Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the haematopoietic stem cell niche in development and ageing

An Author Correction to this article was published on 26 September 2024

This article has been updated

Abstract

Blood production depends on rare haematopoietic stem cells (HSCs) and haematopoietic stem and progenitor cells (HSPCs) that ultimately take up residence in the bone marrow during development. HSPCs and HSCs are subject to extrinsic regulation by the bone marrow microenvironment, or niche. Studying the interactions between HSCs and their niche is critical for improving ex vivo culturing conditions and genetic manipulation of HSCs, which is pivotal for improving autologous HSC therapies and transplantations. Additionally, understanding how the complex molecular network in the bone marrow is altered during ageing is paramount for developing novel therapeutics for ageing-related haematopoietic disorders. HSCs are unique amongst stem and progenitor cell pools in that they engage with multiple physically distinct niches during their ontogeny. HSCs are specified from haemogenic endothelium in the aorta, migrate to the fetal liver and, ultimately, colonize their final niche in the bone marrow. Recent studies employing single-cell transcriptomics and microscopy have identified novel cellular interactions that govern HSC specification and engagement with their niches throughout ontogeny. New lineage-tracing models and microscopy tools have raised questions about the numbers of HSCs specified, as well as the functional consequences of HSCs interacting with each developmental niche. Advances have also been made in understanding how these niches are modified and perturbed during ageing, and the role of these altered interactions in haematopoietic diseases. In this Review, we discuss these new findings and highlight the questions that remain to be explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of HSC niches across species and through development.
Fig. 2: The mouse specifying niche.
Fig. 3: HSC niche transitions from mouse fetal liver to perinatal bone marrow niches.
Fig. 4: Ageing bone marrow niche.

Similar content being viewed by others

Change history

References

  1. Osawa, M., Hanada, K.-I., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Calvanese, V. & Mikkola, H. K. The genesis of human hematopoietic stem cells. Blood 142, 519–532 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boisset, J.-C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Ema, H. & Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284–2288 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murayama, E. et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25, 963–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sugden, W. W. & North, T. E. Making blood from the vessel: extrinsic and environmental cues guiding the endothelial-to-hematopoietic transition. Life 11, 1027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slukvin, I. I. & Uenishi, G. I. Arterial identity of hemogenic endothelium: a key to unlock definitive hematopoietic commitment in human pluripotent stem cell cultures. Exp. Hematol. 71, 3–12 (2019).

    Article  PubMed  Google Scholar 

  11. Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Müller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F. & Dzierzakt, E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1, 291–301 (1994).

    Article  PubMed  Google Scholar 

  13. Ivanovs, A. et al. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta–gonad–mesonephros region. J. Exp. Med. 208, 2417–2427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tamplin, O. J. et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160, 241–252 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. North, T. E. et al. Hematopoietic stem cell development is dependent on blood flow. Cell 137, 736–748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ganuza, M., Clements, W. & McKinney-Freeman, S. Specification of hematopoietic stem cells in mammalian embryos: a rare or frequent event? Blood 140, 309–320 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hou, S. et al. Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Res. 30, 376–392 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jaffredo, T., Gautier, R., Eichmann, A. & Dieterlen-Lièvre, F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125, 4575–4583 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Sugiyama, D. et al. Erythropoiesis from acetyl LDL incorporating endothelial cells at the preliver stage. Blood 101, 4733–4738 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Oberlin, E., El Hafny, B., Petit-Cocault, L. & Souyri, M. Definitive human and mouse hematopoiesis originates from the embryonic endothelium: a new class of HSCs based on VE-cadherin expression. Int. J. Dev. Biol. 54, 1165–1173 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Zovein, A. C. et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ottersbach, K. Endothelial-to-haematopoietic transition: an update on the process of making blood. Biochem. Soc. Trans. 47, 591–601 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bloom, W. & Bartelmez, G. Hematopoiesis in young human embryos. Am. J. Anat. 67, 21–53 (1940). This historical paper identifies the emergence of haematopoietic cells in human embryos.

    Article  Google Scholar 

  25. Ohneda, O. et al. Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta–gonad–mesonephros region-derived endothelium. Blood 92, 908–919 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, M.-J. et al. Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta–gonad–mesonephros-derived stromal cell lines. Blood 92, 2032–2040 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Matsuoka, S. et al. Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta–gonad–mesonephros region-derived stromal cells. Blood 98, 6–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Oostendorp, R. A. et al. Stromal cell lines from mouse aorta–gonads–mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood 99, 1183–1189 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. McGarvey, A. C. et al. A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation. J. Exp. Med. 214, 3731–3751 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crosse, E. I. et al. Multi-layered spatial transcriptomics identify secretory factors promoting human hematopoietic stem cell development. Cell Stem Cell 27, 822–839.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Richard, C. et al. Endothelio-mesenchymal interaction controls runx1 expression and modulates the notch pathway to initiate aortic hematopoiesis. Dev. Cell 24, 600–611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clements, W. K. et al. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature 474, 220–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gama-Norton, L. et al. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun. 6, 8510 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Robert-Moreno, À., Espinosa, L., de la Pompa, J. L. & Bigas, A. RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132, 1117–1126 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Nottingham, W. T. et al. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 110, 4188–4197 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumano, K. et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18, 699–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hadland, B. K. et al. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104, 3097–3105 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. North, T. et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126, 2563–2575 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Thambyrajah, R. et al. cis inhibition of NOTCH1 through JAGGED1 sustains embryonic hematopoietic stem cell fate. Nat. Commun. 15, 1604 (2024). This work identifies cis-acting NOTCH signalling in pre-haemogenic endothelium that regulates haemogenic endothelium transcriptional programmes and specification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fitch, S. R. et al. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell 11, 554–566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Damm, E. W. & Clements, W. K. Pdgf signalling guides neural crest contribution to the haematopoietic stem cell specification niche. Nat. Cell Biol. 19, 457–467 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chandrakanthan, V. et al. Mesoderm-derived PDGFRA+ cells regulate the emergence of hematopoietic stem cells in the dorsal aorta. Nat. Cell Biol. 24, 1211–1225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. da Bandeira, D. S. et al. PDGFRβ+ cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny. Cell Rep. 40, 111114 (2022).

    Article  Google Scholar 

  45. Lan, W. et al. A subset of megakaryocytes regulates development of hematopoietic stem cell precursors. EMBO J. 43, 1722–1739 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Espín-Palazón, R. et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 159, 1070–1085 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta–gonad–mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eich, C. et al. In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate. J. Exp. Med. 215, 233–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boisset, J.-C. et al. Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta. Blood 125, 465–469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Calvanese, V. et al. Mapping human haematopoietic stem cells from haemogenic endothelium to birth. Nature 604, 534–540 (2022). This work presents a single-cell transcriptional map that identifies a set of six transcription factors that define human haematopoietic stem cells through ontogeny.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ganuza, M. et al. Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. Nat. Cell Biol. 19, 1153–1163 (2017). This study of sample-to-sample variance of a multicoloured lineage-tracing system identifies a larger pool of specified HSPCs than previously established in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ganuza, M. et al. Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors. Nat. Cell Biol. 24, 1475–1486 (2022). In this work, lineage-tracing models reveal that whereas the fetal liver HSC pool is actively proliferating, many fetal liver HSCs are biased to differentiation and thus, contrary to current models, there is expansion of only about twofold of fetal liver HSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taoudi, S. et al. Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+CD45+ pre-definitive HSCs. Cell Stem Cell 3, 99–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Zeng, Y. et al. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res. 29, 881–894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, F. et al. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533, 487–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, M. J. et al. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 9, 541–552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dignum, T. et al. Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo. Cell Rep. 36, 109675 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ganuza, M., Hall, T., Obeng, E. A. & McKinney-Freeman, S. Clones assemble! The clonal complexity of blood during ontogeny and disease. Exp. Hematol. 83, 35–47 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kobayashi, M. et al. Functional B-1 progenitor cells are present in the hematopoietic stem cell-deficient embryo and depend on Cbfβ for their development. Proc. Natl Acad. Sci. USA 111, 12151–12156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mikkola, H. K. & Orkin, S. H. The journey of developing hematopoietic stem cells. Development 133, 3733–3744 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Ivanovs, A., Rybtsov, S., Anderson, R. A. & Medvinsky, A. Vast self-renewal potential of human AGM region HSCs dramatically declines in the umbilical cord blood. Stem Cell Rep. 15, 811–816 (2020).

    Article  CAS  Google Scholar 

  63. Van Handel, B. et al. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. Blood 116, 3321–3330 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Robin, C. et al. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5, 385–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gekas, C., Dieterlen-Lièvre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Christensen, J. L., Wright, D. E., Wagers, A. J. & Weissman, I. L. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol. 2, e75 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wolber, F. M. et al. Roles of spleen and liver in development of the murine hematopoietic system. Exp. Hematol. 30, 1010–1019 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Inra, C. N. et al. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature 527, 466–471 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Theodore, L. N. et al. Distinct roles for matrix metalloproteinases 2 and 9 in embryonic hematopoietic stem cell emergence, migration, and niche colonization. Stem Cell Rep. 8, 1226–1241 (2017).

    Article  CAS  Google Scholar 

  70. Mazo, I. B., Massberg, S. & von Andrian, U. H. Hematopoietic stem and progenitor cell trafficking. Trends Immunol. 32, 493–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hirsch, E., Iglesias, A., Potocnik, A. J., Hartmann, U. & Fässler, R. Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins. Nature 380, 171–175 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Potocnik, A. J., Brakebusch, C. & Fässler, R. Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12, 653–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Peixoto, M. M. et al. Spatiotemporal dynamics of cytokines expression dictate fetal liver hematopoiesis. Preprint at bioRxiv https://doi.org/10.1101/2023.08.24.554612 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Helbling, P. M. et al. Tissue-scale dynamic mapping of hematopoietic stem cells and supportive niche cells in the fetal liver. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.554625 (2023).

    Article  Google Scholar 

  75. Chou, S. & Lodish, H. F. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells. Proc. Natl Acad. Sci. USA 107, 7799–7804 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, Y., Leslie, J., Yang, Y. & Ding, L. Hepatic stellate and endothelial cells maintain hematopoietic stem cells in the developing liver. J. Exp. Med. 218, e20200882 (2020).

    Article  PubMed Central  Google Scholar 

  77. Rybtsov, S. et al. Tracing the origin of the HSC hierarchy reveals an SCF-dependent, IL-3-independent CD43−embryonic precursor. Stem Cell Rep. 3, 489–501 (2014). This work shows that HSCs move through multiple discrete, stepwise developmental stages in the AGM, characterized by specific phenotypic markers and HSC transcriptional regulators.

    Article  CAS  Google Scholar 

  78. Ganuza, M. et al. Murine hematopoietic stem cell activity is derived from pre-circulation embryos but not yolk sacs. Nat. Commun. 9, 5405 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bowie, M. B. et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 116, 2808–2816 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bowie, M. B. et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc. Natl Acad. Sci. USA 104, 5878–5882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McGrath, K. E. et al. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fantin, A. et al. KIT is required for fetal liver hematopoiesis. Front. Cell Dev. Biol. 9, 648630 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Arora, N. et al. Effect of developmental stage of HSC and recipient on transplant outcomes. Dev. Cell 29, 621–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rybtsov, S., Ivanovs, A., Zhao, S. & Medvinsky, A. Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development 143, 1284–1289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).This work presents single-cell sequencing and identification of human fetal liver haematopoietic microenvironment populations and modelling of haematopoietic differentiation trajectories.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mahony, C. B. & Bertrand, J. Y. How HSCs colonize and expand in the fetal niche of the vertebrate embryo: an evolutionary perspective. Front. Cell Dev. Biol. 7, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lewis, K., Yoshimoto, M. & Takebe, T. Fetal liver hematopoiesis: from development to delivery. Stem Cell Res. Ther. 12, 1–8 (2021).

    Article  Google Scholar 

  88. Khan, J. A. et al. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351, 176–180 (2016). This article shows that fetal liver HSCs engage with portal vessel endothelial cells and Nestin+NG2+ pericytes, creating ‘pocket niches’ that promote HSC proliferation, and that remodelling of these niches later in development may help encourage HSCs to migrate out of the fetal liver.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, C. C. et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat. Med. 12, 240–245 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Moore, K. A., Ema, H. & Lemischka, I. R. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 89, 4337–4347 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Gao, S. et al. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res. 32, 38–53 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Zhao, Y. et al. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver. Blood 126, 2383–2391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, C. C. & Lodish, H. F. Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells. Blood 103, 2513–2521 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Sugiyama, D., Kulkeaw, K., Mizuochi, C., Horio, Y. & Okayama, S. Hepatoblasts comprise a niche for fetal liver erythropoiesis through cytokine production. Biochem. Biophys. Res. Commun. 410, 301–306 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Yong, K. S. M. et al. Human CD34loCD133lo fetal liver cells support the expansion of human CD34hiCD133hi hematopoietic stem cells. Cell. Mol. Immunol. 13, 605–614 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Neo, W. H. et al. Cell-extrinsic hematopoietic impact of Ezh2 inactivation in fetal liver endothelial cells. Blood 131, 2223–2234 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Shao, L. et al. Hematopoietic Jagged1 is a fetal liver niche factor required for functional maturation and engraftment of fetal hematopoietic stem cells. Proc. Natl Acad. Sci. USA 120, e2210058120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cacialli, P. et al. Synergistic prostaglandin E synthesis by myeloid and endothelial cells promotes fetal hematopoietic stem cell expansion in vertebrates. EMBO J. 41, e108536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sigurdsson, V. et al. Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver. Cell Stem Cell 18, 522–532 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Li, Y. et al. Single-cell analysis of neonatal HSC ontogeny reveals gradual and uncoordinated transcriptional reprogramming that begins before birth. Cell Stem Cell 27, 732–747.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hernández-Malmierca, P. et al. Antigen presentation safeguards the integrity of the hematopoietic stem cell pool. Cell Stem Cell 29, 760–775.e10 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kieusseian, A., de La Grange, P. B., Burlen-Defranoux, O., Godin, I. & Cumano, A. Immature hematopoietic stem cells undergo maturation in the fetal liver. Development 139, 3521–3530 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Crisan, M. & Dzierzak, E. The many faces of hematopoietic stem cell heterogeneity. Development 143, 4571–4581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Coşkun, S. et al. Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells. Cell Rep. 9, 581–590 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hall, T. D. et al. Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nat. Commun. 13, 5403 (2022). This work shows that phenotypically defined fetal bone marrow HSPCs display no repopulating functional activity until near birth, making them functionally and transcriptionally distinct from both fetal liver HSPCs and adult HSPCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Charbord, P., Tavian, M., Humeau, L. & Peault, B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87, 4109–4119 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Zheng, Z. et al. Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell 29, 1562–1579.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, Y. et al. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat. Commun. 13, 1327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Zou, Y.-R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Ara, T. et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19, 257–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Mazo, I. B., Quackenbush, E. J., Lowe, J. B. & von Andrian, U. H. Total body irradiation causes profound changes in endothelial traffic molecules for hematopoietic progenitor cell recruitment to bone marrow. Blood 99, 4182–4191 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Kawabata, K. et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc. Natl Acad. Sci. USA 96, 5663–5667 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Frenette, P. S., Subbarao, S., Mazo, I. B., Von Andrian, U. H. & Wagner, D. D. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc. Natl Acad. Sci. USA 95, 14423–14428 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ciriza, J. & García-Ojeda, M. E. Expression of migration-related genes is progressively upregulated in murine LineageSca-1+c-Kit+ population from the fetal to adult stages of development. Stem Cell Res. Ther. 1, 1–13 (2010).

    Article  Google Scholar 

  117. Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Mesnieres, M. et al. Fetal hematopoietic stem cell homing is controlled by VEGF regulating the integrity and oxidative status of the stromal–vascular bone marrow niches. Cell Rep. 36, 109618 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Galea, G. L., Zein, M. R., Allen, S. & Francis‐West, P. Making and shaping endochondral and intramembranous bones. Dev. Dyn. 250, 414–449 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Mackie, E. et al. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J. Endocrinol. 40, 46–62 (2008).

    CAS  Google Scholar 

  121. Blumer, M. J. Bone tissue and histological and molecular events during development of the long bones. Ann. Anat. / Anatomischer Anz. 235, 151704 (2021).

    Article  Google Scholar 

  122. Maes, C. Role and regulation of vascularization processes in endochondral bones. Calcif. Tissue Int. 92, 307–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sivan, U., De Angelis, J. & Kusumbe, A. P. Role of angiocrine signals in bone development, homeostasis and disease. Open. Biol. 9, 190144 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chan, C. K. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Jardine, L. et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature 598, 327–331 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Omatsu, Y., Seike, M., Sugiyama, T., Kume, T. & Nagasawa, T. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 508, 536–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kara, N. et al. Endothelial and Leptin receptor+ cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Dev. Cell 58, 348–360.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mizoguchi, T. et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 29, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shu, H. S. et al. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell 28, 2122–2136.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Pineault, K. M., Song, J. Y., Kozloff, K. M., Lucas, D. & Wellik, D. M. Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nat. Commun. 10, 3168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Copley, M. R. et al. The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat. Cell Biol. 15, 916–925 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Li, Y. et al. Basal type I interferon signaling has only modest effects on neonatal and juvenile hematopoiesis. Blood Adv. 7, 2609–2621 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang, C. et al. Lineage-selective super enhancers mediate core regulatory circuitry during adipogenic and osteogenic differentiation of human mesenchymal stem cells. Cell Death Dis. 13, 866 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kasbekar, M., Mitchell, C. A., Proven, M. A. & Passegué, E. Hematopoietic stem cells through the ages: a lifetime of adaptation to organismal demands. Cell Stem Cell 30, 1403–1420 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mansell, E., Lin, D. S., Loughran, S. J., Milsom, M. D. & Trowbridge, J. J. New insight into the causes, consequences, and correction of hematopoietic stem cell aging. Exp. Hematol. 125–126, 1–5 (2023).

    Article  PubMed  Google Scholar 

  139. Flach, J. et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chua, B. A. et al. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 30, 460–472.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mejia-Ramirez, E., Geiger, H. & Florian, M. C. Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Hum. Mol. Genet. 29, R248–R254 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Nakamura-Ishizu, A., Ito, K. & Suda, T. Hematopoietic stem cell metabolism during development and aging. Dev. Cell 54, 239–255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ho, Y.-H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Matteini, F., Mulaw, M. A. & Florian, M. C. Aging of the hematopoietic stem cell niche: new tools to answer an old question. Front. Immunol. 12, 738204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Comazzetto, S., Shen, B. & Morrison, S. J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell 56, 1848–1860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bandyopadhyay, S. et al. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 187, 3120–3140.e29 (2024). This study describes human bone marrow, including the niche, in steady-state and leukaemic conditions at single-cell resolution and with spatial information.

    Article  CAS  PubMed  Google Scholar 

  150. Sarachakov, A. et al. Spatial mapping of human hematopoiesis at single-cell resolution reveals aging-associated topographic remodeling. Blood 142, 2282–2295 (2023). This work analyses the spatial anatomy of haematopoiesis in human bone marrow and reveals age-specific alterations of the bone marrow microenvironment.

    Article  CAS  PubMed  Google Scholar 

  151. Guidi, N. et al. Osteopontin attenuates aging‐associated phenotypes of hematopoietic stem cells. EMBO J. 36, 840–853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ergen, A. V., Boles, N. C. & Goodell, M. A. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119, 2500–2509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Young, K. et al. Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell 28, 1473–1482.e7 (2021). This work shows that reduced production of IGF1 by middle-aged bone marrow MSCs contributes to declining HSC function and that IGF1 treatment of middle-aged HSCs rescues ageing hallmarks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Guidi, N. et al. An aged bone marrow niche restrains rejuvenated hematopoietic stem cells. Stem Cell 39, 1101–1106 (2021).

    Article  CAS  Google Scholar 

  155. Montserrat-Vazquez, S. et al. Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice. npj Regen. Med. 7, 78 (2022). This work shows that systemic treatment of aged mice with CDC42 inhibitor (CASIN) improves HSC function and extends the lifespan of treated mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Amoah, A. et al. Aging of human hematopoietic stem cells is linked to changes in Cdc42 activity. Haematologica 107, 393 (2022). This article shows that increased activity of CDC42 and subsequent loss of HSC polarity is conserved between mouse and human HSCs, and that CDC42 inhibition with CASIN rejuvenates human HSCs.

    Article  CAS  PubMed  Google Scholar 

  157. Kuribayashi, W. et al. Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche. J. Exp. Med. 218, e20192283 (2020).

    Article  PubMed Central  Google Scholar 

  158. Vionnie, W. et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167, 1310–1322.e17 (2016).

    Article  Google Scholar 

  159. Meng, Y. et al. Epigenetic programming defines haematopoietic stem cell fate restriction. Nat. Cell Biol. 25, 1–11 (2023).

    Article  Google Scholar 

  160. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Florian, M. C. et al. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol. 16, e2003389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Rodrigues, C. P., Shvedunova, M. & Akhtar, A. Epigenetic regulators as the gatekeepers of hematopoiesis. Trends Genet. 37, 125–142 (2021).

    Article  CAS  Google Scholar 

  163. Derecka, M. et al. EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential. Nat. Immunol. 21, 261–273 (2020). This work shows that an impaired bone marrow niche affects chromatin accessibility in HSCs, especially for myeloid lineage regulators, and that some of these chromatin alterations persist in serial transplantation even after re-introduction of HSCs to the wild-type niche.

    Article  CAS  PubMed  Google Scholar 

  164. Itokawa, N. et al. Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells. Nat. Commun. 13, 2691 (2022). This work shows that altered chromatin accessibility is specific to aged HSCs compared with mature blood cells and is enriched for binding motifs of transcription factors responsive to external stimuli, which is a potential explanation for how HSCs ‘memorize’ stress signals they experienced during life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Almeida, M. & O’Brien, C. A. Basic biology of skeletal aging: role of stress response pathways. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 68, 1197–1208 (2013).

    Article  CAS  Google Scholar 

  166. Helbling, P. M. et al. Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation. Cell Rep. 29, 3313–3330.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Khosla, S. & Riggs, B. L. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol. Metab. Clin. 34, 1015–1030 (2005).

    Article  CAS  Google Scholar 

  168. Gurevitch, O., Slavin, S. & Feldman, A. G. Conversion of red bone marrow into yellow—cause and mechanisms. Med. Hypotheses 69, 531–536 (2007).

    Article  PubMed  Google Scholar 

  169. Moore, S. G. & Dawson, K. L. Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 175, 219–223 (1990).

    Article  CAS  PubMed  Google Scholar 

  170. Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771–784.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Poulos, M. G. et al. Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J. Clin. Invest. 127, 4163–4178 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Stucker, S., Chen, J., Watt, F. E. & Kusumbe, A. P. Bone angiogenesis and vascular niche remodeling in stress, aging, and diseases. Front. Cell Dev. Biol. 8, 602269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mitchell, C. A. et al. Stromal niche inflammation mediated by IL-1 signalling is a targetable driver of haematopoietic ageing. Nat. Cell Biol. 25, 30–41 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013). This study of the secretion of CXCL12 from stromal, haematopoietic, osteoblast and endothelial populations reveals that HSCs occupy a perivascular niche, and that early lymphoid progenitors occupy an endosteal niche.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhu, J. et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109, 3706–3712 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Wu, J. Y. et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gsα-dependent signaling pathways. Proc. Natl Acad. Sci. USA 105, 16976–16981 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Shen, B. et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591, 438–444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Renders, S. et al. Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nat. Commun. 12, 608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Saçma, M. et al. Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat. Cell Biol. 21, 1309–1320 (2019).

    Article  PubMed  Google Scholar 

  184. Zhang, J. et al. In situ mapping identifies distinct vascular niches for myelopoiesis. Nature 590, 457–462 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wu, Q. et al. Resilient anatomy and local plasticity of naive and stress haematopoiesis. Nature 627, 839–846 (2024). This work shoes that the microanatomy of bone marrow and lineage-specific production sites are maintained in normal and stress haematopoiesis, but the amplitude and direction of the response to stress signals shows heterogeneity across the skeletal system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ganguly, P. et al. The analysis of in vivo aging in human bone marrow mesenchymal stromal cells using colony-forming unit-fibroblast assay and the CD45lowCD271+ phenotype. Stem Cells Int. 2019, 5197983 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Stolzing, A., Jones, E., Mcgonagle, D. & Scutt, A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech. Ageing Dev. 129, 163–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Yuan, N. et al. Young donor hematopoietic stem cells revitalize aged or damaged bone marrow niche by transdifferentiating into functional niche cells. Aging Cell 22, e13889 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Infante, A. & Rodríguez, C. I. Osteogenesis and aging: lessons from mesenchymal stem cells. Stem Cell Res. Ther. 9, 1–7 (2018).

    Article  Google Scholar 

  190. Fazeli, P. K. et al. Marrow fat and bone—new perspectives. J. Clin. Endocrinol. Metab. 98, 935–945 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schwartz, A. V. Marrow fat and bone: review of clinical findings. Front. Endocrinol. 6, 40 (2015).

    Article  CAS  Google Scholar 

  192. Meunier, P., Aaron, J., Edouard, C. & Vlgnon, G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: a quantitative study of 84 iliac bone biopsies. Clin. Orthop. Relat. Res. 80, 147–154 (1971).

    Article  CAS  PubMed  Google Scholar 

  193. Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhou, B. O. et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19, 891–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. DiMascio, L. et al. Identification of adiponectin as a novel hemopoietic stem cell growth factor. J. Immunol. 178, 3511–3520 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Stier, S. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201, 1781–1791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nilsson, S. K. et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106, 1232–1239 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Florian, M. C. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10, 520–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gao, X. et al. Leptin receptor+ cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor. Nat. Cell Biol. 25, 1–12 (2023).

    Article  Google Scholar 

  200. Aaron, N., Costa, S., Rosen, C. J. & Qiang, L. The implications of bone marrow adipose tissue on inflammaging. Front. Endocrinol. 13, 853765 (2022).

    Article  Google Scholar 

  201. Frisch, B. J. et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight 4, e124213 (2019).

    Article  PubMed Central  Google Scholar 

  202. Pietras, E. M. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 130, 1693–1698 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Bogeska, R. et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 29, 1273–1284.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pietras, E. M. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607–618 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yamashita, M. & Passegué, E. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 25, 357–372.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Valletta, S. et al. Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing. Nat. Commun. 11, 4075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Avagyan, S. & Zon, L. I. Clonal hematopoiesis and inflammation—the perpetual cycle. Trends Cell Biol. 33, 695–707 (2023). This work shows that HSPCs carrying clonal haematopoiesis mutations protect themselves from inflammation derived from their mature progeny by upregulation of inflammation suppressors, which confers a competitive advantage to mutant HSPCs.

    Article  CAS  PubMed  Google Scholar 

  208. Cai, Z. et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23, 833–849.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cook, E. K. et al. Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis. Blood Adv. 3, 2482–2486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Abegunde, S. O., Buckstein, R., Wells, R. A. & Rauh, M. J. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp. Hematol. 59, 60–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. SanMiguel, J. M. et al. Distinct tumor necrosis factor-α receptors dictate stem cell fitness versus lineage output in Dnmt3a-mutant clonal hematopoiesis. Cancer Discov. 12, 2763–2773 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zioni, N. et al. Inflammatory signals from fatty bone marrow support DNMT3A driven clonal hematopoiesis. Nat. Commun. 14, 2070 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Caiado, F., Pietras, E. M. & Manz, M. G. Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection. J. Exp. Med. 218, e20201541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Craver, B. M., El Alaoui, K., Scherber, R. M. & Fleischman, A. G. The critical role of inflammation in the pathogenesis and progression of myeloid malignancies. Cancers 10, 104 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  215. de Jong, M. M., Chen, L., Raaijmakers, M. H. & Cupedo, T. Bone marrow inflammation in haematological malignancies. Nat. Rev. Immunol. 24, 543–558 (2024).

    Article  CAS  PubMed  Google Scholar 

  216. Chen, L. et al. A single-cell taxonomy predicts inflammatory niche remodeling to drive tissue failure and outcome in human AML. Blood Cancer Discov. 4, 394–417 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Avagyan, S. et al. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 374, 768–772 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Azuma, K. et al. Genetic variations of bone marrow mesenchymal stromal cells derived from acute leukemia and myelodysplastic syndrome by targeted deep sequencing. Leuk. Res. 62, 23–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Abbas, S. et al. Coexistence of aberrant hematopoietic and stromal elements in myelodysplastic syndromes. Blood Cells Mol. Dis. 66, 37–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Bandara, W. M. S., Rathnayake, A. I. S., Neththikumara, N. F., Goonasekera, H. W. & Dissanayake, V. H. Comparative analysis of the genetic variants in haematopoietic stem/progenitor and mesenchymal stem cell compartments in de novo myelodysplastic syndromes. Blood Cells Mol. Dis. 88, 102535 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Lopez-Villar, O. et al. Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q-syndrome. Leukemia 23, 664–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  222. Teofili, L. et al. Endothelial progenitor cells are clonal and exhibit the JAK2V617F mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood 117, 2700–2707 (2011).

    Article  CAS  PubMed  Google Scholar 

  223. Bacharach, T., Kaushansky, N. & Shlush, L. I. Age-related micro-environmental changes as drivers of clonal hematopoiesis. Curr. Opin. Hematol. 31, 53–57 (2024).

    Article  CAS  PubMed  Google Scholar 

  224. Méndez-Ferrer, S. et al. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 20, 285–298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cell 4, 7–25 (1978).

    CAS  Google Scholar 

  226. Mendoza‐Castrejon, J. & Magee, J. A. Layered immunity and layered leukemogenicity: developmentally restricted mechanisms of pediatric leukemia initiation. Immunol. Rev. 315, 197–215 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Sivaraj, K. K. et al. Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Rep. 36, 109352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Luis, T. C. et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113, 546–554 (2009).

    Article  CAS  PubMed  Google Scholar 

  229. Ruiz-Herguido, C. et al. Hematopoietic stem cell development requires transient Wnt/β-catenin activity. J. Exp. Med. 209, 1457–1468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Genthe, J. R. & Clements, W. K. R-spondin 1 is required for specification of hematopoietic stem cells through Wnt16 and Vegfa signaling pathways. Development 144, 590–600 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Lee, J. B. et al. Notch–HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood 122, 1162–1173 (2013).

    Article  CAS  PubMed  Google Scholar 

  232. Gering, M. & Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell 8, 389–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  233. Lawson, N. D., Vogel, A. M. & Weinstein, B. M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  234. Nicoli, S., Tobia, C., Gualandi, L., De Sena, G. & Presta, M. Calcitonin receptor-like receptor guides arterial differentiation in zebrafish. Blood 111, 4965–4972 (2008).

    Article  CAS  PubMed  Google Scholar 

  235. Wilkinson, R. N. et al. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev. Cell 16, 909–916 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Li, Y. et al. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes. Dev. 28, 2597–2612 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Florian, M. C. et al. Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell 19, e13208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Florian, M. C. et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503, 392–396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Schreck, C. et al. Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells. J. Exp. Med. 214, 165–181 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256–262 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ross, J. B. et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 628, 162–170 (2024).

    Article  CAS  PubMed  Google Scholar 

  242. Zhang, X. et al. Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell 30, 378–395.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  243. Duguid, A., Mattiucci, D. & Ottersbach, K. Infant leukaemia—faithful models, cell of origin and the niche. Dis. Model. Mech. 14, dmm049189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Yamaguchi, T., Kawamoto, E., Gaowa, A., Park, E. J. & Shimaoka, M. Remodeling of bone marrow niches and roles of exosomes in leukemia. Int. J. Mol. Sci. 22, 1881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Barrett, N. A. et al. Mll-AF4 confers enhanced self-renewal and lymphoid potential during a restricted window in development. Cell Rep. 16, 1039–1054 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Menendez, P. et al. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J. Exp. Med. 206, 3131–3141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Rowe, R. G. et al. The developmental stage of the hematopoietic niche regulates lineage in MLL-rearranged leukemia. J. Exp. Med. 216, 527–538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Boucher, A. C., Caldwell, K. J., Crispino, J. D. & Flerlage, J. E. Clinical and biological aspects of myeloid leukemia in Down syndrome. Leukemia 35, 3352–3360 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Woo, A. J. et al. Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation. J. Clin. Invest. 123, 3292–3304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Klusmann, J.-H. et al. Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes. Dev. 24, 1659–1672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Diabetes and Digestive and Kidney Disease (R01DK116835 and R01DK104028, to S.M.-F.), National Heart, Lung, and Blood Institute (F31HL170678, to T.L.C.), American Lebanese Syrian Associated Charities (to S.M.-F. and M.D.), Leukaemia Research Foundation (to M.D.) and WES Foundation (to M.D.). S.M.-F. is a Scholar of The Leukaemia & Lymphoma Society. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and editing of the manuscript.

Corresponding author

Correspondence to Shannon McKinney-Freeman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Sandra Pinho; Maria Carolina Florian, who co-reviewed with Francesca Matteini; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

β-Catenin

A key adhesion protein and transcription factor in the Wnt signalling pathway.

Aorta–gonad–mesonephros

(AGM). An embryonic mesodermal region from which haematopoietic stem cells (HSCs) emerge in mammals.

Adipokines

Cytokines produced by adipose tissue that have roles in inflammatory and metabolic signalling.

A-ZIP/F1 lipoatrophic mice

A mouse model that has significantly reduced white and brown adipose tissue.

Carnegie stage

(CS). A classification system of 23 stages developed as a standard timeline of human embryonic development.

Catecholamine

An aromatic amine that serves as a neurotransmitter, such as dopamine and adrenaline.

CellComm

A bioinformatics algorithm that predicts cell-to-cell communications via ligand–receptor interactions based on single-cell RNA sequencing (scRNA-seq) or spatial transcriptomics data.

CellPhoneDB

A bioinformatic algorithm that can predict ligand–receptor cellular interactions based on single-cell RNA sequencing (scRNA-seq) expression of the ligands, receptors and associated signalling pathway genes across annotated cellular populations.

Endosteal niche

A microenvironment on the outer edge of the bone marrow comprising many cell types, including haematopoietic stem cells (HSCs).

In cis interactions

Interactions between ligand and receptor pairs occurring on the same cell.

Intermediate cell mass

A narrow section of the embryonic mesoderm from which haematopoietic stem cells (HSCs) emerge in zebrafish, and ultimately gives rise to the urogenital systems.

Lycorine

A toxic alkaloid found in some plant species.

Lymphopenia

A haematological disorder in which there is a clinical decrease in the number of lymphocytes present in the blood.

Metalloproteases

Enzymes found in the intercellular space that break down extracellular proteins.

Myeloid lineage bias

Occurs when an individual haematopoietic stem cell (HSC) has an increased relative contribution of myeloid lineage progeny compared with lymphoid lineage progeny.

Neural crest

A group of multipotent stem cells that migrate during development and give rise to large groups of tissues, such as connective tissue, skin pigmentation cells and craniofacial bones.

Platelet-derived growth factor receptor (PDGFR) signalling

A regulator of many developmentally relevant processes in a tissue-dependent manner, including cell proliferation and growth.

Xenotransplantation

The transplantation of organs or tissues, such as blood, between two different species.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cain, T.L., Derecka, M. & McKinney-Freeman, S. The role of the haematopoietic stem cell niche in development and ageing. Nat Rev Mol Cell Biol 26, 32–50 (2025). https://doi.org/10.1038/s41580-024-00770-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-024-00770-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing