Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance

Abstract

Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The major H3K9 methyltransferases, cofactors and targets.
Fig. 2: Roles of H3K9 methylation in long-range chromatin interactions and nuclear organization.
Fig. 3: Roles of H3K9 methyltransferases in T cell lineage determination.
Fig. 4: Transcription factors control tissue-specific transcription derepression upon H3K9me loss.

Similar content being viewed by others

References

  1. Győry, I., Wu, J., Fejér, G., Seto, E. & Wright, K. L. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat. Immunol. 5, 299–308 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kubicek, S. et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25, 473–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Becker, J. S. et al. Genomic and proteomic resolution of heterochromatin and its restriction of alternate fate genes. Mol. Cell 68, 1023–1037.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garrigues, J. M., Sidoli, S., Garcia, B. A. & Strome, S. Defining heterochromatin in C. elegans through genome-wide analysis of the heterochromatin protein 1 homolog HPL-2. Genome Res. 25, 76–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Towbin, B. D. et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150, 934–947 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Zeller, P. et al. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat. Genet. 48, 1385–1395 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Montavon, T. et al. Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nat. Commun. 12, 4359 (2021). This study describes the effect of losing all detectable H3K9me owing to the loss of the six redundant mammalian H3K9-specific HMTs; analogous ablations and their consequences in C. elegans are described by Towbin et al. (2012) and Zeller et al. (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Holoch, D. & Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71–84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schotta, G. et al. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elgin, S. C. & Reuter, G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 5, a017780 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Jenuwein, T., Laible, G., Dorn, R. & Reuter, G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol. Life Sci. 54, 80–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Loyola, A., Bonaldi, T., Roche, D., Imhof, A. & Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24, 309–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Martens, J. H. A. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bulut-Karslioglu, A. et al. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol. Cell 55, 277–290 (2014). Comprehensive mapping of SUV39H1/H2 binding in mouse ES cells and comparison with SETDB1 binding.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, T. et al. Crystal structure of the human SUV39H1 chromodomain and its recognition of histone H3K9me2/3. PLoS ONE 7, e52977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Melcher, M. et al. Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol. Cell Biol. 20, 3728–3741 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Carroll, D. et al. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell Biol. 20, 9423–9433 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Iglesias, N. et al. Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability. Nature 560, 504–508 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canzio, D., Larson, A. & Narlikar, G. J. Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol. 24, 377–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Padeken, J. et al. Argonaute NRDE-3 and MBT domain protein LIN-61 redundantly recruit an H3K9me3 HMT to prevent embryonic lethality and transposon expression. Genes Dev. 35, 82–101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guang, S. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465, 1097–1101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gushchanskaia, E. S., Esse, R., Ma, Q., Lau, N. C. & Grishok, A. Interplay between small RNA pathways shapes chromatin landscapes in C. elegans. Nucleic Acids Res. 47, 5603–5616 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lev, I., Gingold, H. & Rechavi, O. H3K9me3 is required for inheritance of small RNAs that target a unique subset of newly evolved genes. eLife 8, e40448 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Johnson, W. L. et al. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife 6, e25299 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shirai, A. et al. Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. eLife 6, e25317 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Velazquez Camacho, O. et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 6, e25293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Probst, A. V. et al. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 19, 625–638 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Casanova, M. et al. Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Rep. 4, 1156–1167 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Burton, A. & Torres-Padilla, M. E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 15, 723–734 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Scarola, M. et al. Epigenetic silencing of Oct4 by a complex containing SUV39H1 and Oct4 pseudogene lncRNA. Nat. Commun. 6, 7631 (2015).

    Article  PubMed  Google Scholar 

  38. Porro, A. et al. Functional characterization of the TERRA transcriptome at damaged telomeres. Nat. Commun. 5, 5379 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. García-Cao, M., O’Sullivan, R., Peters, A. H., Jenuwein, T. & Blasco, M. A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36, 94–99 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. Gauchier, M. et al. SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres. Sci. Adv. 5, eaav3673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peng, J. C. & Karpen, G. H. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9, 25–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Murayama, A. et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133, 627–639 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Vaquero, A. et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450, 440–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Bosch-Presegué, L. et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell 42, 210–223 (2011).

    Article  PubMed  CAS  Google Scholar 

  45. Santos-Barriopedro, I. et al. SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Nat. Commun. 9, 101 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Harte, P. J., Wu, W., Carrasquillo, M. M. & Matera, A. G. Assignment of a novel bifurcated SET domain gene, SETDB1, to human chromosome band 1q21 by in situ hybridization and radiation hybrids. Cytogenet. Cell Genet. 84, 83–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, L. et al. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21, 148–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, L. & Fang, J. E3-independent constitutive monoubiquitination complements histone methyltransferase activity of SETDB1. Mol. Cell 62, 958–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishimoto, K. et al. Ubiquitination of lysine 867 of the human SETDB1 protein upregulates its histone H3 lysine 9 (H3K9) methyltransferase activity. PLoS ONE 11, e0165766 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zheng, Q. et al. Senp2 regulates adipose lipid storage by de-SUMOylation of Setdb1. J. Mol. Cell Biol. 10, 258–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Osumi, K., Sato, K., Murano, K., Siomi, H. & Siomi, M. C. Essential roles of Windei and nuclear monoubiquitination of Eggless/SETDB1 in transposon silencing. EMBO Rep. 20, e48296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ninova, M. et al. Su(var)2-10 and the SUMO pathway link piRNA-guided target recognition to chromatin silencing. Mol. Cell 77, 556–570.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Ivanov, A. V. et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823–837 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, Y. K., Thomas, S. N., Yang, A. J. & Ann, D. K. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J. Biol. Chem. 282, 1595–1606 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Timms, R. T., Tchasovnikarova, I. A., Antrobus, R., Dougan, G. & Lehner, P. J. ATF7IP-mediated stabilization of the histone methyltransferase SETDB1 is essential for heterochromatin formation by the HUSH complex. Cell Rep. 17, 653–659 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsusaka, T., Shimura, C. & Shinkai, Y. ATF7IP regulates SETDB1 nuclear localization and increases its ubiquitination. EMBO Rep. 20, e48297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, H. et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell 12, 475–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Mutlu, B. et al. Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in C. elegans embryos. Sci. Adv. 4, eaat6224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Delaney, C. E. et al. Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor LIN-65. J. Cell Biol. 218, 820–838 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Beyer, S. et al. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov. 2, 16037 (2016). This study is the first description of a global regulation of SETDB1 through nuclear export; an analogous mechanism during the stress response in C. elegans is described by Delaney et al. (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cho, S., Park, J. S. & Kang, Y. K. Regulated nuclear entry of over-expressed Setdb1. Genes Cells 18, 694–703 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Delaney, C. E. et al. SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat. Struct. Mol. Biol. 29, 85–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pek, J. W., Anand, A. & Kai, T. Tudor domain proteins in development. Development 139, 2255–2266 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Jurkowska, R. Z. et al. H3K14ac is linked to methylation of H3K9 by the triple Tudor domain of SETDB1. Nat. Commun. 8, 2057 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Dodge, J. E., Kang, Y. K., Beppu, H., Lei, H. & Li, E. Histone H3-K9 methyltransferase ESET is essential for early development. Mol. Cell Biol. 24, 2478–2486 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Karimi, M. M. et al. DNA Methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8, 676–687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Collins, P. L., Kyle, K. E., Egawa, T., Shinkai, Y. & Oltz, E. M. The histone methyltransferase SETDB1 represses endogenous and exogenous retroviruses in B lymphocytes. Proc. Natl Acad. Sci. USA 112, 8367–8372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Adoue, V. et al. The histone methyltransferase SETDB1 controls T helper cell lineage integrity by repressing endogenous retroviruses. Immunity 50, 629–644.e8 (2019). Describes the role of SETDB1 in establishing and maintaining the T cell lineage.

    Article  CAS  PubMed  Google Scholar 

  71. Kato, M., Takemoto, K. & Shinkai, Y. A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing. Nat. Commun. 9, 1683 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Takikita, S. et al. A histone methyltransferase ESET is critical for T cell development. J. Immunol. 197, 2269–2279 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Fasching, L. et al. TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells. Cell Rep. 10, 20–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Južnić, L. et al. SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation. Gut 70, 485–498 (2021).

    Article  PubMed  CAS  Google Scholar 

  75. Wang, R. et al. Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature 580, 386–390 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Stocking, C. & Kozak, C. A. Endogenous retroviruses. Cell. Mol. Life Sci. 65, 3383–3398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huntley, S. et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res. 16, 669–677 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Helleboid, P.-Y. et al. The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification. EMBO J. 38, e101220 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Cruz-Tapias, P., Robin, P., Pontis, J., Maestro, L. D. & Ait-Si-Ali, S. The H3K9 methylation writer SETDB1 and its Reader MPP8 cooperate to silence satellite DNA repeats in mouse embryonic stem cells. Genes 10, 750 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  80. Loyola, A. et al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep. 10, 769–775 (2009). Links SETDB1 to the replication machinery to maintain H3K9me in mitotic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Padeken, J. et al. Synergistic lethality between BRCA1 and H3K9me2 loss reflects satellite derepression. Genes Dev. 33, 436–451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McMurchy, A. N. et al. A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress. eLife 6, e21666 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Methot, S. P. et al. H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nat. Cell Biol. 23, 1163–1175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Robbez-Masson, L. et al. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes. Genome Res. 28, 836–845 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tchasovnikarova, I. A. et al. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 348, 1481–1485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsusaka, T. et al. Tri-methylation of ATF7IP by G9a/GLP recruits the chromodomain protein MPP8. Epigenetics Chromatin 11, 56 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Tchasovnikarova, I. A. et al. Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2. Nat. Genet. 49, 1035–1044 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Douse, C. H. et al. Neuropathic MORC2 mutations perturb GHKL ATPase dimerization dynamics and epigenetic silencing by multiple structural mechanisms. Nat. Commun. 9, 651 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Douse, C. H. et al. TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control. Nat. Commun. 11, 4940 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kokura, K., Sun, L., Bedford, M. T. & Fang, J. Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion. EMBO J. 29, 3673–3687 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Timms, R. T., Tchasovnikarova, I. A. & Lehner, P. J. Position-effect variegation revisited: HUSHing up heterochromatin in human cells. Bioessays 38, 333–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Seczynska, M., Bloor, S., Cuesta, S. M. & Lehner, P. J. Genome surveillance by HUSH-mediated silencing of intronless mobile elements. Nature 601, 440–445 (2022). An elegant study revealing the mechanism of HUSH-dependent SETDB1 recruitment, which was described earlier by Tchasovnikarova et al. (2015) and Robbez-Masson et al. (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Kourmouli, N., Sun, Y.-M., van der Sar, S., Singh, P. B. & Brown, J. P. Epigenetic regulation of mammalian pericentric heterochromatin in vivo by HP1. Biochem. Biophys. Res. Commun. 337, 901–907 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Falandry, C. et al. CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation. J. Biol. Chem. 285, 20234–20241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu, P. F. et al. Setdb2 restricts dorsal organizer territory and regulates left-right asymmetry through suppressing fgf8 activity. Proc. Natl Acad. Sci. USA 107, 2521–2526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schliehe, C. et al. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat. Immunol. 16, 67–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Melvin, W. J. et al. Coronavirus induces diabetic macrophage-mediated inflammation via SETDB2. Proc. Natl Acad. Sci. USA 118, e2101071118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kimball, A. S. et al. The histone methyltransferase Setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair. Immunity 51, 258–271.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19, 815–826 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Battisti, V. et al. Unexpected distinct roles of the related histone H3 lysine 9 methyltransferases G9a and G9a-like protein in myoblasts. J. Mol. Biol. 428, 2329–2343 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Collins, R. E. et al. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J. Biol. Chem. 280, 5563–5570 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, H. et al. Structural biology of human H3K9 methyltransferases. PLoS ONE 5, e8570 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Shen, H., Xu, W. & Lan, F. Histone lysine demethylases in mammalian embryonic development. Exp. Mol. Med. 49, e325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Jiang, Q. et al. G9a plays distinct roles in maintaining DNA methylation, retrotransposon silencing, and chromatin looping. Cell Rep. 33, 108315 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Maksakova, I. A. et al. Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenetics Chromatin 6, 15 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leung, D. C. et al. Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proc. Natl Acad. Sci. USA 108, 5718–5723 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dong, K. B. et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. 27, 2691–2701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nicetto, D. et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science 363, 294–297 (2019). Analysis of H3K9me3-dependent gene silencing in SETDB1–SUV39H1–SUV39H2 triple mutants after embryogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Di Giacomo, M., Comazzetto, S., Sampath, S. C., Sampath, S. C. & O’Carroll, D. G9a co-suppresses LINE1 elements in spermatogonia. Epigenetics Chromatin 7, 24 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Liu, S. et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev. 28, 2041–2055 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou, H. et al. H3K9 Demethylation-Induced R-loop accumulation is linked to disorganized nucleoli. Front. Genet. 11, 43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Collins, R. E. et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat. Struct. Mol. Biol. 15, 245–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sampath, S. C. et al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell 27, 596–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Shin, H. M. et al. Epigenetic modifications induced by blimp-1 regulate CD8+ T cell memory progression during acute virus infection. Immunity 39, 661–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Tong, X. et al. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J. Biol. Chem. 285, 36401–36409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tong, X. et al. Recruitment of histone methyltransferase G9a mediates transcriptional repression of Fgf21 gene by E4BP4 protein. J. Biol. Chem. 288, 5417–5425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fang, S. et al. Coordinated recruitment of histone methyltransferase G9a and other chromatin-modifying enzymes in SHP-mediated regulation of hepatic bile acid metabolism. Mol. Cell. Biol. 27, 1407–1424 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Kemper, J. K., Kim, H., Miao, J., Bhalla, S. & Bae, Y. Role of an mSin3A-Swi/Snf chromatin remodeling complex in the feedback repression of bile acid biosynthesis by SHP. Mol. Cell Biol. 24, 7707–7719 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ueda, J., Tachibana, M., Ikura, T. & Shinkai, Y. Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J. Biol. Chem. 281, 20120–20128 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Subramanian, T. & Chinnadurai, G. Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett. 540, 255–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Nicetto, D. & Zaret, K. S. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr. Opin. Genet. Dev. 55, 1–10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994–1004 (2012). Together with Matoba et al. (2014), this study establishes H3K9me as a major obstacle to cellular reprogramming.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, J. et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 45, 34–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Matoba, S. et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884–895 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, X. et al. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development 145, dev158261 (2018).

    Article  PubMed  CAS  Google Scholar 

  130. Brumbaugh, J. et al. Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nat. Cell Biol. 21, 1449–1461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Griffin, G. K. et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 595, 309–314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Checchi, P. M. & Engebrecht, J. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation. PLoS Genet. 7, e1002267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lev, I. et al. MET-2-dependent H3K9 methylation suppresses transgenerational small RNA inheritance. Curr. Biol. 27, 1138–1147 (2017). Together with Padeken et al. (2021) and McMurchy et al. (2017), the authors highlight the redundancy between H3K9-specific HMTs and the siRNA pathways in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  134. Zylicz, J. J. et al. G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst. eLife 7, e33361 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Au Yeung, W. K. et al. Histone H3K9 methyltransferase G9a in oocytes is essential for preimplantation development but dispensable for CG methylation protection. Cell Rep. 27, 282–293.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Chang, C.-R., Wu, C.-S., Hom, Y. & Gartenberg, M. R. Targeting of cohesin by transcriptionally silent chromatin. Genes Dev. 19, 3031–3042 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, X. et al. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression. Nat. Commun. 7, 10810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ferry, L. et al. Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation. Mol. Cell 67, 550–565.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Van Duyne, R. et al. Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 5, 40 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Kudithipudi, S., Schuhmacher, M. K., Kebede, A. F. & Jeltsch, A. The SUV39H1 protein lysine methyltransferase methylates chromatin proteins involved in heterochromatin formation and VDJ recombination. ACS Chem. Biol. 12, 958–968 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  PubMed  CAS  Google Scholar 

  142. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  143. Smith, C. M. et al. The mouse gene expression database (GXD): 2019 update. Nucleic Acids Res. 47, D774–D779 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  144. Burton, A. et al. Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat. Cell Biol. 22, 767–778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Balmer, P. et al. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells. J. Cell Biol. 220, e201908178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pucella, J. N., Upadhaya, S. & Reizis, B. The source and dynamics of adult hematopoiesis: insights from lineage tracing. Annu. Rev. Cell Dev. Biol. 36, 529–550 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Hosokawa, H. & Rothenberg, E. V. How transcription factors drive choice of the T cell fate. Nat. Rev. Immunol. 21, 162–176 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Nagasawa, T. Microenvironmental niches in the bone marrow required for B-cell development. Nat. Rev. Immunol. 6, 107–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Pasquarella, A., Nuber, A. & Schotta, G. Deletion of the histone methyltransferase Setdb1 during hematopoiesis results in hematopoietic stem cell failure and abrogates B cell development. Exp. Hematol. 41, S19 (2013).

    Article  Google Scholar 

  150. Koide, S. et al. Setdb1 maintains hematopoietic stem and progenitor cells by restricting the ectopic activation of nonhematopoietic genes. Blood 128, 638–649 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Keenan, C. R. et al. Extreme disruption of heterochromatin is required for accelerated hematopoietic aging. Blood 135, 2049–2058 (2020).

    Article  PubMed  Google Scholar 

  152. Ermolaeva, M., Neri, F., Ori, A. & Rudolph, K. L. Cellular and epigenetic drivers of stem cell ageing. Nat. Rev. Mol. Cell Biol. 19, 594–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Djeghloul, D. et al. Age-associated decrease of the histone methyltransferase SUV39H1 in HSC perturbs heterochromatin and B lymphoid differentiation. Stem Cell Rep. 6, 970–984 (2016).

    Article  CAS  Google Scholar 

  154. Chen, X. et al. G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev. 26, 2499–2511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Luckheeram, R. V., Zhou, R., Verma, A. D. & Xia, B. CD4+ T cells: differentiation and functions. Clin. Dev. Immunol. 2012, 925135 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Allan, R. S. et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487, 249–253 (2012). Describes the important role of SUV39H1 in establishing and maintaining the T cell lineage.

    Article  CAS  PubMed  Google Scholar 

  157. Pace, L. et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 359, 177–186 (2018). Describes the important role of SUV39H1 in CD8+ T cell fate commitment.

    Article  CAS  PubMed  Google Scholar 

  158. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Thomas, L. R. et al. Functional analysis of histone methyltransferase g9a in B and T lymphocytes. J. Immunol. 181, 485–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Xiao, X. et al. The costimulatory receptor OX40 inhibits interleukin-17 expression through activation of repressive chromatin remodeling pathways. Immunity 44, 1271–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Maddur, M. S., Miossec, P., Kaveri, S. V. & Bayry, J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am. J. Pathol. 181, 8–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Sugamura, K., Ishii, N. & Weinberg, A. D. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat. Rev. Immunol. 4, 420–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Osipovich, O. et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat. Immunol. 5, 309–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Bradley, S. P., Kaminski, D. A., Peters, A. H., Jenuwein, T. & Stavnezer, J. The histone methyltransferase Suv39h1 increases class switch recombination specifically to IgA. J. Immunol. 177, 1179–1188 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. George-Alexander, L.-E., Kania, A., Mi, T., Scharer, C. D. & Boss, J. M. H3K9 dimethyltransferase G9a deficiency modulates B-cell response to LPS. J. Immunol. 206, 63.08–63.08 (2021).

    Google Scholar 

  166. Li, S. et al. JMJD1B demethylates H4R3me2s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells. Cell Rep. 23, 389–403 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kim, J. Y. et al. KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Mol. Cell Biol. 32, 2917–2933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hachiya, R. et al. The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages. Sci. Rep. 6, 28845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sasaki, Y. & Iwai, K. Roles of the NF-κB pathway in B-lymphocyte biology. Curr. Top. Microbiol. Immunol. 393, 177–209 (2016).

    CAS  PubMed  Google Scholar 

  170. Buckingham, M. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 11, 440–448 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Chen, L., Krause, M., Sepanski, M. & Fire, A. The Caenorhabditis elegans MYOD homologue HLH-1 is essential for proper muscle function and complete morphogenesis. Development 120, 1631–1641 (1994).

    Article  CAS  PubMed  Google Scholar 

  172. Walsh, K. & Perlman, H. Cell cycle exit upon myogenic differentiation. Curr. Opin. Genet. Dev. 7, 597–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  173. Ait-Si-Ali, S. et al. A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J. 23, 605–615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Matthews, H. K., Bertoli, C. & de Bruin, R. A. M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 23, 74–88 (2021).

    Article  PubMed  CAS  Google Scholar 

  175. Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  177. Vandel, L. et al. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell Biol. 21, 6484–6494 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Vaute, O., Nicolas, E., Vandel, L. & Trouche, D. Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res. 30, 475–481 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001). Establishes the important and conserved connection between RB, E2F and H3K9me.

