Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The intraflagellar transport cycle

Abstract

Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic cartoons of motile and primary cilia.
Fig. 2: Components of the intraflagellar transport (IFT) system.
Fig. 3: Overview of the IFT cycle.

Similar content being viewed by others

References

  1. Saggese, T., Young, A. A., Huang, C., Braeckmans, K. & McGlashan, S. R. Development of a method for the measurement of primary cilia length in 3D. Cilia 1, 11 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mitchell, D. R. Evolution of cilia. Cold Spring Harb. Persp. Biol. 9, a028290 (2017).

    Google Scholar 

  3. Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B. & Bettencourt-Dias, M. Tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194, 165–175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hao, K., Chen, Y., Yan, X. & Zhu, X. Cilia locally synthesize proteins to sustain their ultrastructure and functions. Nat. Commun. 12, 6971 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kozminski, K. G., Beech, P. L. & Rosenbaum, J. L. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol. 131, 1517–1527 (1995).

    CAS  PubMed  Google Scholar 

  7. Pazour, G. J., Wilkerson, C. G. & Witman, G. B. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol. 141, 979–992 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pigino, G. et al. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J. Cell Biol. 187, 135–148 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    CAS  PubMed  Google Scholar 

  12. Hilgendorf, K. I., Myers, B. R. & Reiter, J. F. Emerging mechanistic understanding of cilia function in cellular signalling. Nat. Rev. Mol. Cell Biol. 25, 555–573 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mill, P., Christensen, S. T. & Pedersen, L. B. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat. Rev. Genet. 24, 421–441 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Iomini, C., Babaev-Khaimov, V., Sassaroli, M. & Piperno, G. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J. Cell Biol. 153, 13–24 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pedersen, L. B., Geimer, S. & Rosenbaum, J. L. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas. Curr. Biol. 16, 450–459 (2006).

    CAS  PubMed  Google Scholar 

  16. Mitra, A., Loseva, E. & Peterman, E. J. G. IFT cargo and motors associate sequentially with IFT trains to enter cilia of C. elegans. Nat. Commun. 15, 3456 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Buisson, J. et al. Intraflagellar transport proteins cycle between the flagellum and its base. J. Cell Sci. 126, 327–338 (2013).

    CAS  PubMed  Google Scholar 

  18. Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. Functional coordination of intraflagellar transport motors. Nature 436, 583–587 (2005).

    CAS  PubMed  Google Scholar 

  19. King, S. M. Axonemal dynein arms. Cold Spring Harb. Persp. Biol. 8, a028100 (2016).

    Google Scholar 

  20. Gui, M. et al. Structures of radial spokes and associated complexes important for ciliary motility. Nat. Struct. Mol. Biol. 28, 29–37 (2021).

    CAS  PubMed  Google Scholar 

  21. Pigino, G. & Ishikawa, T. Axonemal radial spokes: 3D structure, function and assembly. Bioarchitecture 2, 50–58 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Ishikawa, T. Axoneme structure from motile cilia. Cold Spring Harb. Perspect. Biol. 9, a028076 (2016).

    Google Scholar 

  23. Wallmeier, J. et al. Motile ciliopathies. Nat. Rev. Dis. Prim. 6, 77 (2020).

    PubMed  Google Scholar 

  24. Fassad, M. R. et al. Defective airway intraflagellar transport underlies a combined motile and primary ciliopathy syndrome caused by IFT74 mutations. Hum. Mol. Genet. 32, 3090–3104 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nachury, M. V. How do cilia organize signalling cascades? Phil. Trans. R. Soc. B 369, 20130465 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Yue, Y., Engelke, M. F., Blasius, T. L. & Verhey, K. J. Hedgehog-induced ciliary trafficking of kinesin-4 motor KIF7 requires intraflagellar transport but not KIF7’s microtubule binding. Mol. Biol. Cell 33, br1 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Y. & Beachy, P. A. Cellular and molecular mechanisms of Hedgehog signalling. Nat. Rev. Mol. Cell Biol. 24, 668–687 (2023).

    CAS  PubMed  Google Scholar 

  28. Kiesel, P. et al. The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat. Struct. Mol. Biol. 27, 1115–1124 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Klena, N. & Pigino, G. Structural biology of cilia and intraflagellar transport. Annu. Rev. Cell Dev. Biol. 38, 103–123 (2022).

    CAS  PubMed  Google Scholar 

  30. Sun, S., Fisher, R. L., Bowser, S. S., Pentecost, B. T. & Sui, H. Three-dimensional architecture of epithelial primary cilia. Proc. Natl Acad. Sci. 116, 9370–9379 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–377 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Benmerah, A. The ciliary pocket. Curr. Opin. Cell Biol. 25, 78–84 (2013).

    CAS  PubMed  Google Scholar 

  33. Bujakowska, K. M., Liu, Q. & Pierce, E. A. Photoreceptor cilia and retinal ciliopathies. Cold Spring Harb. Persp. Biol. 9, a028274 (2017).

    Google Scholar 

  34. Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Taschner, M. & Lorentzen, E. The intraflagellar transport machinery. Cold Spring Harb. Persp. Biol. 8, a028092 (2016).

    Google Scholar 

  36. Jékely, G. & Arendt, D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. BioEssays 28, 191–198 (2006).

    PubMed  Google Scholar 

  37. van Dam, T. J. P. et al. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc. Natl Acad. Sci. 110, 6943–6948 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Meleppattu, S., Zhou, H., Dai, J., Gui, M. & Brown, A. Mechanism of IFT-A polymerization into trains for ciliary transport. Cell 185, 4986–4998.e12 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, D. et al. Ciliogenesis requires sphingolipid-dependent membrane and axoneme interaction. Proc. Natl Acad. Sci. USA 119, e2201096119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Quidwai, T. et al. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. eLife 10, e69786 (2021).

    PubMed  PubMed Central  Google Scholar 

  41. Zhu, B. et al. Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis. PLOS Genet. 13, e1006627 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Jiang, M. et al. Human IFT-A complex structures provide molecular insights into ciliary transport. Cell Res. 33, 288–298 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Behal, R. H. et al. Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex A proteins. J. Biol. Chem. 287, 11689–11703 (2012).

    CAS  PubMed  Google Scholar 

  44. Hesketh, S. J., Mukhopadhyay, A. G., Nakamura, D., Toropova, K. & Roberts, A. J. IFT-A structure reveals carriages for membrane protein transport into cilia. Cell 185, 4971–4985.e16 (2022).

    CAS  PubMed  Google Scholar 

  45. Hirano, T., Katoh, Y. & Nakayama, K. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Mol. Biol. Cell 28, 429–439 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma, Y. et al. Structural insight into the intraflagellar transport complex IFT-A and its assembly in the anterograde IFT train. Nat. Commun. 14, 1506 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lacey, S. E., Graziadei, A. & Pigino, G. Extensive structural rearrangement of intraflagellar transport trains underpins bidirectional cargo transport. Cell 187, 4621–4636.e18 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhogaraju, S. et al. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341, 1009–1012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Taschner, M. et al. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J. 35, 773–790 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Katoh, Y. et al. Overall architecture of the intraflagellar transport (IFT)-B complex containing cluap1/IFT38 as an essential component of the IFT-B peripheral subcomplex. J. Biol. Chem. 291, 10962–10975 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Taschner, M., Kotsis, F., Braeuer, P., Kuehn, E. W. & Lorentzen, E. Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. J. Cell Biol. 207, 269–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wachter, S. et al. Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly. EMBO J. 38, e101251 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Bhogaraju, S., Taschner, M., Morawetz, M., Basquin, C. & Lorentzen, E. Crystal structure of the intraflagellar transport complex 25/27. EMBO J. 30, 1907–1918 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, Z., Fan, Z.-C., Williamson, S. M. & Qin, H. Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas. PLOS ONE 4, e5384 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Howard, P. W., Jue, S. F. & Maurer, R. A. Interaction of mouse TTC30/DYF-1 with multiple intraflagellar transport complex B proteins and KIF17. Exp. Cell Res. 319, 2275–2281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Takei, R., Katoh, Y. & Nakayama, K. Robust interaction of IFT70 with IFT52–IFT88 in the IFT-B complex is required for ciliogenesis. Biol. Open 7, bio033241 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Lacey, S. E., Foster, H. E. & Pigino, G. The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains. Nat. Struct. Mol. Biol. 30, 584–593 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Petriman, N. A. et al. Biochemically validated structural model of the 15-subunit intraflagellar transport complex IFT-B. EMBO J. 41, e112440 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Beatson, S. & Ponting, C. P. GIFT domains: linking eukaryotic intraflagellar transport and glycosylation to bacterial gliding. Trends Biochem. Sci. 29, 396–399 (2004).

    CAS  PubMed  Google Scholar 

  60. Delaval, B., Bright, A., Lawson, N. D. & Doxsey, S. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat. Cell Biol. 13, 461–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Taulet, N. et al. IFT proteins spatially control the geometry of cleavage furrow ingression and lumen positioning. Nat. Commun. 8, 1928 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Vitre, B. et al. IFT proteins interact with HSET to promote supernumerary centrosome clustering in mitosis. EMBO Rep. 21, e49234 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Follit, J. A., Tuft, R. A., Fogarty, K. E. & Pazour, G. J. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781–3792 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Crouse, J. A. et al. Distinct functions for IFT140 and IFT20 in opsin transport. Cytoskeleton 71, 302–310 (2014).

    CAS  PubMed  Google Scholar 

  65. Follit, J. A. et al. The golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex. PLOS Genet. 4, e1000315 (2008).

    PubMed  PubMed Central  Google Scholar 

  66. Monis, W. J., Faundez, V. & Pazour, G. J. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia. J. Cell Biol. 216, 2131–2150 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Follit, J. A., Xu, F., Keady, B. T. & Pazour, G. J. Characterization of mouse IFT complex B. Cell Motil. 66, 457–468 (2009).

    CAS  Google Scholar 

  68. Wang, Q. et al. Membrane association and remodeling by intraflagellar transport protein IFT172. Nat. Commun. 9, 4684 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wedaman, K. P., Meyer, D. W., Rashid, D. J., Cole, D. G. & Scholey, J. M. Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex. J. Cell Biol. 132, 371–380 (1996).

    CAS  PubMed  Google Scholar 

  70. Yamazaki, H., Nakata, T., Okada, Y. & Hirokawa, N. KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J. Cell Biol. 130, 1387–1399 (1995).

    CAS  PubMed  Google Scholar 

  71. Mueller, J., Perrone, C. A., Bower, R., Cole, D. G. & Porter, M. E. The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol. Biol. Cell 16, 1341–1354 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6, 1109–1113 (2004).

    CAS  PubMed  Google Scholar 

  73. Engelke, M. F. et al. Acute inhibition of heterotrimeric kinesin-2 function reveals mechanisms of intraflagellar transport in mammalian cilia. Curr. Biol. 29, 1137–1148.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Funabashi, T. et al. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46–IFT56 as well as on its nuclear localization signal. Mol. Biol. Cell 28, 624–633 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Waas, B. et al. Dual and opposing roles for the kinesin-2 motor, KIF17, in Hedgehog-dependent cerebellar development. Sci. Adv. 10, eade1650 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144, 473–481 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Asante, D., Stevenson, N. L. & Stephens, D. J. Subunit composition of the human cytoplasmic dynein-2 complex. J. Cell Sci. 127, 4774–4787 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Toropova, K. et al. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat. Struct. Mol. Biol. 26, 823–829 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Stepanek, L. & Pigino, G. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352, 721–724 (2016).

    CAS  PubMed  Google Scholar 

  80. Chhatre, A. et al. Tubulin tyrosination/detyrosination regulates the sorting of intraflagellar transport trains on axonemal microtubule doublets. Preprint at bioRxiv https://doi.org/10.1101/2024.05.03.592312 (2024).

  81. Williams, C. L. et al. Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nat. Commun. 5, 5813 (2014).

    CAS  PubMed  Google Scholar 

  82. Tian, X., Zhao, H. & Zhou, J. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. eLife 12, e87623 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Singh, S. K., Gui, M., Koh, F., Yip, M. C. & Brown, A. Structure and activation mechanism of the BBSome membrane protein trafficking complex. eLife 9, e53322 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, S. et al. Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes. eLife 9, e55954 (2020).

    PubMed  PubMed Central  Google Scholar 

  85. Jin, H. et al. The conserved Bardet–Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    CAS  PubMed  Google Scholar 

  87. Klink, B. U., Gatsogiannis, C., Hofnagel, O., Wittinghofer, A. & Raunser, S. Structure of the human BBSome core complex. eLife 9, e53910 (2020).

    PubMed  PubMed Central  Google Scholar 

  88. Hernandez-Hernandez, V. et al. Bardet–Biedl syndrome proteins control the cilia length through regulation of actin polymerization. Hum. Mol. Genet. 22, 3858–3868 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hibbard, J. V. K., Vazquez, N., Satija, R. & Wallingford, J. B. Protein turnover dynamics suggest a diffusion-to-capture mechanism for peri-basal body recruitment and retention of intraflagellar transport proteins. Mol. Biol. Cell 32, 1171–1180 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mitra, A., Gioukakis, E., Mul, W. & Peterman, E. J. G. Sorting at ciliary base and ciliary entry of BBSome, IFT-B and IFT-A. Preprint at bioRxiv https://doi.org/10.1101/2024.03.05.583485 (2024).

  91. Toriyama, M. et al. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat. Genet. 48, 648–656 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dewees, S. I. et al. Phylogenetic profiling and cellular analyses of ARL16 reveal roles in traffic of IFT140 and INPP5E. Mol. Biol. Cell 33, ar33 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Langousis, G. et al. Structure of the ciliogenesis-associated CPLANE complex. Sci. Adv. 8, eabn0832 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Brown, J. M., Cochran, D. A., Craige, B., Kubo, T. & Witman, G. B. Assembly of IFT trains at the ciliary base depends on IFT74. Curr. Biol. 25, 1583–1593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Xin, D., Christopher, K. J., Zeng, L., Kong, Y. & Weatherbee, S. D. IFT56 regulates vertebrate developmental patterning by maintaining IFTB complex integrity and ciliary microtubule architecture. Development 144, 1544–1553 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, T. T. et al. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat. Commun. 9, 2023 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Kanie, T. et al. The CEP19–RABL2 GTPase complex binds IFT-B to initiate intraflagellar transport at the ciliary base. Dev. Cell 42, 22–36.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nishijima, Y. et al. RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Mol. Biol. Cell 28, 1652–1666 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Zhang, R.-K., Sun, W.-Y., Liu, Y.-X., Zhang, E. Y. & Fan, Z.-C. RABL2 promotes the outward transition zone passage of signaling proteins in cilia via ARL3. Proc. Natl Acad. Sci. USA 120, e2302603120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou, Z., Katoh, Y. & Nakayama, K. CEP19–RABL2–IFT-B axis controls BBSome-mediated ciliary GPCR export. Mol. Biol. Cell 33, ar126 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Klink, B. U. et al. A recombinant BBSome core complex and how it interacts with ciliary cargo. eLife 6, e27434 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Seo, S. et al. BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc. Natl Acad. Sci. USA 107, 1488–1493 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, Q., Yu, D., Seo, S., Stone, E. M. & Sheffield, V. C. Intrinsic protein–protein interaction-mediated and chaperonin-assisted sequential assembly of stable Bardet–Biedl syndrome protein complex, the BBSome. J. Biol. Chem. 287, 20625–20635 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Prasai, A. et al. The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells. J. Biol. Chem. 295, 14279–14290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Xue, B. et al. Intraflagellar transport protein RABL5/IFT22 recruits the BBSome to the basal body through the GTPase ARL6/BBS3. Proc. Natl Acad. Sci. 117, 2496–2505 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Guo, D.-F. et al. The BBSome in POMC and AgRP neurons is necessary for body weight regulation and sorting of metabolic receptors. Diabetes 68, 1591–1603 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo, D.-F. et al. The BBSome controls energy homeostasis by mediating the transport of the leptin receptor to the plasma membrane. PLOS Genet. 12, e1005890 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. Starks, R. D. et al. Regulation of insulin receptor trafficking by bardet biedl syndrome proteins. PLOS Genet. 11, e1005311 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C. & Mykytyn, K. Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl Acad. Sci. USA 105, 4242–4246 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Loktev, A. V. & Jackson, P. K. Neuropeptide Y family receptors traffic via the bardet-biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316–1329 (2013).

    CAS  PubMed  Google Scholar 

  111. Stubbs, T., Bingman, J. I., Besse, J. & Mykytyn, K. Ciliary signaling proteins are mislocalized in the brains of Bardet–Biedl syndrome 1-null mice. Front. Cell Dev. Biol. 10, 1092161 (2023).

    PubMed  PubMed Central  Google Scholar 

  112. Su, X. et al. Bardet–Biedl syndrome proteins 1 and 3 regulate the ciliary trafficking of polycystic kidney disease 1 protein. Hum. Mol. Genet. 23, 5441–5451 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nager, A. R. et al. An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 168, 252–263.e14 (2017).

    CAS  PubMed  Google Scholar 

  114. Nguyen, A. & Goetz, S. C. TTBK2 controls cilium stability by regulating distinct modules of centrosomal proteins. Mol. Biol. Cell 34, ar8 (2023).

    CAS  PubMed  Google Scholar 

  115. Loukil, A., Barrington, C. & Goetz, S. C. A complex of distal appendage-associated kinases linked to human disease regulates ciliary trafficking and stability. Proc. Natl Acad. Sci. USA 118, e2018740118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. van den Hoek, H. et al. In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 377, 543–548 (2022).

    PubMed  Google Scholar 

  117. Wingfield, J. L. et al. IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. eLife 6, e26609 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Richey, E. A. & Qin, H. Dissecting the sequential assembly and localization of intraflagellar transport particle complex B in Chlamydomonas. PLOS ONE 7, e43118 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kobayashi, T., Ishida, Y., Hirano, T., Katoh, Y. & Nakayama, K. Cooperation of the IFT-A complex with the IFT-B complex is required for ciliary retrograde protein trafficking and GPCR import. Mol. Biol. Cell 32, 45–56 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Jordan, M. A., Diener, D. R., Stepanek, L. & Pigino, G. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 20, 1250 (2018).

    CAS  PubMed  Google Scholar 

  121. Zhu, X., Wang, J., Li, S., Lechtreck, K. & Pan, J. IFT54 directly interacts with kinesin-II and IFT dynein to regulate anterograde intraflagellar transport. EMBO J. 40, e105781 (2021).

    CAS  PubMed  Google Scholar 

  122. Mukhopadhyay, A. G. et al. Structure and tethering mechanism of dynein-2 intermediate chains in intraflagellar transport. EMBO J. 43, 1257–1272 (2024).

    PubMed  PubMed Central  Google Scholar 

  123. Funabashi, T., Katoh, Y., Okazaki, M., Sugawa, M. & Nakayama, K. Interaction of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for ciliogenesis. J. Cell Biol. 217, 2867–2876 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Engel, B. D., Ludington, W. B. & Marshall, W. F. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J. Cell Biol. 187, 81–89 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sun, Y., Chen, Z., Jin, M., Xie, H. & Zhao, C. Ciliary length regulation by intraflagellar transport in zebrafish. eLife 13, RP93168 (2024).

    PubMed  PubMed Central  Google Scholar 

  126. Ludington, W. B., Wemmer, K. A., Lechtreck, K. F., Witman, G. B. & Marshall, W. F. Avalanche-like behavior in ciliary import. Proc. Natl Acad. Sci. USA 110, 3925–3930 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Dentler, W. Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella. J. Cell Biol. 170, 649–659 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Liang, Y. et al. FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to control IFT entry and turnaround. Dev. Cell 30, 585–597 (2014).

    CAS  PubMed  Google Scholar 

  129. Liang, Y., Zhu, X., Wu, Q. & Pan, J. Ciliary length sensing regulates IFT entry via changes in FLA8/KIF3B phosphorylation to control ciliary assembly. Curr. Biol. 28, 2429–2435.e3 (2018).

    CAS  PubMed  Google Scholar 

  130. Boegholm, N. et al. The IFT81–IFT74 complex acts as an unconventional RabL2 GTPase-activating protein during intraflagellar transport. EMBO J. 42, e111807 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nachury, M. V. & Mick, D. U. Establishing and regulating the composition of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 20, 389–405 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pan, X. et al. Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol. 174, 1035–1045 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bhogaraju, S., Weber, K., Engel, B. D., Lechtreck, K.-F. & Lorentzen, E. Getting tubulin to the tip of the cilium: one IFT train, many different tubulin cargo-binding sites? Bioessays 36, 463–467 (2014).

    CAS  PubMed  Google Scholar 

  134. Craft, J. M., Harris, J. A., Hyman, S., Kner, P. & Lechtreck, K. F. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J. Cell Biol. 208, 223–237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hao, L. et al. Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat. Cell Biol. 13, 790–798 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Craft Van De Weghe, J., Harris, J. A., Kubo, T., Witman, G. B. & Lechtreck, K. F. Diffusion rather than intraflagellar transport likely provides most of the tubulin required for axonemal assembly in Chlamydomonas. J. Cell Sci. 133, jcs249805 (2020).

    PubMed  PubMed Central  Google Scholar 

  137. Ling, L. & Goeddel, D. V. MIP-T3, a novel protein linking tumor necrosis factor receptor-associated factor 3 to the microtubule network. J. Biol. Chem. 275, 23852–23860 (2000).

    CAS  PubMed  Google Scholar 

  138. Bizet, A. A. et al. Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nat. Commun. 6, 8666 (2015).

    CAS  PubMed  Google Scholar 

  139. Zhu, X., Liang, Y., Gao, F. & Pan, J. IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis. Cell. Mol. Life Sci. 74, 3425–3437 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kubo, T. et al. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J. Cell Sci. 129, 2106–2119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jiang, X. et al. DYF-5/MAK–dependent phosphorylation promotes ciliary tubulin unloading. Proc. Natl Acad. Sci. USA 119, e2207134119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Yamamoto, R., Hwang, J., Ishikawa, T., Kon, T. & Sale, W. S. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton 78, 77–96 (2021).

    CAS  PubMed  Google Scholar 

  143. Mali, G. R. et al. Shulin packages axonemal outer dynein arms for ciliary targeting. Science 371, 910–916 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ahmed, N. T., Gao, C., Lucker, B. F., Cole, D. G. & Mitchell, D. R. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J. Cell Biol. 183, 313–322 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hou, Y. & Witman, G. B. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16. Mol. Biol. Cell 28, 2420–2433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Taschner, M., Mourão, A., Awasthi, M., Basquin, J. & Lorentzen, E. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J. Biol. Chem. 292, 7462–7473 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Solomon, G. M. et al. Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography. JCI Insight 2, e91702 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Bearce, E. A. et al. Daw1 regulates the timely onset of cilia motility during development. Development 149, dev200017 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, J. et al. Purification and crystal structure of human ODA16: implications for ciliary import of outer dynein arms by the intraflagellar transport machinery. Protein Sci. 29, 1502–1510 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hunter, E. L. et al. The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Mol. Biol. Cell 29, 886–896 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lechtreck, K. F. et al. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. eLife 11, e74993 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhao, Q., Li, S., Shao, S., Wang, Z. & Pan, J. FLS2 is a CDK-like kinase that directly binds IFT70 and is required for proper ciliary disassembly in Chlamydomonas. PLOS Genet. 16, e1008561 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Dai, J., Barbieri, F., Mitchell, D. R. & Lechtreck, K. F. In vivo analysis of outer arm dynein transport reveals cargo-specific intraflagellar transport properties. Mol. Biol. Cell 29, 2553–2565 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wren, K. N. et al. A differential cargo-loading model of ciliary length regulation by IFT. Curr. Biol. 23, 2463–2471 (2013).

    CAS  PubMed  Google Scholar 

  155. Pan, J. & Snell, W. J. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev. Cell 9, 431–438 (2005).

    CAS  PubMed  Google Scholar 

  156. Haque, F. et al. Cytoskeletal regulation of a transcription factor by DNA mimicry via coiled-coil interactions. Nat. Cell Biol. 24, 1088–1098 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ku, P. et al. Collaborative role of two distinct cilium-specific cytoskeletal systems in driving Hedgehog-responsive transcription factor trafficking. Preprint at bioRxiv https://doi.org/10.1101/2024.09.26.615198 (2024).

  158. He, M. et al. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16, 663–672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Mukhopadhyay, S. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes. Dev. 24, 2180–2193 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Berbari, N. F., Johnson, A. D., Lewis, J. S., Askwith, C. C. & Mykytyn, K. Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol. Biol. Cell 19, 1540–1547 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Mukhopadhyay, S. et al. The ciliary G-protein-coupled receptor gpr161 negatively regulates the sonic hedgehog pathway via cAMP signaling. Cell 152, 210–223 (2013).

    CAS  PubMed  Google Scholar 

  162. Reddy Palicharla, V. & Mukhopadhyay, S. Molecular and structural perspectives on protein trafficking to the primary cilium membrane. Biochem. Soc. Trans. 52, 1473–1487 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Badgandi, H. B., Hwang, S. H., Shimada, I. S., Loriot, E. & Mukhopadhyay, S. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins. J. Cell Biol. 216, 743–760 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Hong, J. J. et al. Differential roles of Tubby family proteins in ciliary formation and trafficking. Mol. Cell 44, 591–601 (2021).

    CAS  Google Scholar 

  165. Jia, D. et al. Tulp1 deficiency causes early-onset retinal degeneration through affecting ciliogenesis and activating ferroptosis in zebrafish. Cell Death Dis. 13, 1–11 (2022).

    Google Scholar 

  166. Chávez, M. et al. Modulation of ciliary phosphoinositide content regulates trafficking and sonic hedgehog signaling output. Dev. Cell 34, 338–350 (2015).

    PubMed  Google Scholar 

  167. Garcia-Gonzalo, F. R. et al. Phosphoinositides regulate ciliary protein trafficking to modulate hedgehog signaling. Dev. Cell 34, 400–409 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Hwang, S.-H. et al. Tulp3 regulates renal cystogenesis by trafficking of cystoproteins to cilia. Curr. Biol. 29, 790–802.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Legué, E. & Liem, K. F. Tulp3 is a ciliary trafficking gene that regulates polycystic kidney disease. Curr. Biol. 29, 803–812.e5 (2019).

    PubMed  Google Scholar 

  170. Palicharla, V. R. et al. Interactions between TULP3 tubby domain and ARL13B amphipathic helix promote lipidated protein transport to cilia. Mol. Biol. Cell 34, ar18 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Eguether, T., Cordelieres, F. P. & Pazour, G. J. Intraflagellar transport is deeply integrated in hedgehog signaling. Mol. Biol. Cell 29, 1178–1189 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Caparrós-Martín, J. A. et al. Specific variants in WDR35 cause a distinctive form of Ellis–van Creveld syndrome by disrupting the recruitment of the EvC complex and SMO into the cilium. Hum. Mol. Genet. 24, 4126–4137 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Fu, W., Wang, L., Kim, S., Li, J. & Dynlacht, B. D. Role for the IFT-A complex in selective transport to the primary cilium. Cell Rep. 17, 1505–1517 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Picariello, T. et al. A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J. Cell. Sci. 132, jcs220749 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Jensen, V. L. & Leroux, M. R. Gates for soluble and membrane proteins, and two trafficking systems (IFT and LIFT), establish a dynamic ciliary signaling compartment. Curr. Opin. Cell Biol. 47, 83–91 (2017).

    CAS  PubMed  Google Scholar 

  176. Lechtreck, K.-F. et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187, 1117–1132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Wei, Q. et al. The BBSome controls IFT assembly and turnaround in cilia. Nat. Cell Biol. 14, 950–957 (2012).

    PubMed  PubMed Central  Google Scholar 

  178. Nozaki, S., Araya, R. F. C., Katoh, Y. & Nakayama, K. Requirement of IFT-B–BBSome complex interaction in export of GPR161 from cilia. Biol. Open 8, bio043786 (2019).

    PubMed  PubMed Central  Google Scholar 

  179. Wang, J. et al. Assembly and stability of IFT-B complex and its function in BBSome trafficking. iScience 25, 105493 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Liew, G. M. et al. The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev. Cell 31, 265–278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Dong, B. et al. Chlamydomonas IFT25 is dispensable for flagellar assembly but required to export the BBSome from flagella. Biol. Open 6, 1680–1691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Chien, A. et al. Dynamics of the IFT machinery at the ciliary tip. eLife 6, e28606 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Mijalkovic, J., Van Krugten, J., Oswald, F., Acar, S. & Peterman, E. J. G. Single-molecule turnarounds of intraflagellar transport at the C. elegans ciliary tip. Cell Rep. 25, 1701–1707.e2 (2018).

    CAS  PubMed  Google Scholar 

  184. Wingfield, J. L. et al. In vivo imaging shows continued association of several IFT-A, IFT-B and dynein complexes while IFT trains U-turn at the tip. J. Cell Sci. 134, jcs259010 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Chaya, T. et al. Ccrk-Mak/Ick signaling is a ciliary transport regulator essential for retinal photoreceptor survival. Life Sci. Alliance 7, e202402880 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Matsushime, H., Jinno, A., Takagi, N. & Shibuya, M. A novel mammalian protein kinase gene (mak) is highly expressed in testicular germ cells at and after meiosis. Mol. Cell. Biol. 10, 2261–2268 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Asleson, C. M. & Lefebvre, P. A. Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: a new long-flagella locus and extragenic suppressor mutations. Genetics 148, 693–702 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Berman, S. A., Wilson, N. F., Haas, N. A. & Lefebvre, P. A. A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr. Biol. 13, 1145–1149 (2003).

    CAS  PubMed  Google Scholar 

  189. Broekhuis, J. R., Verhey, K. J. & Jansen, G. Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLOS ONE 9, e108470 (2014).

    PubMed  PubMed Central  Google Scholar 

  190. Chaya, T., Omori, Y., Kuwahara, R. & Furukawa, T. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J. 33, 1227–1242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Jiang, Y.-Y. et al. LF4/MOK and a CDK-related kinase regulate the number and length of cilia in Tetrahymena. PLOS Genet. 15, e1008099 (2019).

    PubMed  PubMed Central  Google Scholar 

  192. Maurya, A. K., Rogers, T. & Sengupta, P. A CCRK and a MAK kinase modulate cilia branching and length via regulation of axonemal microtubule dynamics in Caenorhabditis elegans. Curr. Biol. 29, 1286–1300.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Nakamura, K. et al. Anterograde trafficking of ciliary MAP kinase–like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. J. Biol. Chem. 295, 13363–13376 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang, Y., Ren, Y. & Pan, J. Regulation of flagellar assembly and length in Chlamydomonas by LF4, a MAPK-related kinase. FASEB J. 33, 6431–6441 (2019).

    CAS  PubMed  Google Scholar 

  195. Noguchi, T., Nakamura, K., Satoda, Y., Katoh, Y. & Nakayama, K. CCRK/CDK20 regulates ciliary retrograde protein trafficking via interacting with BROMI/TBC1D32. PLOS ONE 16, e0258497 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Gailey, C. D. et al. Phosphosite T674A mutation in kinesin family member 3A fails to reproduce tissue and ciliary defects characteristic of CILK1 loss of function. Dev. Dyn. 250, 263–273 (2021).

    CAS  PubMed  Google Scholar 

  197. Nievergelt, A. P. et al. Conversion of anterograde into retrograde trains is an intrinsic property of intraflagellar transport. Curr. Biol. 32, 4071–4078.e4 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Huet, D., Blisnick, T., Perrot, S. & Bastin, P. The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. eLife 3, e02419 (2014).

    PubMed  PubMed Central  Google Scholar 

  199. Gonçalves-Santos, F. et al. Hot-wiring dynein-2 establishes roles for IFT-A in retrograde train assembly and motility. Cell Rep. 42, 113337 (2023).

    PubMed  Google Scholar 

  200. Lechtreck, K. F. et al. Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase. J. Cell Biol. 201, 249–261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang, Q., Seo, S., Bugge, K., Stone, E. M. & Sheffield, V. C. BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum. Mol. Genet. 21, 1945–1953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Domire, J. S. et al. Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet–Biedl syndrome proteins. Cell. Mol. Life Sci. 68, 2951–2960 (2011).

    CAS  PubMed  Google Scholar 

  203. Eguether, T. et al. IFT27 Links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev. Cell 31, 279–290 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Ye, F., Nager, A. R. & Nachury, M. V. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J. Cell Biol. 217, 1847–1868 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Liu, Y.-X., Zhang, R.-K. & Fan, Z.-C. RABL4/IFT27 in a nucleotide-independent manner promotes phospholipase D ciliary retrieval via facilitating BBSome reassembly at the ciliary tip. J. Cell. Physiol. 238, 549–565 (2023).

    CAS  PubMed  Google Scholar 

  206. Dai, J. et al. Loss of ARL13 impedes BBSome-dependent cargo export from Chlamydomonas cilia. J. Cell Biol. 221, e202201050 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Liu, Y.-X., Li, W.-J., Zhang, R.-K., Sun, S.-N. & Fan, Z.-C. Unraveling the intricate cargo–BBSome coupling mechanism at the ciliary tip. Proc. Natl Acad. Sci. USA 120, e2218819120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Green, J. A. et al. Recruitment of β-arrestin into neuronal cilia modulates somatostatin receptor subtype 3 ciliary localization. Mol. Cell Biol. 36, 223–235 (2015).

    PubMed  PubMed Central  Google Scholar 

  209. Pal, K. et al. Smoothened determines β-arrestin–mediated removal of the G protein–coupled receptor Gpr161 from the primary cilium. J. Cell Biol. 212, 861–875 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Shinde, S. R., Nager, A. R. & Nachury, M. V. Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia. J. Cell Biol. 219, e202003020 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Shinde, S. R. et al. The ancestral ESCRT protein TOM1L2 selects ubiquitinated cargoes for retrieval from cilia. Dev. Cell 58, 677–693.e9 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Desai, P. B., Stuck, M. W., Lv, B. & Pazour, G. J. Ubiquitin links smoothened to intraflagellar transport to regulate Hedgehog signaling. J. Cell Biol. 219, e201912104 (2020).

    PubMed  PubMed Central  Google Scholar 

  213. Lv, B., Stuck, M. W., Desai, P. B., Cabrera, O. A. & Pazour, G. J. E3 ubiquitin ligase Wwp1 regulates ciliary dynamics of the Hedgehog receptor Smoothened. J. Cell Biol. 220, e202010177 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Chiuso, F. et al. Ubiquitylation of BBSome is required for ciliary assembly and signaling. EMBO Rep. 24, e55571 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Huang, K., Diener, D. R. & Rosenbaum, J. L. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J. Cell Biol. 186, 601–613 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Langousis, G. et al. Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei. Proc. Natl Acad. Sci. USA 113, 632–637 (2016).

    CAS  PubMed  Google Scholar 

  217. Liu, P. & Lechtreck, K. F. The Bardet–Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc. Natl Acad. Sci. 115, E934–E943 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Qin, H., Diener, D. R., Geimer, S., Cole, D. G. & Rosenbaum, J. L. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J. Cell Biol. 164, 255–266 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang, Q., Peng, Z., Long, H., Deng, X. & Huang, K. Polyubiquitylation of α-tubulin at K304 is required for flagellar disassembly in Chlamydomonas. J. Cell Sci. 132, jcs229047 (2019).

    CAS  PubMed  Google Scholar 

  220. Engel, B. D. et al. The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. J. Cell Biol. 199, 151–167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Mirvis, M., Siemers, K. A., Nelson, W. J. & Stearns, T. P. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLOS Biol. 17, e3000381 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Wang, G. et al. Rab7 regulates primary cilia disassembly through cilia excision. J. Cell Biol. 218, 4030–4041 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Long, H. et al. Comparative analysis of ciliary membranes and ectosomes. Curr. Biol. 26, 3327–3335 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Datta, P. et al. Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet–Biedl syndrome. Proc. Natl Acad. Sci. USA 112, E4400–E4409 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Hsu, Y. et al. BBSome function is required for both the morphogenesis and maintenance of the photoreceptor outer segment. PLOS Genet. 13, e1007057 (2017).

    PubMed  PubMed Central  Google Scholar 

  226. Kwon, Y. T. & Ciechanover, A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci. 42, 873–886 (2017).

    CAS  PubMed  Google Scholar 

  227. Mercey, O., Mukherjee, S., Guichard, P. & Hamel, V. The molecular architecture of the ciliary transition zones. Curr. Opin. Cell Biol. 88, 102361 (2024).

    CAS  PubMed  Google Scholar 

  228. LeGuennec, M., Klena, N., Aeschlimann, G., Hamel, V. & Guichard, P. Overview of the centriole architecture. Curr. Opin. Struct. Biol. 66, 58–65 (2021).

    CAS  PubMed  Google Scholar 

  229. Breslow, D. K. & Holland, A. J. Mechanism and regulation of centriole and cilium biogenesis. Annu. Rev. Biochem. 88, 691–724 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Kee, H. L. et al. A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431–437 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Lin, Y.-C. et al. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9, 437–443 (2013).

    CAS  PubMed  Google Scholar 

  232. Breslow, D. K., Koslover, E. F., Seydel, F., Spakowitz, A. J. & Nachury, M. V. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J. Cell Biol. 203, 129–147 (2013).

    PubMed  PubMed Central  Google Scholar 

  233. Gilula, N. B. & Satir, P. The ciliary necklace: a ciliary membrane specialization. J. Cell Biol. 53, 494–509 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Oswald, F., Prevo, B., Acar, S. & Peterman, E. J. G. Interplay between ciliary ultrastructure and ift-train dynamics revealed by single-molecule super-resolution imaging. Cell Rep. 25, 224–235 (2018).

    CAS  PubMed  Google Scholar 

  237. Yang, T. T., Tran, M. N. T., Chong, W. M., Huang, C.-E. & Liao, J.-C. Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia. Mol. Biol. Cell 30, 828–837 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Scheidel, N. & Blacque, O. E. Intraflagellar transport complex a genes differentially regulate cilium formation and transition zone gating. Curr. Biol. 28, 3279–3287.e2 (2018).

    CAS  PubMed  Google Scholar 

  239. Marshall, W. F. Chlamydomonas as a model system to study cilia and flagella using genetics, biochemistry, and microscopy. Front. Cell Dev. Biol. 12, 1412641 (2024).

    PubMed  PubMed Central  Google Scholar 

  240. Awasthi, M., Ranjan, P., Sharma, K., Veetil, S. K. & Kateriya, S. The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated. Sci. Rep. 6, 34646 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Fujiu, K., Nakayama, Y., Iida, H., Sokabe, M. & Yoshimura, K. Mechanoreception in motile flagella of Chlamydomonas. Nat. Cell Biol. 13, 630–632 (2011).

    CAS  PubMed  Google Scholar 

  242. Fujiu, K., Nakayama, Y., Yanagisawa, A., Sokabe, M. & Yoshimura, K. Chlamydomonas CAV2 encodes a voltage-dependent calcium channel required for the flagellar waveform conversion. Curr. Biol. 19, 133–139 (2009).

    CAS  PubMed  Google Scholar 

  243. Huang, K. et al. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J. Cell Biol. 179, 501–514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    CAS  PubMed  Google Scholar 

  245. Beneke, T. et al. IFT and BBSome proteins are required for Leishmania mexicana pathogenicity, but flagellar motility is dispensable. Preprint at bioRxiv https://doi.org/10.1101/2024.09.13.612850 (2024).

  246. Broadhead, R. et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440, 224–227 (2006).

    CAS  PubMed  Google Scholar 

  247. Inglis, P. N., Ou, G., Leroux, M. R. & Scholey, J. M. The sensory cilia of Caenorhabditis elegans. In WormBook: The Online Review of C. elegans Biology (WormBook, 2018).

  248. Omori, Y. et al. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat. Cell Biol. 10, 437–444 (2008).

    CAS  PubMed  Google Scholar 

  249. Blacque, O. E. et al. Functional genomics of the cilium, a sensory organelle. Curr. Biol. 15, 935–941 (2005).

    CAS  PubMed  Google Scholar 

  250. Nonaka, S. et al. Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    CAS  PubMed  Google Scholar 

  251. Binó, L. et al. A protocol for generation and live-cell imaging analysis of primary cilia reporter cell lines. STAR Protoc. 3, 101199 (2022).

    PubMed  PubMed Central  Google Scholar 

  252. Ocbina, P. J. R. & Anderson, K. V. Intraflagellar transport, cilia and mammalian hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev. Dyn. 237, 2030–2038 (2008).

    PubMed  PubMed Central  Google Scholar 

  253. Baldassi, D., Gabold, B. & Merkel, O. Air–liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions. Adv. Nanobiomed. Res. 1, 2000111 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the Human Technopole and the European Research Council under the EU Horizon 2020 Research and Innovation Programme (grant number 819826) to G.P.

Author information

Authors and Affiliations

Authors

Contributions

S.E.L. researched data for the article. Both authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Gaia Pigino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Saikat Mukhopadhyay, who co-reviewed with Venkata Vivek Reddy Palicharla, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ciliopathies

A group of syndromes with diverse developmental phenotypes caused by mutations to genes involved in the formation and function of cilia.

Cryo-electron tomography

An electron microscopy technique capable of visualizing cellular ultrastructure in three dimensions.

Ectosomes

Small vesicles released from the tip of the cilium that can contain high concentrations of receptors and signalling proteins.

Expansion microscopy

A super-resolution fluorescence microscopy technique in which a sample is cross-linked to an expandable hydrogel to physically separate the resolvable features.

G-protein-coupled receptors

(GPCRs). Integral membrane proteins that transduce the binding of an extracellular agonist into an intracellular response through activation of cytoplasm G proteins.

Polycystic kidney disease

A set of ciliopathy diseases characterized by the aberrant formation of cysts in the kidneys.

Steady-state cilium

A full-length cilium that is neither growing or shrinking.

Tetratricopeptide repeats

A short structural motif made up of antiparallel α-helices that is generally repeated in tandem to form a TPR domain; these often form solenoids or long helical bundles that mediate protein–protein interactions and allow for structural flexibility.

Tryptophan–aspartic acid (WD) domains

β-propeller (annular) structural domains that often mediate protein–protein interactions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacey, S.E., Pigino, G. The intraflagellar transport cycle. Nat Rev Mol Cell Biol 26, 175–192 (2025). https://doi.org/10.1038/s41580-024-00797-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-024-00797-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing