to target molecules with high affinity and specificity through their 3D structures.

Major histocompatibility complexes

A group of genes encoding plasma membrane proteins that facilitate recognition of foreign peptides by the adaptive immune system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, K., Breyne, K., Ughetto, S. et al. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 21, 585–606 (2020). https://doi.org/10.1038/s41580-020-0251-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-020-0251-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research