    Article  CAS  PubMed  Google Scholar 

  180. Guasconi, V. et al. Preferential association of irreversibly silenced E2F-target genes with pericentromeric heterochromatin in differentiated muscle cells. Epigenetics 5, 704–709 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Harr, J. C. et al. Loss of an H3K9me anchor rescues laminopathy-linked changes in nuclear organization and muscle function in an Emery-Dreifuss muscular dystrophy model. Genes Dev. 34, 560–579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rao, V. K. et al. G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation. Nucleic Acids Res. 44, 8129–8143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang, R.-H., Judson, R. N., Liu, D. Y., Kast, J. & Rossi, F. M. V. The lysine methyltransferase Ehmt2/G9a is dispensable for skeletal muscle development and regeneration. Skelet. Muscle 6, 22 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Yang, G. et al. The histone H3K9 methyltransferase SUV39H links SIRT1 repression to myocardial infarction. Nat. Commun. 8, 14941 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Riahi, H. et al. The histone methyltransferase G9a regulates tolerance to oxidative stress–induced energy consumption. PLoS Biol. 17, e2006146 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T. & Lehner, B. Transgenerational transmission of environmental information in C. elegans. Science 356, 320–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Tan, S. L. et al. Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development. Development 139, 3806–3816 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Zheng, C., Karimzadegan, S., Chiang, V. & Chalfie, M. Histone methylation restrains the expression of subtype-specific genes during terminal neuronal differentiation in Caenorhabditis elegans. PLoS Genet. 9, e1004017 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Fiszbein, A. et al. Alternative splicing of G9a regulates neuronal differentiation. Cell Rep. 14, 2797–2808 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Schaefer, A. et al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64, 678–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    Article  CAS  PubMed  Google Scholar 

  192. Magklara, A. et al. An epigenetic signature for monoallelic olfactory receptor expression. Cell 145, 555–570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lyons, D. B. et al. Heterochromatin-mediated gene silencing facilitates the diversification of olfactory neurons. Cell Rep. 9, 884–892 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Balan, S. et al. A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain. Mol. Psychiatry 26, 7550–7559 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Bharadwaj, R. et al. Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron 84, 997–1008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jiang, Y. et al. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J. Neurosci. 30, 7152–7167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ryu, H. et al. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc. Natl Acad. Sci. USA 103, 19176–19181 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Irmak, D. et al. Mechanism suppressing H3K9 trimethylation in pluripotent stem cells and its demise by polyQ-expanded huntingtin mutations. Hum. Mol. Genet. 27, 4117–4134 (2018).

    CAS  PubMed  Google Scholar 

  199. Subbanna, S. et al. G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain. Neurobiol. Dis. 54, 475–485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wilson, C. et al. The histone methyltransferase G9a controls axon growth by targeting the RhoA signaling pathway. Cell Rep. 31, 107639 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Laumet, G. et al. G9a is essential for epigenetic silencing of K+ channel genes in acute-to-chronic pain transition. Nat. Neurosci. 18, 1746–1755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Liang, L. et al. G9a participates in nerve injury-induced Kcna2 downregulation in primary sensory neurons. Sci. Rep. 6, 37704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327, 213–216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Maze, I. et al. G9a influences neuronal subtype specification in striatum. Nat. Neurosci. 17, 533–539 (2014). Together with Maze et al. (2010), the authors describe how the regulation of G9A levels can affect neuronal plasticity and its link with cocaine addiction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kleefstra, T. et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J. Med. Genet. 46, 598–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. McCarthy, R. L. et al. Diverse heterochromatin-associated proteins repress distinct classes of genes and repetitive elements. Nat. Cell Biol. 23, 905–914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38, 1005–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gonzalez-Sandoval, A. et al. Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate C. elegans embryos. Cell 163, 1333–1347 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Sawh, A. N. et al. Lamina-dependent stretching and unconventional chromosome compartments in early C. elegans embryos. Mol. Cell 78, 96–111.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Snyder, M. J. et al. Anchoring of heterochromatin to the nuclear lamina reinforces dosage compensation-mediated gene repression. PLoS Genet. 12, e1006341 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Cabianca, D. S. et al. Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei. Nature 569, 734–739 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Hirano, Y. et al. Lamin B receptor recognizes specific modifications of histone H4 in heterochromatin formation. J. Biol. Chem. 287, 42654–42663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Solovei, I. et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Hoskins, V. E., Smith, K. & Reddy, K. L. The shifting shape of genomes: dynamics of heterochromatin interactions at the nuclear lamina. Curr. Opin. Genet. Dev. 67, 163–173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Manzo, S. G., Dauban, L. & van Steensel, B. Lamina-associated domains: tethers and looseners. Curr. Opin. Cell Biol. 74, 80–87 (2022).

    Article  CAS  PubMed  Google Scholar 

  217. Pasquarella, A. et al. Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells. Development 143, 1788–1799 (2016).

    CAS  PubMed  Google Scholar 

  218. Fisher, A. G. Cellular identity and lineage choice. Nat. Rev. Immunol. 2, 977–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  219. Rechtsteiner, A. et al. Repression of germline genes in Caenorhabditis elegans somatic tissues by H3K9 dimethylation of their promoters. Genetics 212, 125–140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Carpenter, B. S. et al. Caenorhabditis elegans establishes germline versus soma by balancing inherited histone methylation. Development 148, dev196600 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    Article  CAS  PubMed  Google Scholar 

  222. Huang, N. et al. Accessible region conformation capture (ARC-C) gives high-resolution insights into genome architecture and regulation. Genome Res. 32, 357–366 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Chung, J. H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–514 (1993).

    Article  CAS  PubMed  Google Scholar 

  227. Ohlsson, R., Renkawitz, R. & Lobanenkov, V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 17, 520–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  228. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  229. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  230. Wu, R., Terry, A. V., Singh, P. B. & Gilbert, D. M. Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol. Biol. Cell 16, 2872–2881 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. See, K. et al. Histone methyltransferase activity programs nuclear peripheral genome positioning. Dev. Biol. 466, 90–98 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kind, J. et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Fukuda, K. et al. Regulation of mammalian 3D genome organization and histone H3K9 dimethylation by H3K9 methyltransferases. Commun. Biol. 4, 571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yan, Z. et al. G9a/GLP-sensitivity of H3K9me2 demarcates two types of genomic compartments. Genomics Proteomics Bioinformatics 18, 359–370 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Mattout, A. et al. Heterochromatin protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells. Genome Biol. 16, 213 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Jiang, Y. et al. The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat. Genet. 49, 1239–1250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Justice, M., Carico, Z. M., Stefan, H. C. & Dowen, J. M. A WIZ/cohesin/CTCF complex anchors DNA loops to define gene expression and cell identity. Cell Rep. 31, 107503 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bian, Q., Anderson, E. C., Yang, Q. & Meyer, B. J. Histone H3K9 methylation promotes formation of genome compartments in Caenorhabditis elegans via chromosome compaction and perinuclear anchoring. Proc. Natl Acad. Sci. USA 117, 11459–11470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Escamilla-Del-Arenal, M. et al. Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol. Cell Biol. 33, 5005–5020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Yokochi, T. et al. G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc. Natl Acad. Sci. USA 106, 19363–19368 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Poleshko, A. et al. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit. Cell Rep. 5, 292–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  242. Dunlevy, K. L. et al. The PRR14 heterochromatin tether encodes modular domains that mediate and regulate nuclear lamina targeting. J. Cell Sci. 133, jcs240416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Poleshko, A. et al. H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. eLife 8, e49278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Zheng, X. et al. Lamins organize the global three-dimensional genome from the nuclear periphery. Mol. Cell 71, 802–815.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Ulianov, S. V. et al. Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila. Nat. Commun. 10, 1176 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Towbin, B. D., Meister, P., Pike, B. L. & Gasser, S. M. Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner. Cold Spring Harb. Symp. Quant. Biol. 75, 555–565 (2010).

    Article  CAS  PubMed  Google Scholar 

  247. Rzepecki, R. & Gruenbaum, Y. Invertebrate models of lamin diseases. Nucleus 9, 227–234 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Salvarani, N. et al. The K219T-lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy. Nat. Commun. 10, 2267 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Briand, N. & Collas, P. Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus 9, 216–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Kumaran, R. I. & Spector, D. L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol. 180, 51–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Finlan, L. E. et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet. 4, e1000039 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Reddy, K. L., Zullo, J. M., Bertolino, E. & Singh, H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452, 243–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  253. Perissi, V., Jepsen, K., Glass, C. K. & Rosenfeld, M. G. Deconstructing repression: evolving models of co-repressor action. Nat. Rev. Genet. 11, 109–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  254. Padeken, J. & Heun, P. Nucleolus and nuclear periphery: velcro for heterochromatin. Curr. Opin. Cell Biol. 28, 54–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  255. Pinheiro, I. et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150, 948–960 (2012).

    Article  CAS  PubMed  Google Scholar 

  256. Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  PubMed  CAS  Google Scholar 

  257. Zhang, T. et al. G9a/GLP complex maintains imprinted DNA methylation in embryonic stem cells. Cell Rep. 15, 77–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Xin, Z. et al. Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J. Biol. Chem. 278, 14996–15000 (2003).

    Article  CAS  PubMed  Google Scholar 

  259. Rowe, H. M. et al. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development 140, 519–529 (2013).

    Article  CAS  PubMed  Google Scholar 

  260. Saksouk, N. et al. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol. Cell 56, 580–594 (2014).

    Article  CAS  PubMed  Google Scholar 

  261. Wallrath, L. L. & Elgin, S. C. Position effect variegation in Drosophilais associated with an altered chromatin structure. Genes Dev. 9, 1263–1277 (1995).

    Article  CAS  PubMed  Google Scholar 

  262. Costello, M. E. & Petrella, L. N. C. elegans synMuv B proteins regulate spatial and temporal chromatin compaction during development. Development 146, dev174383 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Patel, T. & Hobert, O. Coordinated control of terminal differentiation and restriction of cellular plasticity. eLife 6, e24100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Burton, A. & Torres-Padilla, M.-E. Deconfining heterochromatin for expression. Nat. Cell Biol. 23, 814–816 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all those whose articles could not be cited due to space limitations, and they recognize that there are many studies on histone methyltransferases and mammalian cell differentiation beyond those cited here. The authors thank the Friedrich Miescher Institute for Biomedical Research for an excellent research infrastructure and all members of the epigenetics and quantitative biology sections for interaction and discussion. S.M.G. thanks the European Research Council for support through the European Union’s Horizon 2020 research and innovation programme (Epiherigans — agreement no. 743312). J.P. and S.P.M. were both supported by EMBO long-term fellowships in the Gasser laboratory.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Susan M. Gasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Yoichi Shinkai and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Constitutive heterochromatin

Traditional designation of dimethylated or trimethylated H3 Lys9 chromatin that is generally transcriptionally inactive in a manner that persists throughout the cell cycle and throughout development. This chromatin type is neither cell type-specific nor regulated during development.

Histone methyltransferases

(HMTs). Class of enzymes that transfer methyl groups from S-adenosyl-l-methionine to Lys and Arg amino acids, predominantly in histones.

Facultative heterochromatin

Transcriptionally silent chromatin with dimethylated or trimethylated H3 Lys9, which is repressed in a cell type-specific manner that is regulated during development.

Short interspersed nuclear elements

(SINEs). Abundant non-autonomous non-long-terminal-repeat retrotransposons that hijack long interspersed nuclear element proteins to mobilize.

Argonaute

A class of small single-stranded RNA-binding proteins implicated in small RNA-mediated gene silencing.

Chromocentres

In some cells, clustering of centromeric satellite DNA in the nucleus, representing centromeres of multiple chromosomes.

Endogenous retroviruses

(ERVs). Proviral remnants of ancient retroviral infections. Full-length ERVs encode viral proteins such as envelope proteins (env), polymerases (pol) and structural proteins (gag) that can mediate ERV amplification and in some cases encode full viral particles.

Intracisternal A-particles

(IAPs). A rodent-specific class of transposable elements that retain the ability to undergo transposition. Among the most mutagenic long terminal repeat retrotransposons in mice.

Long interspersed nuclear elements

(LINEs). Autonomous non-long-terminal-repeat retrotransposons that constitute the largest transposable element class in human and mice.

PIWI-interacting RNAs

Germline-specific small RNAs that mediate homology-dependent silencing through their interaction with PIWI-clade Argonaute proteins.

Long terminal repeat

(LTR). A direct repeat flanking the coding sequences of LTR retrotransposons, containing regulatory elements and polyadenylation signals. They promote transcription of the retrotransposons and potentially of neighbouring genes.

Imprinting control regions

Genomic regions that epigenetically regulate parental-specific or maternal-specific allelic expression of genes established during germline development.

R-loops

RNA–DNA hybrids formed through hybridization of one of the DNA strands with a complementary RNA, forming a potentially mutagenic structure.

Assay for transposase-accessible chromatin with high-throughput sequencing

(ATAC–seq). A method for monitoring accessibility of chromatin in intact cells. The hyperactive transposase Tn5 is expressed endogenously, and high-throughput sequencing is used to detect sites of transposase cleavage and thus assess levels of accessibility.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padeken, J., Methot, S.P. & Gasser, S.M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 23, 623–640 (2022). https://doi.org/10.1038/s41580-022-00483-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-022-00483-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing