Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcription regulation by biomolecular condensates

Abstract

Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1–10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100–1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain–ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1–10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different length scales of biomolecular organization.
Fig. 2: Condensates provide organization at a larger scale.
Fig. 3: Composition and formation of transcriptional condensates.
Fig. 4: Transcriptional condensates regulate various developmental processes.
Fig. 5: Transcriptional condensates respond to environmental stimuli.
Fig. 6: Transcriptional condensates in disease.

Similar content being viewed by others

References

  1. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    CAS  PubMed  Google Scholar 

  2. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Roeder, R. G. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nat. Struct. Mol. Biol. 26, 783–791 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).

    CAS  PubMed  Google Scholar 

  5. Richter, W. F., Nayak, S., Iwasa, J. & Taatjes, D. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 23, 732–749 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, H., Schilbach, S., Ninov, M., Urlaub, H. & Cramer, P. Structures of transcription preinitiation complex engaged with the +1 nucleosome. Nat. Struct. Mol. Biol. 30, 226–232 (2023).

    CAS  PubMed  Google Scholar 

  7. Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).

    CAS  PubMed  Google Scholar 

  9. Palacio, M. & Taatjes, D. J. Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription. J. Mol. Biol. 432, 167216 (2021).

    Google Scholar 

  10. Demmerle, J., Hao, S. & Cai, D. Transcriptional condensates and phase separation: condensing information across scales and mechanisms. Nucleus 14, 2213551 (2023).

    PubMed  PubMed Central  Google Scholar 

  11. Sabari, B. R. Biomolecular condensates and gene activation in development and disease. Dev. Cell 55, 84–96 (2020).

    CAS  PubMed  Google Scholar 

  12. Tsai, A., Alves, M. R. P. & Crocker, J. Multi-enhancer transcriptional hubs confer phenotypic robustness. eLife 8, e45325 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Mir, M. et al. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. eLife 7, e40497 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    CAS  PubMed  Google Scholar 

  16. Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mir, M. et al. Dense Bicoid hubs accentuate binding along the morphogen gradient. Genes Dev. 31, 1784–1794 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsai, A. et al. Nuclear microenvironments modulate transcription from low-affinity enhancers. eLife 6, e28975 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Woringer, M. & Darzacq, X. Protein motion in the nucleus: from anomalous diffusion to weak interactions. Biochem. Soc. Trans. 46, 945–956 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen, V. Q. et al. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol. Cell 81, 3560–3575.e6 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomson, J. A., Schurtenberger, P., Thurston, G. M. & Benedek, G. B. Binary liquid phase separation and critical phenomena in a protein/water solution. Proc. Natl Acad. Sci. USA 84, 7079–7083 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Broide, M. L., Berland, C. R., Pande, J., Ogun, O. O. & Benedek, G. B. Binary-liquid phase separation of lens protein solutions. Proc. Natl Acad. Sci. USA 88, 5660–5664 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Norledge, B. V., Hay, R. E., Bateman, O. A., Slingsby, C. & Driessen, H. P. C. Towards a molecular understanding of phase separation in the lens: a comparison of the X-ray structures of two highTcγ-crystallins, γE and γF, with two lowTcγ-crystallins, γB and γD. Exp. Eye Res. 65, 609–630 (1997).

    CAS  PubMed  Google Scholar 

  24. Leong, K. W. et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Release 53, 183–193 (1998).

    CAS  PubMed  Google Scholar 

  25. Albertsson, P.-Å. Partition of cell particles and macromolecules in polymer two-phase systems. Adv. Protein Chem. 24, 309–341 (1970).

    CAS  PubMed  Google Scholar 

  26. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    CAS  PubMed  Google Scholar 

  27. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    PubMed  Google Scholar 

  30. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    CAS  PubMed  Google Scholar 

  31. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pappu, R. V., Cohen, S. R., Dar, F., Farag, M. & Kar, M. Phase transitions of associative biomacromolecules. Chem. Rev. 123, 8945–8987 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, Y., David, M. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shimobayashi, S. F., Ronceray, P., Sanders, D. W., Haataja, M. P. & Brangwynne, C. P. Nucleation landscape of biomolecular condensates. Nature 599, 503–506 (2021).

    CAS  PubMed  Google Scholar 

  41. Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467–1480.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optodroplets. Cell 168, 159–171.e14 (2017).

    CAS  PubMed  Google Scholar 

  43. Strom, A. R. & Brangwynne, C. P. The liquid nucleome — phase transitions in the nucleus at a glance. J. Cell Sci. 132, jcs235093 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 357, eaaf4382–eaaf4386 (2020).

    Google Scholar 

  45. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 18, 215–235 (2020).

    Google Scholar 

  46. Schede, H. H., Natarajan, P., Chakraborty, A. K. & Shrinivas, K. A model for organization and regulation of nuclear condensates by gene activity. Nat. Commun. 14, 4152 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao, Y. et al. Multivalent m6A motifs promote phase separation of YTHDF proteins. Cell Res. 29, 767–769 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, D., Wu, R., Zheng, J., Li, P. & Yu, L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 28, 405–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549–561.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Morin, J. A. et al. Sequence-dependent surface condensation of a pioneer transcription factor on DNA. Nat. Phys. 18, 271–276 (2022).

    CAS  Google Scholar 

  53. Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhat, P. et al. Genome organization around nuclear speckles drives mRNA splicing efficiency. Nature 629, 1165–1173 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

    CAS  PubMed  Google Scholar 

  57. Larson, A. G. & Narlikar, G. J. The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry 57, 2540–2548 (2018).

    CAS  PubMed  Google Scholar 

  58. Markaki, Y. et al. Xist nucleates local protein gradients to propagate silencing across the X chromosome. Cell 184, 6174–6192.e32 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Niekamp, S., Marr, S. K., Oei, T. A., Subramanian, R. & Kingston, R. E. Modularity of PRC1 composition and chromatin interaction define condensate properties. Mol. Cell 84, 1651–1666.e12 (2024).

    CAS  PubMed  Google Scholar 

  60. Wiedner, H. J. & Giudice, J. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat. Struct. Mol. Biol. 28, 465–473 (2021).

    CAS  PubMed  Google Scholar 

  61. Chen, X. et al. Structural visualization of transcription initiation in action. Science 382, eadi5120 (2023).

    CAS  PubMed  Google Scholar 

  62. Malik, S. & Roeder, R. G. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Nat. Rev. Genet. 24, 767–782 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Verger, A., Monté, D. & Villeret, V. Take your PIC. Trends Biochem. Sci. 46, 705–707 (2021).

    CAS  PubMed  Google Scholar 

  64. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Cook, P. R. The organization of replication and transcription. Science 284, 1790–1795 (1999).

    CAS  PubMed  Google Scholar 

  67. Cook, P. R. A model for all genomes: the role of transcription factories. J. Mol. Biol. 395, 1–10 (2010).

    CAS  PubMed  Google Scholar 

  68. Iborra, F. J., Pombo, A., Jackson, D. A. & Cook, P. R. Active RNA polymerases are localized within discrete transcription ‘factories’ in human nuclei. J. Cell Sci. 109, 1427–1436 (1996).

    CAS  PubMed  Google Scholar 

  69. Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274–1285 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cissé, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013).

    PubMed  Google Scholar 

  71. Liu, Z. et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3, e04236 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3, e02230 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Cho, W.-K. et al. RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife 5, e13617 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Li, J. et al. Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells. Cell 178, 491–506.e28 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zuo, L. et al. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nat. Commun. 12, 1491 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lewis, B. A., Das, S. K., Jha, R. K. & Levens, D. Self-assembly of promoter DNA and RNA Pol II machinery into transcriptionally active biomolecular condensates. Sci. Adv. 9, eadi4565 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225.e24 (2021).

    CAS  PubMed  Google Scholar 

  78. Wei, M.-T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).

    CAS  PubMed  Google Scholar 

  79. Kim, Y. J. et al. Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions. Sci. Adv. 9, eadg1123 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schneider, N. et al. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Sci. Adv. 7, eabd3568 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kawasaki, K. & Fukaya, T. Functional coordination between transcription factor clustering and gene activity. Mol. Cell 83, 1605–1622.e09 (2023).

    CAS  PubMed  Google Scholar 

  82. Du, M. et al. Direct observation of a condensate effect on super-enhancer controlled gene bursting. Cell 187, 331–344.e17 (2024).

    CAS  PubMed  Google Scholar 

  83. Gan, P. et al. Coactivator condensation drives cardiovascular cell lineage specification. Sci. Adv. 10, eadk7160 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345.e8 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Powers, S. K. et al. Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Mol. Cell 76, 177–190.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schibler, U. How the circadian nuclear orphan receptor REV-ERBα represses transcription: temporal and spatial phase separation combined. Mol. Cell 83, 3399–3401 (2023).

    CAS  PubMed  Google Scholar 

  87. Wu, Y. et al. Disrupting the phase separation of KAT8–IRF1 diminishes PD-L1 expression and promotes antitumor immunity. Nat. Cancer 4, 382–400 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. He, Y. et al. MSL1 promotes liver regeneration by driving phase separation of STAT3 and histone H4 and enhancing their acetylation. Adv. Sci. 10, e2301094 (2023).

    Google Scholar 

  89. Rawat, P. et al. Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Mol. Cell 81, 1013–1026 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Oksuz, O. et al. Transcription factors interact with RNA to regulate genes. Mol. Cell 83, 2449–2463.e13 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shao, W. et al. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat. Chem. Biol. 18, 70–80 (2022).

    CAS  PubMed  Google Scholar 

  92. Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, J.-H. et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell 81, 3368–3385.e9 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments in the nucleus. Cell 184, 5775–5790.e30 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Song, L. et al. Hotspot mutations in the structured ENL YEATS domain link aberrant transcriptional condensates and cancer. Mol. Cell 82, 4080–4098.e12 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chong, S. et al. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 82, 2084–2097.e5 (2022).

    CAS  PubMed  Google Scholar 

  97. Trojanowski, J. et al. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell 82, 1878–1893.e10 (2022).

    CAS  PubMed  Google Scholar 

  98. Hur, W. et al. CDK-regulated phase separation seeded by histone genes ensures precise growth and function of histone locus bodies. Dev. Cell 54, 379–394.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Patil, A. et al. A disordered region controls cBAF activity via condensation and partner recruitment. Cell 186, 4936–4955.e26 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. De La Cruz, N. et al. Disorder-mediated interactions target proteins to specific condensates. Mol. Cell 84, 3497–3512.e9 (2024).

    PubMed  Google Scholar 

  102. Musacchio, A. On the role of phase separation in the biogenesis of membraneless compartments. EMBO J. 41, e109952 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).

    CAS  PubMed  Google Scholar 

  106. Ferrie, J. J., Karr, J. P., Tjian, R. & Darzacq, X. “Structure”-function relationships in eukaryotic transcription factors: the role of intrinsically disordered regions in gene regulation. Mol. Cell 82, 3970–3984 (2022).

    CAS  PubMed  Google Scholar 

  107. Brodsky, S. et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity. Mol. Cell 79, 459–471.e4 (2020).

    CAS  PubMed  Google Scholar 

  108. Zamudio, A. V. et al. Mediator condensates localize signaling factors to key cell identity genes. Mol. Cell 76, 753–766.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lu, F., Portz, B. & Gilmour, D. S. The C-terminal domain of RNA polymerase II is a multivalent targeting sequence that supports Drosophila development with only consensus heptads. Mol. Cell 73, 1232–1242.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 25, 187–211 (2023).

    PubMed  PubMed Central  Google Scholar 

  111. Choi, J. M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Malik, S. & Roeder, R. G. The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11, 761–772 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lu, G. & Li, P. PHF1 compartmentalizes PRC2 via phase separation. Biochem. J. 480, 1833–1844 (2023).

    CAS  PubMed  Google Scholar 

  114. Han, X. et al. Roles of the BRD4 short isoform in phase separation and active gene transcription. Nat. Struct. Mol. Biol. 27, 333–341 (2020).

    CAS  PubMed  Google Scholar 

  115. Wan, L. et al. Impaired cell fate through gain-of-function mutations in a chromatin reader. Nature 577, 121–126 (2020).

    CAS  PubMed  Google Scholar 

  116. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Tatavosian, R. et al. Nuclear condensates of the polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem. 294, 1451–1463 (2019).

    CAS  PubMed  Google Scholar 

  118. Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659.e6 (2019).

    CAS  PubMed  Google Scholar 

  119. Ferrie, J. J. et al. p300 is an obligate integrator of combinatorial transcription factor inputs. Mol. Cell 84, 234–243 (2023).

    PubMed  Google Scholar 

  120. Cermakova, K. et al. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 374, 1113–1121 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Seif, E. et al. Phase separation by the polyhomeotic sterile alpha motif compartmentalizes polycomb group proteins and enhances their activity. Nat. Commun. 11, 5609 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Plys, A. J. et al. Phase separation of lycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Knerr, J. et al. Formin-mediated nuclear actin at androgen receptors promotes transcription. Nature 617, 616–622 (2023).

    CAS  PubMed  Google Scholar 

  124. Xie, J. et al. Targeting androgen receptor phase separation to overcome antiandrogen resistance. Nat. Chem. Biol. 18, 1341–1350 (2022).

    CAS  PubMed  Google Scholar 

  125. Frank, F., Liu, X. & Ortlund, E. A. Glucocorticoid receptor condensates link DNA-dependent receptor dimerization and transcriptional transactivation. Proc. Natl Acad. Sci. USA 118, e2024685118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jung, J. H. et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585, 256–260 (2020).

    CAS  PubMed  Google Scholar 

  127. Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. Engl. 56, 11354–11359 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zug, R. Developmental disorders caused by haploinsufficiency of transcriptional regulators: a perspective based on cell fate determination. Biol. Open 11, bio058896 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kuang, J. et al. SS18 regulates pluripotent-somatic transition through phase separation. Nat. Commun. 12, 4090 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Christou-Kent, M. et al. CEBPA phase separation links transcriptional activity and 3D chromatin hubs. Cell Rep. 42, 112897 (2023).

    CAS  PubMed  Google Scholar 

  131. Quail, T. et al. Force generation by protein–DNA co-condensation. Nat. Phys. 17, 1007–1012 (2021).

    CAS  Google Scholar 

  132. Tang, L. Measuring condensation forces. Nat. Methods 18, 986–986 (2021).

    CAS  PubMed  Google Scholar 

  133. Ji, D. et al. FOXA1 forms biomolecular condensates that unpack condensed chromatin to function as a pioneer factor. Mol. Cell 84, 244–260.e7 (2024).

    CAS  PubMed  Google Scholar 

  134. Wang, Y. et al. A prion-like domain in transcription factor EBF1 promotes phase separation and enables B cell programming of progenitor chromatin. Immunity 53, 1151–1167 (2020).

    CAS  PubMed  Google Scholar 

  135. Wei, C. et al. CTCF organizes inter-A compartment interactions through RYBP-dependent phase separation. Cell Res. 32, 744–760 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, J. et al. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell 28, 1868–1883.e11 (2021).

    CAS  PubMed  Google Scholar 

  137. Sharma, R. et al. Liquid condensation of reprogramming factor KLF4 with DNA provides a mechanism for chromatin organization. Nat. Commun. 12, 5579 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Choi, K. J. et al. NANOG prion-like assembly mediates DNA bridging to facilitate chromatin reorganization and activation of pluripotency. Nat. Cell Biol. 24, 737–747 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. He, J. et al. Dual-role transcription factors stabilize intermediate expression levels. Cell 187, 2746–2766.e25 (2024).

    CAS  PubMed  Google Scholar 

  140. Naderi, J. et al. An activity-specificity trade-off encoded in human transcription factors. Nat. Cell Biol. 26, 1309–1321 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Theis, A. & Harrison, M. M. Reprogramming of three-dimensional chromatin organization in the early embryo. Curr. Opin. Struct. Biol. 81, 102613 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Du, Z. & Xie, W. A party for transcription: multiway interactions of enhancers and promoters. Mol. Cell 83, 1542–1544 (2023).

    CAS  PubMed  Google Scholar 

  143. Huang, S.-K., Whitney, P. H., Dutta, S., Shvartsman, S. Y. & Rushlow, C. A. Spatial organization of transcribing loci during early genome activation in Drosophila. Curr. Biol. 31, 5102–5110.e05 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Cho, C.-Y. & O’Farrell, P. H. Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription. Nat. Commun. 14, 4848 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kuznetsova, K. et al. Nanog organizes transcription bodies. Curr. Biol. 33, 164–173.e5 (2023).

    CAS  PubMed  Google Scholar 

  146. Wilkinson, E. G. & Strader, L. C. A prion-based thermosensor in plants. Mol. Cell 80, 181–182 (2020).

    CAS  PubMed  Google Scholar 

  147. Alberti, S. The plant response to heat requires phase separation. Nature 585, 191–192 (2020).

    CAS  PubMed  Google Scholar 

  148. Ruff, K. M., Roberts, S., Chilkoti, A. & Pappu, R. V. Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J. Mol. Biol. 430, 4619–4635 (2018).

    CAS  PubMed  Google Scholar 

  149. Nakashima, K. K., Vibhute, M. A. & Spruijt, E. Biomolecular chemistry in liquid phase separated compartments. Front. Mol. Biosci. 6, 21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim, D.-H., Doyle, M. R., Sung, S. & Amasino, R. M. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25, 277–299 (2009).

    CAS  PubMed  Google Scholar 

  151. Osman, S. Changing of the seasons — transcriptional buffers against flowering in the cold. Nat. Struct. Mol. Biol. 28, 963 (2021).

    CAS  PubMed  Google Scholar 

  152. Zhu, P., Lister, C. & Dean, C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 599, 657–661 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen, D. et al. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol. Cell 82, 3015–3029.e6 (2022).

    CAS  PubMed  Google Scholar 

  154. Shi, H. & Zhong, S. Light and temperature perceptions go through a phase separation. Curr. Opin. Plant Biol. 74, 102397 (2023).

    PubMed  Google Scholar 

  155. Liu, Q., Liu, W., Niu, Y., Wang, T. & Dong, J. Liquid–liquid phase separation in plants: advances and perspectives from model species to crops. Plant Commun. 5, 100663 (2024).

    CAS  PubMed  Google Scholar 

  156. Kim, C. et al. Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat. Commun. 14, 1708 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Xie, Y. et al. Phytochrome B inhibits the activity of phytochrome-interacting factor 7 involving phase separation. Cell Rep. 42, 113562 (2023).

    CAS  PubMed  Google Scholar 

  158. Wang, P. et al. Photomorphogenesis in plants: the central role of phytochrome interacting factors (PIFs). Environ. Exp. Bot. 194, 104704 (2022).

    CAS  Google Scholar 

  159. Pardi, S. A. & Nusinow, D. A. Out of the dark and into the light: a new view of phytochrome photobodies. Front. Plant Sci. 12, 732947 (2021).

    PubMed  PubMed Central  Google Scholar 

  160. Pham, V. N., Kathare, P. K. & Huq, E. Phytochromes and phytochrome interacting factors. Plant Physiol. 176, 1025–1038 (2018).

    CAS  PubMed  Google Scholar 

  161. Vicioso-Mantis, M. et al. JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation. Nat. Commun. 13, 3263 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Field, S., Jang, G. J., Dean, C., Strader, L. C. & Rhee, S. Y. Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development. Plant Cell 35, 3173–3186 (2023).

    PubMed  PubMed Central  Google Scholar 

  163. Wang, Q. & Lin, C. Mechanisms of cryptochrome-mediated photoresponses in plants. Annu. Rev. Plant Biol. 71, 103–129 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Mo, W. et al. Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock. Nat. Commun. 13, 2631 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Górska, A. M., Bartrina, I. & Werner, T. Biomolecular condensation: a new player in auxin signaling. Trends Plant Sci. 28, 620–622 (2023).

    PubMed  Google Scholar 

  166. Jing, H. et al. Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. Nat. Commun. 13, 4015 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Emenecker, R. J., Holehouse, A. S. & Strader, L. C. Biological phase separation and biomolecular condensates in plants. Annu. Rev. Plant Biol. 72, 17–46 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kmiecik, S. W. & Mayer, M. P. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem. Sci. 47, 218–234 (2022).

    CAS  PubMed  Google Scholar 

  169. Chowdhary, S., Kainth, A. S., Paracha, S., Gross, D. S. & Pincus, D. Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response. Mol. Cell 82, 4386–4399.e7 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Goenka, A. et al. Human satellite-III non-coding RNAs modulate heat-shock-induced transcriptional repression. J. Cell Sci. 129, 3541–3552 (2016).

    CAS  PubMed  Google Scholar 

  171. Zhang, H. et al. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat. Cell Biol. 24, 340–352 (2022).

    CAS  PubMed  Google Scholar 

  172. Xu, W., Ding, M. & Li, P. Struggle for survival: new insights into NELF condensation for adaptive transcriptional reprogramming. Mol. Cell 81, 896–898 (2021).

    CAS  PubMed  Google Scholar 

  173. Jalihal, A. P. et al. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change. Mol. Cell 79, 978–990 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Majumder, S. & Jain, A. Osmotic stress triggers phase separation. Mol. Cell 79, 876–877 (2020).

    CAS  PubMed  Google Scholar 

  175. Liu, S. et al. CPSF6 regulates alternative polyadenylation and proliferation of cancer cells through phase separation. Cell Rep. 42, 113197 (2023).

    CAS  PubMed  Google Scholar 

  176. Wang, B. et al. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat. Chem. Biol. 18, 1361–1369 (2022).

    CAS  PubMed  Google Scholar 

  177. Foyer, C. H. Redox control of flowering. Nat. Chem. Biol. 17, 504–505 (2021).

    CAS  PubMed  Google Scholar 

  178. Huang, X. et al. ROS regulated reversible protein phase separation synchronizes plant flowering. Nat. Chem. Biol. 17, 549–557 (2021).

    CAS  PubMed  Google Scholar 

  179. Huang, S., Zhu, S., Kumar, P. & MacMicking, J. D. A phase-separated nuclear GBPL circuit controls immunity in plants. Nature 594, 424–429 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Pinheiro, E. D. S., Preato, A. M., Petrucci, T. V. B., dos Santos, L. S. & Glezer, I. Phase-separation: a possible new layer for transcriptional regulation by glucocorticoid receptor. Front. Endocrinol. 14, 1160238 (2023).

    Google Scholar 

  181. Stortz, M., Presman, D. M., Pecci, A. & Levi, V. Phasing the intranuclear organization of steroid hormone receptors. Biochem. J. 478, 443–461 (2021).

    CAS  PubMed  Google Scholar 

  182. Stortz, M., Pecci, A., Presman, D. M. & Levi, V. Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biol. 18, 59 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang, F. et al. Dynamic phase separation of the androgen receptor and its coactivators key to regulate gene expression. Nucleic Acids Res. 51, 99–116 (2023).

    PubMed  Google Scholar 

  184. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Li, Z. et al. PPARγ phase separates with RXRα at PPREs to regulate target gene expression. Cell Discov. 8, 37 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Ma, L. et al. Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Mol. Cell 81, 1682–1697.e7 (2021).

    CAS  PubMed  Google Scholar 

  187. Ding, M., Xu, W., Pei, G. & Li, P. Long way up: rethink diseases in light of phase separation and phase transition. Protein Cell 15, 475–492 (2023).

    PubMed Central  Google Scholar 

  188. Zhang, S., Pei, G., Li, B., Li, P. & Lin, Y. Abnormal phase separation of biomacromolecules in human diseases. Acta Biochim. Biophys. Sin. 55, 1133–1152 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Gao, Q. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 23, 227–238.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Brien, G. L., Stegmaier, K. & Armstrong, S. A. Targeting chromatin complexes in fusion protein-driven malignancies. Nat. Rev. Cancer 19, 255–269 (2019).

    CAS  PubMed  Google Scholar 

  191. Shirnekhi, H. K., Chandra, B. & Kriwacki, R. W. The role of phase-separated condensates in fusion oncoprotein-driven cancers. Annu. Rev. Cancer Biol. 7, 73–91 (2023).

    Google Scholar 

  192. Tripathi, S. et al. Defining the condensate landscape of fusion oncoproteins. Nat. Commun. 14, 6008 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Leach, B. I. et al. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 21, 176–183 (2013).

    CAS  PubMed  Google Scholar 

  194. Shorter, J. Prion-like domains program Ewing’s sarcoma. Cell 171, 30–31 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Owen, I. et al. The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid–liquid phase separation. J. Cell Sci. 134, jcs258578 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Davis, R. B., Kaur, T., Moosa, M. M. & Banerjee, P. R. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion‐like domains. Protein Sci. 30, 1454–1466 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Wang, Y. et al. Dissolution of oncofusion transcription factor condensates for cancer therapy. Nat. Chem. Biol. 19, 1223–1234 (2023).

    CAS  PubMed  Google Scholar 

  198. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Cheng, Y. et al. Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas. Nat. Commun. 13, 2724 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Terlecki-Zaniewicz, S. et al. Biomolecular condensation of NUP98 fusion proteins drives leukemogenic gene expression. Nat. Struct. Mol. Biol. 28, 190–201 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Chandra, B. et al. Phase separation mediates NUP98 fusion oncoprotein leukemic transformation. Cancer Discov. 12, 1152–1169 (2022).

    CAS  PubMed  Google Scholar 

  202. Jevtic, Z. et al. SMARCA5 interacts with NUP98-NSD1 oncofusion protein and sustains hematopoietic cells transformation. J. Exp. Clin. Cancer Res. 41, 34 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Oka, M. et al. Phase-separated nuclear bodies of nucleoporin fusions promote condensation of MLL1/CRM1 and rearrangement of 3D genome structure. Cell Rep. 42, 112884 (2023).

    CAS  PubMed  Google Scholar 

  204. Ahn, J. H. et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 595, 591–595 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Rosencrance, C. D. et al. Chromatin hyperacetylation impacts chromosome folding by forming a nuclear subcompartment. Mol. Cell 78, 112–126 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Kosno, M., Currie, S. L., Kumar, A., Xing, C. & Rosen, M. K. Molecular features driving condensate formation and gene expression by the BRD4-NUT fusion oncoprotein are overlapping but distinct. Sci. Rep. 13, 11907 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Yu, D. et al. Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma. Nat. Commun. 14, 378 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Ibrahim, Z. et al. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat. Commun. 13, 7759 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Perlman, E. J. et al. MLLT1 YEATS domain mutations in clinically distinctive favourable histology Wilms tumours. Nat. Commun. 6, 10013 (2015).

    CAS  PubMed  Google Scholar 

  210. Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature 543, 270–274 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Muragaki, Y., Mundlos, S., Upton, J. & Olsen, B. R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272, 548–551 (1996).

    CAS  PubMed  Google Scholar 

  212. Basu, S. et al. Unblending of transcriptional condensates in human repeat expansion disease. Cell 181, 1062–1079 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Chen, L. et al. Hormone-induced enhancer assembly requires an optimal level of hormone receptor multivalent interactions. Mol. Cell 83, 3438–3456.e12 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Darling, A. L. & Uversky, V. N. Intrinsic disorder in proteins with pathogenic repeat expansions. Molecules 22, 2027 (2017).

    PubMed  PubMed Central  Google Scholar 

  215. Utsch, B. et al. A novel stable polyalanine [poly(A)] expansion in the HOXA13 gene associated with hand-foot-genital syndrome: proper function of poly(A)-harbouring transcription factors depends on a critical repeat length? Hum. Genet. 110, 488–494 (2002).

    CAS  PubMed  Google Scholar 

  216. Albrecht, A. N. et al. A molecular pathogenesis for transcription factor associated poly-alanine tract expansions. Hum. Mol. Genet. 13, 2351–2359 (2004).

    CAS  PubMed  Google Scholar 

  217. Shi, B. et al. UTX condensation underlies its tumour-suppressive activity. Nature 597, 726–731 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Greig, J. A. et al. Arginine-enriched mixed-charge domains provide cohesion for nuclear speckle condensation. Mol. Cell 77, 1237–1250.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Boeynaems, S. et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol. Cell 65, 1044–1055.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Mensah, M. A. et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564–571 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Yang, J. et al. MYC phase separation selectively modulates the transcriptome. Nat. Struct. Mol. Biol. 31, 1567–1579 (2024).

    CAS  PubMed  Google Scholar 

  222. Wang, X. et al. Prognostic significance of EZH2 expression in non-small cell lung cancer: a meta-analysis. Sci. Rep. 6, 19239 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhang, J. et al. Myristoylation-mediated phase separation of EZH2 compartmentalizes STAT3 to promote lung cancer growth. Cancer Lett. 516, 84–98 (2021).

    CAS  PubMed  Google Scholar 

  224. Zou, Y. et al. New insights into the important roles of phase seperation in the targeted therapy of lung cancer. Cell Biosci. 13, 150 (2023).

    PubMed  PubMed Central  Google Scholar 

  225. Zhong, Z., Jiao, Z. & Yu, F. X. The Hippo signaling pathway in development and regeneration. Cell Rep. 43, 113926 (2024).

    CAS  PubMed  Google Scholar 

  226. Cai, D. et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578–1589 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Shao, Y. et al. A chaperone-like function of FUS ensures TAZ condensate dynamics and transcriptional activation. Nat. Cell Biol. 26, 86–99 (2024).

    CAS  PubMed  Google Scholar 

  228. Lu, Y. et al. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453–464 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Franklin, J. M. & Guan, K. L. YAP/TAZ phase separation for transcription. Nat. Cell Biol. 22, 357–358 (2020).

    CAS  PubMed  Google Scholar 

  230. Zhu, G. et al. Pharmacological inhibition of SRC-1 phase separation suppresses YAP oncogenic transcription activity. Cell Res. 31, 1028–1031 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Hao, S. et al. YAP condensates are highly organized hubs. iScience 27, 109927 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Qin, M. et al. LATS2 condensates organize signalosomes for Hippo pathway signal transduction. Nat. Chem. Biol. 20, 710–720 (2024).

    CAS  PubMed  Google Scholar 

  233. Liu, Q. et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell 184, 5559–5576 (2021).

    CAS  PubMed  Google Scholar 

  234. Hu, X. et al. Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat. Cell Biol. 25, 323–336 (2023).

    CAS  PubMed  Google Scholar 

  235. Mi, Z. et al. cAMP-induced nuclear condensation of CRTC2 promotes transcription elongation and cystogenesis in autosomal dominant polycystic kidney disease. Adv. Sci. 9, e2104578 (2022).

    Google Scholar 

  236. Shrinivas, K. & Brenner, M. P. Phase separation in fluids with many interacting components. Proc. Natl Acad. Sci. USA 118, e2108551118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Strom, A. R. et al. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity. Cell 187, 5282–5297.e20 (2024).

    CAS  PubMed  Google Scholar 

  239. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Benabdallah, N. S. et al. Decreased enhancer-promoter proximity accompanying enhancer activation. Mol. Cell 76, 473–484.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Heist, T., Fukaya, T. & Levine, M. Large distances separate coregulated genes in living Drosophila embryos. Proc. Natl Acad. Sci. USA 116, 15062–15067 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Yang, J. H. & Hansen, A. S. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat. Rev. Mol. Cell Biol. 25, 574–591 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Neumayr, C. et al. Differential cofactor dependencies define distinct types of human enhancers. Nature 606, 406–413 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Conti, B. A. & Oppikofer, M. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol. Sci. 43, 820–837 (2022).

    CAS  PubMed  Google Scholar 

  247. Patel, A. et al. Principles and functions of condensate modifying drugs. Front. Mol. Biosci. 9, 1007744 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Gui, T. et al. Targeted perturbation of signaling-driven condensates. Mol. Cell 83, 4141–4157.e11 (2023).

    CAS  PubMed  Google Scholar 

  249. Basu, S. et al. Rational optimization of a transcription factor activation domain inhibitor. Nat. Struct. Mol. Biol. 30, 1958–1969 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Li, W. et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960–972 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Liu, B. & Abdel-Wahab, O. Oncogenic splicing regulated by phase separation. Nat. Cell Biol. 22, 916–918 (2020).

    CAS  PubMed  Google Scholar 

  252. Zhuang, Y. et al. Circadian clocks are modulated by compartmentalized oscillating translation. Cell 186, 3245–3260.e23 (2023).

    CAS  PubMed  Google Scholar 

  253. Dang, L. et al. Nuclear condensation of CDYL links histone crotonylation and cystogenesis in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 33, 1708–1725 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Lee, R. et al. CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates. Nucleic Acids Res. 50, 207–226 (2022).

    CAS  PubMed  Google Scholar 

  255. Hsieh, T. H. S. et al. Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nat. Genet. 54, 1919–1932 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Fu, H. et al. Poly(ADP-ribosylation) of P-TEFb by PARP1 disrupts phase separation to inhibit global transcription after DNA damage. Nat. Cell Biol. 24, 513–525 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Pessina, F. et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat. Cell Biol. 21, 1286–1299 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Kang, K., Shi, Q., Wang, X. & Chen, Y. G. Dishevelled phase separation promotes Wnt signalosome assembly and destruction complex disassembly. J. Cell Biol. 221, e202205069 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Zhu, Y. et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 39, 694–707 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Fang, X. et al. Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature 569, 265–269 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Qin, Z. et al. Deactylation by SIRT1 enables liquid–liquid phase separation of IRF3/IRF7 in innate antiviral immunity. Nat. Immunol. 23, 1193–1207 (2022).

    CAS  PubMed  Google Scholar 

  262. Wang, X. Q. D. et al. Mutant NPM1 hijacks transcriptional hubs to maintain pathogenic gene programs in acute myeloid leukemia. Cancer Discov. 13, 724–745 (2023).

    PubMed  Google Scholar 

  263. Lu, Y. et al. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease. Sci. Transl. Med. 12, eaba3613 (2020).

    CAS  PubMed  Google Scholar 

  264. Ibáñez de Opakua, A. et al. Molecular interactions of FG nucleoporin repeats at high resolution. Nat. Chem. 14, 1278–1285 (2022).

    PubMed  PubMed Central  Google Scholar 

  265. Cheng, S. L. H. et al. Nutrient status regulates MED19a phase separation for ORESARA1‐dependent senescence. New Phytol. 236, 1779–1795 (2022).

    CAS  PubMed  Google Scholar 

  266. Kamagata, K. et al. Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Sci. Rep. 10, 580 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Petronilho, E. C. et al. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem. Sci. 12, 7334–7349 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Chen, C., Fu, G., Guo, Q., Xue, S. & Luo, S. Z. Phase separation of p53 induced by its unstructured basic region and prevented by oncogenic mutations in tetramerization domain. Int. J. Biol. Macromol. 222, 207–216 (2022).

    CAS  PubMed  Google Scholar 

  269. Xu, J. et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 7, 285–295 (2011).

    CAS  PubMed  Google Scholar 

  270. Perez-Schindler, J. et al. RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proc. Natl Acad. Sci. USA 118, e2105951118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Zhu, K. et al. An intrinsically disordered region controlling condensation of a circadian clock component and rhythmic transcription in the liver. Mol. Cell 83, 3457–3469.e7 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Dejosez, M. et al. Regulatory architecture of housekeeping genes is driven by promoter assemblies. Cell Rep. 42, 112505 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Xiao, M. et al. Smad4 sequestered in SFPQ condensates prevents TGF-β tumor-suppressive signaling. Dev. Cell 59, 48–63.e8 (2024).

    CAS  PubMed  Google Scholar 

  274. Yan, K. et al. SGF29 nuclear condensates reinforce cellular aging. Cell Discov. 9, 110 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Cao, X., Du, Q., Guo, Y., Wang, Y. & Jiao, Y. Condensation of STM is critical for shoot meristem maintenance and salt tolerance in Arabidopsis. Mol. Plant 16, 1445–1459 (2023).

    CAS  PubMed  Google Scholar 

  276. Chen, G. et al. Taf14 recognizes a common motif in transcriptional machineries and facilitates their clustering by phase separation. Nat. Commun. 11, 4206 (2020).

    PubMed  PubMed Central  Google Scholar 

  277. Wang, W. et al. A histidine cluster determines YY1-compartmentalized coactivators and chromatin elements in phase-separated enhancer clusters. Nucleic Acids Res. 50, 4917–4937 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Henninger, S. Bannani, B. Li, Y. Li, Y. Lin and members of the Sabari and Li laboratories for the helpful comments and discussion. This work was supported by the National Natural Science Foundation of China grant 32125010 (P.L.), the Postdoctoral Program of Tsinghua University–Peking University Joint Center for Life Sciences, Shuimu Tsinghua Scholar Program, and Advanced Innovation Fellow programme (G.P.), Cancer Prevention and Research Institute of Texas grant RR190090 (B.R.S.), the National Institutes of Health grant GM147583 (B.R.S.) and the Robert A. Welch Foundation grants I-2163-20230405 and V-I-0004-20230731 (B.R.S.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Pilong Li or Benjamin R. Sabari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Critical thresholds

Specific concentrations or condition points at which a sudden transition occurs, such as phase separation.

DNA regulatory elements

DNA sequences located either proximal or distal to a gene that regulate its expression by interacting with transcription factors. Prominent examples are promoters and enhancers.

Domain–ligand pairs

Interacting modules between a protein domain and its corresponding ligand.

Histone locus body

A nuclear condensate associated with the active transcription of replication-dependent histone genes, which facilitates the coordination of histone mRNA transcription, processing and export during early S phase.

Lower critical solution temperature behaviour

The phenomenon whereby a protein remains soluble in a solvent below a specific temperature, but above this temperature, it undergoes phase separation into condensates owing to the disruption of stabilizing interactions by increased thermal motion.

Mediator coactivator complex

A multiprotein complex that acts as a bridge between transcription factors and RNA polymerase II to regulate gene activation.

Multivalency

The property of a molecule or a complex that has multiple binding sites that can interact with multiple binding surfaces of another molecule or complex.

Patterned charge blocks

Sequences within proteins wherein charged amino acids are organized in clusters.

Phase separation

A physicochemical process through which molecules demix from the bulk environment to form dense, droplet-like structures.

Poly-glutamine

A sequence motif in proteins consisting of multiple Gln residues. Some poly-glutamine tracts enhance the formation of pathological condensates or aggregates by promoting strong hydrogen bonding and intermolecular interactions often associated with neurodegenerative diseases.

Re-entrant phase transition

A situation in a multi-component system in which increasing the concentration of a component initially favours the formation of condensates, but further increases lead to the disruption of the condensates.

Skotomorphogenesis

The developmental process in plants that occurs in darkness, characterized by elongated stems, closed cotyledons and lack of chlorophyll synthesis.

Transcription bursting

The phenomenon whereby transcription occurs in rapid, transient bursts rather than at a constant rate.

Transcriptional condensates

Biomolecular condensates that concentrate components of the transcription machinery and related factors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, G., Lyons, H., Li, P. et al. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 26, 213–236 (2025). https://doi.org/10.1038/s41580-024-00789-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-024-00789-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing