Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of mitochondria in global and local intracellular calcium signalling

Abstract

Activation of Ca2+ channels in Ca2+ stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca2+]c) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca2+ uptake and chelation, alongside efficient Ca2+ release mechanisms. Still, mitochondria do not store Ca2+ in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca2+]c signals. However, mitochondria take up Ca2+ at high local [Ca2+]c signals that originate from neighbouring organelles, and also during sustained global elevations of [Ca2+]c. Accumulated Ca2+ in the mitochondria stimulates oxidative metabolism and upon return to the cytoplasm, can produce spatially confined rises in [Ca2+]c to exert control over processes that are sensitive to Ca2+. Thus, the mitochondrial handling of [Ca2+]c is of physiological relevance. Furthermore, dysregulation of mitochondrial Ca2+ handling can contribute to debilitating diseases. We discuss the mechanisms and relevance of mitochondria in local and global calcium signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondria as a global and local Ca2+ buffer.
Fig. 2: Ca2+ chelating mechanisms and Ca2+-binding proteins in mitochondria and cytoplasm.
Fig. 3: ER–mitochondria interactions that mediating local Ca2+ transfer.

Similar content being viewed by others

References

  1. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Rizzuto, R. & Pozzan, T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev. 86, 369–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Spat, A., Szanda, G., Csordas, G. & Hajnoczky, G. High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium 44, 51–63 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoth, M., Fanger, C. M. & Lewis, R. S. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell Biol. 137, 633–648 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Csordas, G., Thomas, A. P. & Hajnoczky, G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J. 18, 96–108 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Csordas, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39, 121–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Varnai, P., Toth, B., Toth, D. J., Hunyady, L. & Balla, T. Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 Complex. J. Biol. Chem. 282, 29678–29690 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Korzeniowski, M. K., Szanda, G., Balla, T. & Spat, A. Store-operated Ca2+ influx and subplasmalemmal mitochondria. Cell Calcium 46, 49–55 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meschede, I. P. et al. Symmetric arrangement of mitochondria: plasma membrane contacts between adjacent photoreceptor cells regulated by Opa1. Proc. Natl Acad. Sci. USA 117, 15684–15693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  PubMed  Google Scholar 

  13. Naon, D. et al. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria. Science 380, eadh9351 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. De Vos, K. J. et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299–1311 (2012).

    Article  PubMed  Google Scholar 

  15. Morotz, G. M. et al. The PTPIP51 coiled-coil domain is important in VAPB binding, formation of ER-mitochondria contacts and IP3 receptor delivery of Ca2+ to mitochondria. Front. Cell Dev. Biol. 10, 920947 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yuan, Y. et al. Two-pore channel-2 and inositol trisphosphate receptors coordinate Ca2+ signals between lysosomes and the endoplasmic reticulum. Cell Rep. 43, 113628 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Ramazanov, B. R. et al. Calcium flow at ER–TGN contact sites facilitates secretory cargo export. Mol. Biol. Cell 35, ar50 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pizzo, P., Lissandron, V., Capitanio, P. & Pozzan, T. Ca2+ signalling in the Golgi apparatus. Cell Calcium 50, 184–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Calvo-Rodriguez, M. et al. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun. 11, 2146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pfeiffer, D. R., Gunter, T. E., Eliseev, R., Broekemeier, K. M. & Gunter, K. K. Release of Ca2+ from mitochondria via the saturable mechanisms and the permeability transition. IUBMB Life 52, 205–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Bernardi, P. et al. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 30, 1869–1885 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vercesi, A. E. et al. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic. Biol. Med. 129, 1–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. David, G., Barrett, J. N. & Barrett, E. F. Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. J. Physiol. 509, 59–65 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wan, Q. F., Nixon, E. & Heidelberger, R. Regulation of presynaptic calcium in a mammalian synaptic terminal. J. Neurophysiol. 108, 3059–3067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Divakaruni, S. S. et al. Long-term potentiation requires a rapid burst of dendritic mitochondrial fission during induction. Neuron 100, 860–875.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lewis, T. L. Jr, Kwon, S. K., Lee, A., Shaw, R. & Polleux, F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat. Commun. 9, 5008 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deluca, H. F. & Engstrom, G. W. Calcium uptake by rat kidney mitochondria. Proc. Natl Acad. Sci. USA 47, 1744–1750 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vasington, F. D. Calcium ion uptake by fragments of rat liver mitochondria and its dependence on electron transport. J. Biol. Chem. 238, 1841–1847 (1963).

    Article  CAS  PubMed  Google Scholar 

  29. Carafoli, E. & Lehninger, A. L. A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem. J. 122, 681–690 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Denton, R. M. & McCormack, J. G. The role of calcium in the regulation of mitochondrial metabolism. Biochem. Soc. Trans. 8, 266–268 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. Gunter, T. E. & Pfeiffer, D. R. Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258, C755–C786 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Nicholls, D. G. & Crompton, M. Mitochondrial calcium transport. FEBS Lett. 111, 261–268 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Hunter, D. R., Haworth, R. A. & Southard, J. H. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem. 251, 5069–5077 (1976).

    Article  CAS  PubMed  Google Scholar 

  34. Chien, K. R., Abrams, J., Pfau, R. G. & Farber, J. L. Prevention by chlorpromazine of ischemic liver cell death. Am. J. Pathol. 88, 539–557 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsien, R. Y., Pozzan, T. & Rink, T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol. 94, 325–334 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Pozzan, T., Arslan, P., Tsien, R. Y. & Rink, T. J. Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J. Cell Biol. 94, 335–340 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. Somlyo, A. P., Bond, M. & Somlyo, A. V. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314, 622–625 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Rizzuto, R., Simpson, A. W., Brini, M. & Pozzan, T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325–327 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744–747 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Minta, A., Kao, J. P. & Tsien, R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264, 8171–8178 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Burnier, M., Centeno, G., Burki, E. & Brunner, H. R. Confocal microscopy to analyze cytosolic and nuclear calcium in cultured vascular cells. Am. J. Physiol. 266, C1118–C1127 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Pralong, W. F., Spat, A. & Wollheim, C. B. Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J. Biol. Chem. 269, 27310–27314 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Szalai, G., Krishnamurthy, R. & Hajnoczky, G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J. 18, 6349–6361 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abramov, A. Y. & Duchen, M. R. Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim. Biophys. Acta 1777, 953–964 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Meldolesi, J. & Pozzan, T. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. 23, 10–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Duchen, M. R., Leyssens, A. & Crompton, M. Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J. Cell Biol. 142, 975–988 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Booth, D. M., Varnai, P., Joseph, S. K. & Hajnoczky, G. Oxidative bursts of single mitochondria mediate retrograde signaling toward the ER. Mol. Cell 81, 3866–3876.e2 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Santo-Domingo, J., Giacomello, M., Poburko, D., Scorrano, L. & Demaurex, N. OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. EMBO J. 32, 1927–1940 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hoyt, K. R., McLaughlin, B. A., Higgins, D. S. Jr & Reynolds, I. J. Inhibition of glutamate-induced mitochondrial depolarization by tamoxifen in cultured neurons. J. Pharmacol. Exp. Ther. 293, 480–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Jouaville, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P. & Lechleiter, J. D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Hajnoczky, G., Hager, R. & Thomas, A. P. Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+. J. Biol. Chem. 274, 14157–14162 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Gilabert, J. A. & Parekh, A. B. Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current ICRAC. EMBO J. 19, 6401–6407 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoth, M., Button, D. C. & Lewis, R. S. Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl Acad. Sci. USA 97, 10607–10612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tinel, H. et al. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J. 18, 4999–5008 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arnaudeau, S., Kelley, W. L., Walsh, J. V. Jr & Demaurex, N. Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem. 276, 29430–29439 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Boitier, E., Rea, R. & Duchen, M. R. Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J. Cell Biol. 145, 795–808 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Opuni, K. & Reeves, J. P. Feedback inhibition of sodium/calcium exchange by mitochondrial calcium accumulation. J. Biol. Chem. 275, 21549–21554 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Babcock, D. F., Herrington, J., Goodwin, P. C., Park, Y. B. & Hille, B. Mitochondrial participation in the intracellular Ca2+ network. J. Cell Biol. 136, 833–844 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kirichok, Y., Krapivinsky, G. & Clapham, D. E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sancak, Y. et al. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342, 1379–1382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Perocchi, F. et al. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467, 291–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Plovanich, M. et al. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS ONE 8, e55785 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kamer, K. J., Grabarek, Z. & Mootha, V. K. High-affinity cooperative Ca2+ binding by MICU1-MICU2 serves as an on-off switch for the uniporter. EMBO Rep. 18, 1397–1411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raffaello, A. et al. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 467, 2362–2376 (2013).

    Article  Google Scholar 

  68. Palty, R. et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl Acad. Sci. USA 107, 436–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Austin, S. et al. TMBIM5 is the Ca2+/H+ antiporter of mammalian mitochondria. EMBO Rep. 23, e54978 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pan, X. et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell Biol. 15, 1464–1472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Antony, A. N. et al. MICU1 regulation of mitochondrial Ca2+ uptake dictates survival and tissue regeneration. Nat. Commun. 7, 10955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luongo, T. S. et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature 545, 93–97 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Logan, C. V. et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet. 46, 188–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Lewis-Smith, D. et al. Homozygous deletion in MICU1 presenting with fatigue and lethargy in childhood. Neurol. Genet. 2, e59 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Suzuki, J. et al. Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat. Commun. 5, 4153 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Raffaello, A., Mammucari, C., Gherardi, G. & Rizzuto, R. Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci. 41, 1035–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Emrich, S. M., Yoast, R. E. & Trebak, M. Physiological functions of CRAC channels. Annu. Rev. Physiol. 84, 355–379 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Qiu, R. & Lewis, R. S. Structural features of STIM and Orai underlying store-operated calcium entry. Curr. Opin. Cell Biol. 57, 90–98 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gudlur, A. & Hogan, P. in Calcium Entry Channels in Non-Excitable Cells. Ch. 3 (eds Kozak J.A. & Putney J.W. Jr) 51–72 (Taylor & Francis, 2018).

  80. Catterall, W. A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3, a003947 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nanou, E. & Catterall, W. A. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98, 466–481 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Dolphin, A. C. & Lee, A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat. Rev. Neurosci. 21, 213–229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mony, L. & Paoletti, P. Mechanisms of NMDA receptor regulation. Curr. Opin. Neurobiol. 83, 102815 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Baker, M. R., Fan, G., Arige, V., Yule, D. I. & Serysheva, I. I. Understanding IP3R channels: from structural underpinnings to ligand-dependent conformational landscape. Cell Calcium 114, 102770 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Foskett, J. K., White, C., Cheung, K. H. & Mak, D. O. Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 87, 593–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Prole, D. L. & Taylor, C. W. Structure and function of IP3 receptors. Cold Spring Harb. Perspect. Biol. 11, a035063 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Woll, K. A. & Van Petegem, F. Calcium-release channels: structure and function of IP3 receptors and ryanodine receptors. Physiol. Rev. 102, 209–268 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Smith, I. F., Swaminathan, D., Dickinson, G. D. & Parker, I. Single-molecule tracking of inositol trisphosphate receptors reveals different motilities and distributions. Biophys. J. 107, 834–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thillaiappan, N. B., Chavda, A. P., Tovey, S. C., Prole, D. L. & Taylor, C. W. Ca2+ signals initiate at immobile IP3 receptors adjacent to ER-plasma membrane junctions. Nat. Commun. 8, 1505 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thillaiappan, N. B., Smith, H. A., Atakpa-Adaji, P. & Taylor, C. W. KRAP tethers IP3 receptors to actin and licenses them to evoke cytosolic Ca2+ signals. Nat. Commun. 12, 4514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eisner, D., Neher, E., Taschenberger, H. & Smith, G. Physiology of intracellular calcium buffering. Physiol. Rev. 103, 2767–2845 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schwaller, B. Cytosolic Ca2+ buffers are inherently Ca2+ signal modulators. Cold Spring Harb. Perspect. Biol. 12, a035543 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Woehler, A., Lin, K. H. & Neher, E. Calcium-buffering effects of gluconate and nucleotides, as determined by a novel fluorimetric titration method. J. Physiol. 592, 4863–4875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baylor, S. M. & Hollingworth, S. Model of sarcomeric Ca2+ movements, including ATP Ca2+ binding and diffusion, during activation of frog skeletal muscle. J. Gen. Physiol. 112, 297–316 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, G. et al. Deficiency in parvalbumin, but not in calbindin D-28k upregulates mitochondrial volume and decreases smooth endoplasmic reticulum surface selectively in a peripheral, subplasmalemmal region in the soma of Purkinje cells. Neuroscience 142, 97–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, G. et al. Deficiency in parvalbumin increases fatigue resistance in fast-twitch muscle and upregulates mitochondria. Am. J. Physiol. Cell Physiol. 281, C114–C122 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Tan, W. & Colombini, M. VDAC closure increases calcium ion flux. Biochim. Biophys. Acta 1768, 2510–2515 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bathori, G., Csordas, G., Garcia-Perez, C., Davies, E. & Hajnoczky, G. Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J. Biol. Chem. 281, 17347–17358 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Rosencrans, W. M., Rajendran, M., Bezrukov, S. M. & Rostovtseva, T. K. VDAC regulation of mitochondrial calcium flux: from channel biophysics to disease. Cell Calcium 94, 102356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sander, P., Gudermann, T. & Schredelseker, J. A calcium guard in the outer membrane: is VDAC a regulated gatekeeper of mitochondrial calcium uptake? Int. J. Mol. Sci. 22, 946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Filadi, R. et al. TOM70 sustains cell bioenergetics by promoting IP3R3-mediated ER to mitochondria Ca2+ transfer. Curr. Biol. 28, 369–382.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Fan, M. et al. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature 582, 129–133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rodriguez-Prados, M. et al. MICU1 occludes the mitochondrial calcium uniporter in divalent-free conditions. Proc. Natl Acad. Sci. USA 120, e2218999120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tsai, C. W. et al. Evidence supporting the MICU1 occlusion mechanism and against the potentiation model in the mitochondrial calcium uniporter complex. Proc. Natl Acad. Sci. USA 120, e2217665120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kamer, K. J., Jiang, W., Kaushik, V. K., Mootha, V. K. & Grabarek, Z. Crystal structure of MICU2 and comparison with MICU1 reveal insights into the uniporter gating mechanism. Proc. Natl Acad. Sci. USA 116, 3546–3555 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kamer, K. J. & Mootha, V. K. MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep. 15, 299–307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Patron, M., Granatiero, V., Espino, J., Rizzuto, R. & De Stefani, D. MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell Death Differ. 26, 179–195 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Csordas, G. et al. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab. 17, 976–987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang, L. et al. A quantitative proteome map of the human body. Cell 183, 269–283.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Paillard, M. et al. Tissue-specific mitochondrial decoding of cytoplasmic Ca2+ signals is controlled by the stoichiometry of MICU1/2 and MCU. Cell Rep. 18, 2291–2300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsai, C. W. et al. Mechanisms and significance of tissue-specific MICU regulation of the mitochondrial calcium uniporter complex. Mol. Cell 82, 3661–3676.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hasan, P. et al. MICU1 and MICU2 control mitochondrial calcium signaling in the mammalian heart. Proc. Natl Acad. Sci. USA 121, e2402491121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, J. C. et al. MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload. Cell Rep. 16, 1561–1573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Singh, R. et al. Uncontrolled mitochondrial calcium uptake underlies the pathogenesis of neurodegeneration in MICU1-deficient mice and patients. Sci. Adv. 8, eabj4716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Delgado de la Herran, H. et al. Systematic mapping of mitochondrial calcium uniporter channel (MCUC)-mediated calcium signaling networks. EMBO J. 43, 5288–5326 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hamilton, J., Brustovetsky, T. & Brustovetsky, N. The effect of mitochondrial calcium uniporter and cyclophilin D knockout on resistance of brain mitochondria to Ca2+-induced damage. J. Biol. Chem. 296, 100669 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Petersen, C. E. et al. Increased mitochondrial free Ca2+ during ischemia is suppressed, but not eliminated by, germline deletion of the mitochondrial Ca2+ uniporter. Cell Rep. 42, 112735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bround, M. J. et al. MCU-independent Ca2+ uptake mediates mitochondrial Ca2+ overload and necrotic cell death in a mouse model of Duchenne muscular dystrophy. Sci. Rep. 14, 6751 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Garbincius, J. F. et al. TMEM65 regulates NCLX-dependent mitochondrial calcium efflux. Preprint at bioRxiv https://doi.org/10.1101/2023.10.06.561062 (2023).

  120. Vetralla, M. et al. TMEM65-dependent Ca2+ extrusion safeguards mitochondrial homeostasis. Preprint at bioRxiv https://doi.org/10.1101/2023.10.10.561661 (2023).

  121. Zhang, Y. et al. Loss of TMEM65 causes mitochondrial disease mediated by mitochondrial calcium. Preprint at bioRxiv https://doi.org/10.1101/2022.08.02.502535 (2023).

  122. Patron, M. et al. Regulation of mitochondrial proteostasis by the proton gradient. EMBO J. 41, e110476 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, L. et al. TMBIM5 loss of function alters mitochondrial matrix ion homeostasis and causes a skeletal myopathy. Life Sci. Alliance 5, e202201478 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gunter, T. E., Chace, J. H., Puskin, J. S. & Gunter, K. K. Mechanism of sodium independent calcium efflux from rat liver mitochondria. Biochemistry 22, 6341–6351 (1983).

    Article  CAS  PubMed  Google Scholar 

  125. Tsai, M. F., Jiang, D., Zhao, L., Clapham, D. & Miller, C. Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. J. Gen. Physiol. 143, 67–73 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Austin, S. et al. LETM1-mediated K+ and Na+ homeostasis regulates mitochondrial Ca2+ efflux. Front. Physiol. 8, 839 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. De Marchi, U. et al. NCLX protein, but not LETM1, mediates mitochondrial Ca2+ extrusion, thereby limiting Ca2+-induced NAD(P)H production and modulating matrix redox state. J. Biol. Chem. 289, 20377–20385 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Natarajan, G. K. et al. Total matrix Ca2+ modulates Ca2+ efflux via the Ca2+/H+ exchanger in cardiac mitochondria. Front. Physiol. 11, 510600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lu, X., Kwong, J. Q., Molkentin, J. D. & Bers, D. M. Individual cardiac mitochondria undergo rare transient permeability transition pore openings. Circ. Res. 118, 834–841 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. De Marchi, E., Bonora, M., Giorgi, C. & Pinton, P. The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium 56, 1–13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bround, M. J., Bers, D. M. & Molkentin, J. D. A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. J. Mol. Cell Cardiol. 144, A3–A13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Smith, R. M. & Martell, A. E. in Critical Stability Constants (Plenum, 1989).

  133. Sokolove, P. M., Brenza, J. M. & Shamoo, A. E. Ca2+-cardiolipin interaction in a model system. Selectivity and apparent high affinity. Biochim. Biophys. Acta 732, 41–47 (1983).

    Article  CAS  PubMed  Google Scholar 

  134. Nicholls, D. G. & Chalmers, S. The integration of mitochondrial calcium transport and storage. J. Bioenerg. Biomembr. 36, 277–281 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Greenawalt, J. W., Rossi, C. S. & Lehninger, A. L. Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J. Cell Biol. 23, 21–38 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Seifert, E. L., Ligeti, E., Mayr, J. A., Sondheimer, N. & Hajnoczky, G. The mitochondrial phosphate carrier: role in oxidative metabolism, calcium handling and mitochondrial disease. Biochem. Biophys. Res. Commun. 464, 369–375 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brenza, J. M., Neagle, C. E. & Sokolove, P. M. Interaction of Ca2+ with cardiolipin-containing liposomes and its inhibition by adriamycin. Biochem. Pharmacol. 34, 4291–4298 (1985).

    Article  CAS  PubMed  Google Scholar 

  138. Golla, V. K., Boyd, K. J. & May, E. R. Curvature sensing lipid dynamics in a mitochondrial inner membrane model. Commun. Biol. 7, 29 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ghosh, S. et al. MCU-complex-mediated mitochondrial calcium signaling is impaired in Barth syndrome. Hum. Mol. Genet. 31, 376–385 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Csordas, G. & Hajnoczky, G. Plasticity of mitochondrial calcium signaling. J. Biol. Chem. 278, 42273–42282 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Basso, E., Rigotto, G., Zucchetti, A. E. & Pozzan, T. Slow activation of fast mitochondrial Ca2+ uptake by cytosolic Ca(2). J. Biol. Chem. 293, 17081–17094 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Debattisti, V. et al. Dysregulation of mitochondrial Ca2+ uptake and sarcolemma repair underlie muscle weakness and wasting in patients and mice lacking MICU1. Cell Rep. 29, 1274–1286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rodriguez-Prados, M. et al. MICU1 controls the sensitivity of the mitochondrial Ca2+ uniporter to activators and inhibitors. Cell Chem. Biol. 30, 606–617 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Santulli, G., Xie, W., Reiken, S. R. & Marks, A. R. Mitochondrial calcium overload is a key determinant in heart failure. Proc. Natl Acad. Sci. USA 112, 11389–11394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Thangaratnarajah, C., Ruprecht, J. J. & Kunji, E. R. S. Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Nat. Commun. 5, 5491 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Perez-Liebana, I. et al. A Ca2+-dependent mechanism boosting glycolysis and OXPHOS by activating aralar-malate-aspartate shuttle, upon neuronal stimulation. J. Neurosci. 42, 3879–3895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Koshenov, Z. et al. Citrin mediated metabolic rewiring in response to altered basal subcellular Ca2+ homeostasis. Commun. Biol. 5, 76 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Harborne, S. P., King, M. S., Crichton, P. G. & Kunji, E. R. Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Sci. Rep. 7, 45383 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Denton, R. M. & McCormack, J. G. The calcium sensitive dehydrogenases of vertebrate mitochondria. Cell Calcium 7, 377–386 (1986).

    Article  CAS  PubMed  Google Scholar 

  150. Schuster, S. M. & Olson, M. S. The regulation of pyruvate dehydrogenase in isolated beef heart mitochondria. The role of calcium, magnesium, and permeant anions. J. Biol. Chem. 249, 7159–7165 (1974).

    Article  CAS  PubMed  Google Scholar 

  151. Denton, R. M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309–1316 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Rutter, G. A. & Denton, R. M. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem. J. 252, 181–189 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rusinol, A. E., Cui, Z., Chen, M. H. & Vance, J. E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J. Biol. Chem. 269, 27494–27502 (1994).

    Article  CAS  PubMed  Google Scholar 

  154. Csordas, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lock, J. T., Smith, I. F. & Parker, I. Spatial-temporal patterning of Ca2+ signals by the subcellular distribution of IP3 and IP3 receptors. Semin. Cell Dev. Biol. 94, 3–10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Parker, I., Choi, J. & Yao, Y. Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium 20, 105–121 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Pacher, P., Thomas, A. P. & Hajnoczky, G. Ca2+ marks: miniature calcium signals in single mitochondria driven by ryanodine receptors. Proc. Natl Acad. Sci. USA 99, 2380–2385 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Thomas, A. P., Bird, G. S., Hajnoczky, G., Robb-Gaspers, L. D. & Putney, J. W. Jr. Spatial and temporal aspects of cellular calcium signaling. FASEB J. 10, 1505–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  159. Luik, R. M., Wu, M. M., Buchanan, J. & Lewis, R. S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Franzini-Armstrong, C. ER-mitochondria communication. how privileged? Physiology 22, 261–268 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Giacomello, M. et al. Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol. Cell 38, 280–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Booth, D. M., Enyedi, B., Geiszt, M., Varnai, P. & Hajnoczky, G. Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell 63, 240–248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Malli, R., Frieden, M., Trenker, M. & Graier, W. F. The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J. Biol. Chem. 280, 12114–12122 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Gutierrez, T. et al. The ER chaperone calnexin controls mitochondrial positioning and respiration. Sci. Signal. 13, eaax6660 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Krols, M., Bultynck, G. & Janssens, S. ER-Mitochondria contact sites: a new regulator of cellular calcium flux comes into play. J. Cell Biol. 214, 367–370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wheeler, D. G. et al. CaV1 and CaV2 channels engage distinct modes of Ca2+ signaling to control CREB-dependent gene expression. Cell 149, 1112–1124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Malli, R., Frieden, M., Osibow, K. & Graier, W. F. Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation. J. Biol. Chem. 278, 10807–10815 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Zajac, M. et al. A mechanism of lysosomal calcium entry. Sci. Adv. 10, eadk2317 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Giamogante, F. et al. A SPLICS reporter reveals α-synuclein regulation of lysosome-mitochondria contacts which affects TFEB nuclear translocation. Nat. Commun. 15, 1516 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Peng, W., Wong, Y. C. & Krainc, D. Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1. Proc. Natl Acad. Sci. USA 117, 19266–19275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Van Baelen, K. et al. The contribution of the SPCA1 Ca2+ pump to the Ca2+ accumulation in the Golgi apparatus of HeLa cells assessed via RNA-mediated interference. Biochem. Biophys. Res. Commun. 306, 430–436 (2003).

    Article  PubMed  Google Scholar 

  172. Voeltz, G. K., Sawyer, E. M., Hajnoczky, G. & Prinz, W. A. Making the connection: how membrane contact sites have changed our view of organelle biology. Cell 187, 257–270 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Szalai, G., Csordas, G., Hantash, B. M., Thomas, A. P. & Hajnoczky, G. Calcium signal transmission between ryanodine receptors and mitochondria. J. Biol. Chem. 275, 15305–15313 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Ramesh, V., Sharma, V. K., Sheu, S. S. & Franzini-Armstrong, C. Structural proximity of mitochondria to calcium release units in rat ventricular myocardium may suggest a role in Ca2+ sequestration. Ann. NY Acad. Sci. 853, 341–344 (1998).

    Article  CAS  PubMed  Google Scholar 

  177. Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mendes, C. C. et al. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J. Biol. Chem. 280, 40892–40900 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Hayashi, T. & Su, T. P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131, 596–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Liu, Y. et al. DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1. Proc. Natl Acad. Sci. USA 116, 25322–25328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Carreras-Sureda, A. et al. Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat. Cell Biol. 21, 755–767 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Erustes, A. G. et al. Overexpression of alpha-synuclein inhibits mitochondrial Ca2+ trafficking between the endoplasmic reticulum and mitochondria through MAMs by altering the GRP75-IP3R interaction. J. Neurosci. Res. 99, 2932–2947 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. D’Eletto, M. et al. Transglutaminase type 2 regulates ER-mitochondria contact sites by interacting with GRP75. Cell Rep. 25, 3573–3581.e4 (2018).

    Article  PubMed  Google Scholar 

  184. Wu, S. et al. Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation 136, 2248–2266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Berridge, M. J. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 96, 1261–1296 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Prole, D. L. & Taylor, C. W. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J. Physiol. 594, 2849–2866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Joseph, S. K., Booth, D. M., Young, M. P. & Hajnoczky, G. Redox regulation of ER and mitochondrial Ca2+ signaling in cell survival and death. Cell Calcium 79, 89–97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ivanova, H. et al. Bcl-2-Protein Family as Modulators of IP3 Receptors and Other Organellar Ca2+ Channels. Cold Spring Harb. Perspect. Biol. 12, a035089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lock, J. T., Alzayady, K. J., Yule, D. I. & Parker, I. All three IP3 receptor isoforms generate Ca2+ puffs that display similar characteristics. Sci. Signal. 11, eaau0344 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bartok, A. et al. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat. Commun. 10, 3726 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Katona, M. et al. Capture at the ER-mitochondrial contacts licenses IP3 receptors to stimulate local Ca2+ transfer and oxidative metabolism. Nat. Commun. 13, 6779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Naghdi, S. & Hajnoczky, G. VDAC2-specific cellular functions and the underlying structure. Biochim. Biophys. Acta 1863, 2503–2514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Eisner, V., Csordas, G. & Hajnoczky, G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle — pivotal roles in Ca2+ and reactive oxygen species signaling. J. Cell Sci. 126, 2965–2978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Hall, A. R. et al. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 7, e2238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Inagaki, S. et al. Mitofusin 2 positively regulates Ca2+ signaling by tethering the sarcoplasmic reticulum and mitochondria in rat aortic smooth muscle cells. Am. J. Physiol. Cell Physiol. 323, C295–C305 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Filadi, R. et al. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc. Natl Acad. Sci. USA 112, E2174–E2181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gomez-Suaga, P. et al. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr. Biol. 27, 371–385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yeo, H. K. et al. Phospholipid transfer function of PTPIP51 at mitochondria-associated ER membranes. EMBO Rep. 22, e51323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kornmann, B. et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hirabayashi, Y. et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lee, K. S. et al. Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc. Natl Acad. Sci. USA 115, E8844–E8853 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Covill-Cooke, C. et al. Shared structural features of Miro binding control mitochondrial homeostasis. EMBO J. 43, 595–614 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Guillen-Samander, A. et al. VPS13D bridges the ER to mitochondria and peroxisomes via Miro. J. Cell Biol. 220, e202010004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fernandez-Busnadiego, R., Saheki, Y. & De Camilli, P. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. Proc. Natl Acad. Sci. USA 112, E2004–E2013 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Janer, A. et al. ESYT1 tethers the ER to mitochondria and is required for mitochondrial lipid and calcium homeostasis. Life Sci. Alliance 7, e202302335 (2024).

    Article  CAS  PubMed  Google Scholar 

  206. Carpio, M. A. et al. BOK controls apoptosis by Ca2+ transfer through ER-mitochondrial contact sites. Cell Rep. 34, 108827 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lucendo, E. et al. Mcl-1 and Bok transmembrane domains: unexpected players in the modulation of apoptosis. Proc. Natl Acad. Sci. USA 117, 27980–27988 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Doghman-Bouguerra, M. et al. FATE1 antagonizes calcium- and drug-induced apoptosis by uncoupling ER and mitochondria. EMBO Rep. 17, 1264–1280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Schober, R. et al. STIM1 and Orai1 regulate Ca2+ microdomains for activation of transcription. Biochim. Biophys. Acta Mol. Cell Res. 1866, 1079–1091 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Varadi, A., Cirulli, V. & Rutter, G. A. Mitochondrial localization as a determinant of capacitative Ca2+ entry in HeLa cells. Cell Calcium 36, 499–508 (2004).

    Article  CAS  PubMed  Google Scholar 

  211. Ben-Kasus Nissim, T. et al. Mitochondria control store-operated Ca2+ entry through Na+ and redox signals. EMBO J. 36, 797–815 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yoast, R. E. et al. The mitochondrial Ca2+ uniporter is a central regulator of interorganellar Ca2+ transfer and NFAT activation. J. Biol. Chem. 297, 101174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Frieden, M., Arnaudeau, S., Castelbou, C. & Demaurex, N. Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+-ATPases. J. Biol. Chem. 280, 43198–43208 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. Poburko, D., Liao, C. H., van Breemen, C. & Demaurex, N. Mitochondrial regulation of sarcoplasmic reticulum Ca2+ content in vascular smooth muscle cells. Circ. Res. 104, 104–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Malli, R. et al. Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J. Biol. Chem. 278, 44769–44779 (2003).

    Article  CAS  PubMed  Google Scholar 

  216. Quintana, A. et al. Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J. 30, 3895–3912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Schwindling, C., Quintana, A., Krause, E. & Hoth, M. Mitochondria positioning controls local calcium influx in T cells. J. Immunol. 184, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Glancy, B. et al. Power grid protection of the muscle mitochondrial reticulum. Cell Rep. 19, 487–496 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Billups, B. & Forsythe, I. D. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J. Neurosci. 22, 5840–5847 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kwon, S. K. et al. LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons. PLoS Biol. 14, e1002516 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Vaccaro, V., Devine, M. J., Higgs, N. F. & Kittler, J. T. Miro1-dependent mitochondrial positioning drives the rescaling of presynaptic Ca2+ signals during homeostatic plasticity. EMBO Rep. 18, 231–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  222. Devine, M. J. et al. Mitochondrial Ca2+ uniporter haploinsufficiency enhances long-term potentiation at hippocampal mossy fibre synapses. J. Cell Sci. 135, jcs259823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Morgan, A. J., Davis, L. C. & Galione, A. Choreographing endo-lysosomal Ca2+ throughout the life of a phagosome. Biochim. Biophys. Acta Mol. Cell Res. 1868, 119040 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Cantarero, L., Garcia-Vargas, G., Hoenicka, J. & Palau, F. Differential effects of Mendelian GDAP1 clinical variants on mitochondria-lysosome membrane contacts sites. Biol. Open 12, bio059707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Dolman, N. J. et al. Stable Golgi-mitochondria complexes and formation of Golgi Ca2+ gradients in pancreatic acinar cells. J. Biol. Chem. 280, 15794–15799 (2005).

    Article  CAS  PubMed  Google Scholar 

  226. Loncke, J. et al. Balancing ER-mitochondrial Ca2+ fluxes in health and disease. Trends Cell Biol. 31, 598–612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Garbincius, J. F. & Elrod, J. W. Mitochondrial calcium exchange in physiology and disease. Physiol. Rev. 102, 893–992 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Young, M. P. et al. Metabolic adaptation to the chronic loss of Ca2+ signaling induced by KO of IP3 receptors or the mitochondrial Ca2+ uniporter. J. Biol. Chem. 298, 101436 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Groten, C. J. & MacVicar, B. A. Mitochondrial Ca2+ uptake by the MCU facilitates pyramidal neuron excitability and metabolism during action potential firing. Commun. Biol. 5, 900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Musa, S. et al. A middle eastern founder mutation expands the genotypic and phenotypic spectrum of mitochondrial MICU1 deficiency: a report of 13 patients. JIMD Rep. 43, 79–83 (2019).

    PubMed  Google Scholar 

  231. Kohlschmidt, N. et al. Molecular pathophysiology of human MICU1-deficiency. Neuropathol. Appl. Neurobiol. 47, 840–855 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Bitarafan, F. et al. Identification of a novel MICU1 nonsense variant causes myopathy with extrapyramidal signs in an Iranian consanguineous family. Mol. Cell Pediatr. 8, 6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Mojbafan, M. et al. Reporting a rare form of myopathy, myopathy with extrapyramidal signs, in an Iranian family using next generation sequencing: a case report. BMC Med. Genet. 21, 77 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Wilton, K. M. et al. Developmental brain abnormalities and acute encephalopathy in a patient with myopathy with extrapyramidal signs secondary to pathogenic variants in MICU1. JIMD Rep. 53, 22–28 (2020).

    PubMed  PubMed Central  Google Scholar 

  235. Mallilankaraman, K. et al. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates Cell survival. Cell 151, 630–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Tomar, D. et al. MICU1 regulates mitochondrial cristae structure and function independently of the mitochondrial Ca2+ uniporter channel. Sci. Signal. 16, eabi8948 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Gottschalk, B. et al. MICU1 controls cristae junction and spatially anchors mitochondrial Ca2+ uniporter complex. Nat. Commun. 10, 3732 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Bick, A. G. et al. Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter. Proc. Natl Acad. Sci. USA 114, E9096–E9104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Vishnu, N. et al. Mitochondrial clearance of calcium facilitated by MICU2 controls insulin secretion. Mol. Metab. 51, 101239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Shamseldin, H. E. et al. A null mutation in MICU2 causes abnormal mitochondrial calcium homeostasis and a severe neurodevelopmental disorder. Brain 140, 2806–2813 (2017).

    Article  PubMed  Google Scholar 

  241. Payne, R., Hoff, H., Roskowski, A. & Foskett, J. K. MICU2 restricts spatial crosstalk between InsP3R and MCU channels by regulating threshold and gain of MICU1-mediated inhibition and activation of MCU. Cell Rep. 21, 3141–3154 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Puente, B. N. et al. MICU3 plays an important role in cardiovascular function. Circ. Res. 127, 1571–1573 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Liu, J. C. et al. EMRE is essential for mitochondrial calcium uniporter activity in a mouse model. JCI Insight 5, e134063 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Bulthuis, E. P. et al. SMDT1 variants impair EMRE-mediated mitochondrial calcium uptake in patients with muscle involvement. Biochim. Biophys. Acta Mol. Basis Dis. 1869, 166808 (2023).

    Article  CAS  PubMed  Google Scholar 

  245. Larrea, D. et al. MFN2 mutations in Charcot-Marie-Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics. Hum. Mol. Genet. 28, 1782–1800 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kuo, I. Y. et al. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2. Sci. Signal. 12, eaat7397 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Angebault, C. et al. ER-mitochondria cross-talk is regulated by the Ca2+ sensor NCS1 and is impaired in Wolfram syndrome. Sci. Signal. 11, eaaq1380 (2018).

    Article  PubMed  Google Scholar 

  248. Patergnani, S. et al. The Wolfram-like variant WFS1E864K destabilizes MAM and compromises autophagy and mitophagy in human and mice. Autophagy 20, 2055–2066 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Paillusson, S. et al. There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases. Trends Neurosci. 39, 146–157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Area-Gomez, E., Guardia-Laguarta, C., Schon, E. A. & Przedborski, S. Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J. Clin. Invest. 129, 34–45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Stutzmann, G. E., Caccamo, A., LaFerla, F. M. & Parker, I. Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J. Neurosci. 24, 508–513 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Stutzmann, G. E. et al. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J. Neurosci. 26, 5180–5189 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Chan, S. L., Mayne, M., Holden, C. P., Geiger, J. D. & Mattson, M. P. Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J. Biol. Chem. 275, 18195–18200 (2000).

    Article  CAS  PubMed  Google Scholar 

  254. Jensen, L. E. et al. Alzheimer’s disease-associated peptide Abeta42 mobilizes ER Ca2+ via InsP3R-dependent and -independent mechanisms. Front. Mol. Neurosci. 6, 36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Smith, I. F., Hitt, B., Green, K. N., Oddo, S. & LaFerla, F. M. Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J. Neurochem. 94, 1711–1718 (2005).

    Article  CAS  PubMed  Google Scholar 

  256. Zampese, E. et al. Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc. Natl Acad. Sci. USA 108, 2777–2782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Calvo-Rodriguez, M., Hernando-Perez, E., Nunez, L. & Villalobos, C. Amyloid beta oligomers increase ER-mitochondria Ca2+ cross talk in young hippocampal neurons and exacerbate aging-induced intracellular Ca2+ remodeling. Front. Cell Neurosci. 13, 22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Jadiya, P. et al. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nat. Commun. 10, 3885 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Martino Adami, P. V. et al. Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of Alzheimer’s disease. J. Cell Sci. 132, jcs229906 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Area-Gomez, E. et al. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis. 9, 335 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Perreault, S., Bousquet, O., Lauzon, M., Paiement, J. & Leclerc, N. Increased association between rough endoplasmic reticulum membranes and mitochondria in transgenic mice that express P301L tau. J. Neuropathol. Exp. Neurol. 68, 503–514 (2009).

    Article  CAS  PubMed  Google Scholar 

  262. Paillusson, S. et al. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 134, 129–149 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Jouaville, L. S., Pinton, P., Bastianutto, C., Rutter, G. A. & Rizzuto, R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc. Natl Acad. Sci. USA 96, 13807–13812 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Beaulant, A. et al. Endoplasmic reticulum-mitochondria miscommunication is an early and causal trigger of hepatic insulin resistance and steatosis. J. Hepatol. 77, 710–722 (2022).

    Article  CAS  PubMed  Google Scholar 

  266. Feriod, C. N. et al. Hepatic inositol 1,4,5 trisphosphate receptor type 1 mediates fatty liver. Hepatol. Commun. 1, 23–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  267. Hernandez-Alvarez, M. I. et al. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease. Cell 177, 881–895.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  268. Jin, C., Kumar, P., Gracia-Sancho, J. & Dufour, J. F. Calcium transfer between endoplasmic reticulum and mitochondria in liver diseases. FEBS Lett. 595, 1411–1421 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. Danese, A. et al. Calcium regulates cell death in cancer: roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim. Biophys. Acta Bioenerg. 1858, 615–627 (2017).

    Article  CAS  PubMed  Google Scholar 

  270. Tosatto, A. et al. The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1alpha. EMBO Mol. Med. 8, 569–585 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Rao, G. et al. MicroRNA-195 controls MICU1 expression and tumor growth in ovarian cancer. EMBO Rep. 21, e48483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Fernandez Garcia, E. et al. The mitochondrial Ca2+ channel MCU is critical for tumor growth by supporting cell cycle progression and proliferation. Front. Cell Dev. Biol. 11, 1082213 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Ziegler, D. V., Martin, N. & Bernard, D. Cellular senescence links mitochondria-ER contacts and aging. Commun. Biol. 4, 1323 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Wiel, C. et al. Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat. Commun. 5, 3792 (2014).

    Article  CAS  PubMed  Google Scholar 

  275. Ziegler, D. V. et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat. Commun. 12, 720 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. van der Linden, F. H. et al. A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium. Nat. Commun. 12, 7159 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Simmen, T. et al. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 24, 717–729 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Tsien, R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404 (1980).

    Article  CAS  PubMed  Google Scholar 

  279. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    Article  CAS  PubMed  Google Scholar 

  280. Inouye, S. et al. Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc. Natl Acad. Sci. USA 82, 3154–3158 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Prasher, D., McCann, R. O. & Cormier, M. J. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochemical biophysical Res. Commun. 126, 1259–1268 (1985).

    Article  CAS  Google Scholar 

  282. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  283. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R. Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl Acad. Sci. USA 96, 2135–2140 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Yellen, G. & Mongeon, R. Quantitative two-photon imaging of fluorescent biosensors. Curr. Opin. Chem. Biol. 27, 24–30 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Waldeck-Weiermair, M. et al. Development and application of sub-mitochondrial targeted Ca2+ biosensors. Front. Cell Neurosci. 13, 449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Kosmach, A. et al. Monitoring mitochondrial calcium and metabolism in the beating MCU-KO heart. Cell Rep. 37, 109846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Eisner, V., Picard, M. & Hajnoczky, G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol. 20, 755–765 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Tabara, L. C., Segawa, M. & Prudent, J. Molecular mechanisms of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-024-00785-1 (2024).

  290. Cereghetti, G. M. et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl Acad. Sci. USA 105, 15803–15808 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Yi, M., Weaver, D. & Hajnoczky, G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J. Cell Biol. 167, 661–672 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Saotome, M. et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl Acad. Sci. USA 105, 20728–20733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Wang, X. & Schwarz, T. L. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Macaskill, A. F. et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61, 541–555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Agarwal, A. et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93, 587–605(2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Eisner, V. et al. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity. Proc. Natl Acad. Sci. USA 114, E859–E868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Eisner, V., Lenaers, G. & Hajnoczky, G. Mitochondrial fusion is frequent in skeletal muscle and supports excitation-contraction coupling. J. Cell Biol. 205, 179–195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Willingham, T. B., Ajayi, P. T. & Glancy, B. Subcellular specialization of mitochondrial form and function in skeletal muscle cells. Front. Cell Dev. Biol. 9, 757305 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Sharma, V. K., Ramesh, V., Franzini-Armstrong, C. & Sheu, S. S. Transport of Ca2+ from sarcoplasmic reticulum to mitochondria in rat ventricular myocytes. J. Bioenerg. Biomembr. 32, 97–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  300. De La Fuente, S. et al. Spatial separation of mitochondrial calcium uptake and extrusion for energy-efficient mitochondrial calcium signaling in the heart. Cell Rep. 24, 3099–3107.e4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Pacher, P. & Hajnoczky, G. Propagation of the apoptotic signal by mitochondrial waves. EMBO J. 20, 4107–4121 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Cao, C., Wang, S., Cui, T., Su, X. C. & Chou, J. J. Ion and inhibitor binding of the double-ring ion selectivity filter of the mitochondrial calcium uniporter. Proc. Natl Acad. Sci. USA 114, E2846–E2851 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Huang, Z., Spivey, J. A., MacMillan, S. N. & Wilson, J. J. A ferrocene-containing analogue of the MCU inhibitor Ru265 with increased cell permeability. Inorg. Chem. Front. 10, 591–599 (2023).

    Article  CAS  Google Scholar 

  304. Arduino, D. M. et al. Systematic identification of MCU modulators by orthogonal interspecies chemical screening. Mol. Cell 67, 711–723.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. De Mario, A. et al. Identification and functional validation of FDA-approved positive and negative modulators of the mitochondrial calcium uniporter. Cell Rep. 35, 109275 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Paillard, M. et al. MICU1 interacts with the D-ring of the MCU pore to control its Ca2+ flux and sensitivity to Ru360. Mol. Cell 72, 778–785.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Di Marco, G. et al. A high-throughput screening identifies MICU1 targeting compounds. Cell Rep. 30, 2321–2331.e6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  308. Marta, K., Hasan, P., Rodriguez-Prados, M., Paillard, M. & Hajnoczky, G. Pharmacological inhibition of the mitochondrial Ca2+ uniporter: relevance for pathophysiology and human therapy. J. Mol. Cell Cardiol. 151, 135–144 (2021).

    Article  CAS  PubMed  Google Scholar 

  309. Montero, M., Lobaton, C. D., Moreno, A. & Alvarez, J. A novel regulatory mechanism of the mitochondrial Ca2+ uniporter revealed by the p38 mitogen-activated protein kinase inhibitor SB202190. FASEB J. 16, 1955–1957 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. L. Seifert and D. Weaver for pre-reviewing the manuscript. This project was funded by NIH grants (RO1 DK125897, GM151536, NS132056 and RO3 TR004644).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to György Hajnóczky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Amalia Dolga, Geert Bultynck and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

EF hand Ca2+-binding proteins

A family of proteins that contain EF hand motifs, which is the structural unit that binds Ca2+.

Electron probe X-ray microanalysis

A technique that uses a focused beam of electrons to identify the chemical composition of solid materials.

Fluorescence lifetime imaging microscopy

(FLIM). An advanced imaging technique used to measure fluorescence decay rate (lifetime) instead of intensity.

Genetically-encoded calcium indicators

(GECI). Proteins used as reporters for cellular Ca2+ measurements, made possible by fusing Ca2+-binding motifs with fluorescent properties.

PiC transporter

This phosphate carrier is an inner mitochondrial membrane protein involved in phosphate transport and mitochondrial ATP production, which has implications on mitochondrial Ca2+ transport and matrix Ca2+.

Steatosis

The process in where the body accumulates lipids, affecting multiple organs and especially the liver in where this process is referred to as fatty liver disease.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartes-Saavedra, B., Ghosh, A. & Hajnóczky, G. The roles of mitochondria in global and local intracellular calcium signalling. Nat Rev Mol Cell Biol 26, 456–475 (2025). https://doi.org/10.1038/s41580-024-00820-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-024-00820-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing