Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The therapeutic potential of apelin in kidney disease

Abstract

Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin–angiotensin–aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.

Key points

  • Chronic kidney disease (CKD) is common worldwide and is associated with high cardiovascular morbidity and mortality; however, treatment options are limited.

  • The apelin system is a broad regulator of physiology that opposes the renin–angiotensin–aldosterone system (RAAS) and has beneficial cardiovascular effects in health and disease.

  • Increasing evidence indicates that apelin has favourable effects on renal physiology, including roles in the regulation of fluid balance and glomerular haemodynamics.

  • Preclinical models demonstrate direct anti-inflammatory and anti-fibrotic actions of the apelin system in models of kidney injury; targeting the apelin receptor in combination with RAAS blockers might offer synergistic benefits.

  • The apelin system is an attractive potential therapeutic target for CKD, offering direct renal protection in addition to targeting the associated cardiovascular complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The peptide sequences of apelin and ELA isoforms.
Fig. 2: Apelin receptor activation leads to a broad range of physiological actions that are mediated by several signalling pathways.
Fig. 3: Physiological actions of the apelin system in different organs and tissues.
Fig. 4: The actions of apelin in the nephron.

Similar content being viewed by others

References

  1. Bikbov, B. et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  2. Stevens, P. E. & Levin, A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2013).

    Article  PubMed  Google Scholar 

  3. Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article  PubMed  Google Scholar 

  4. Gansevoort, R. T. et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382, 339–352 (2013).

    Article  PubMed  Google Scholar 

  5. Keith, D. S., Nichols, G. A., Gullion, C. M., Brown, J. B. & Smith, D. H. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organisation. Arch. Intern. Med. 164, 659–663 (2004).

    Article  PubMed  Google Scholar 

  6. Schiffrin, E. L., Lipman, M. L. & Mann, J. F. Chronic kidney disease: effects on the cardiovascular system. Circulation 116, 85–97 (2007).

    Article  PubMed  Google Scholar 

  7. Anavekar, N. S. et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N. Engl. J. Med. 351, 1285–1295 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Muntner, P. et al. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) study. Am. J. Kidney Dis. 55, 441–451 (2010).

    Article  PubMed  CAS  Google Scholar 

  9. Cheung, A. K. et al. Effects of intensive BP control in CKD. J. Am. Soc. Nephrol. 28, 2812–2823 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Levin, A., Singer, J., Thompson, C. R., Ross, H. & Lewis, M. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. Am. J. Kidney Dis. 27, 347–354 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. Townsend, R. R. et al. Aortic PWV in chronic kidney disease: a CRIC ancillary study. Am. J. Hypertens. 23, 282–289 (2010).

    Article  PubMed  Google Scholar 

  12. Kim, E. D. et al. Associations between kidney disease measures and regional pulse wave velocity in a large community-based cohort: the Atherosclerosis Risk in Communities (ARIC) study. Am. J. Kidney Dis. 72, 682–690 (2018).

    Article  PubMed  Google Scholar 

  13. Dhaun, N., Goddard, J. & Webb, D. J. The endothelin system and its antagonism in chronic kidney disease. J. Am. Soc. Nephrol. 17, 943–955 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. Gerstein, H. C. et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286, 421–426 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  PubMed  CAS  Google Scholar 

  17. Jafar, T. H. et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition. A patient-level meta-analysis. Ann. Intern. Med. 139, 244–252 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. O’Dowd, B. F. et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136, 355–360 (1993).

    Article  PubMed  Google Scholar 

  19. Sun, X. et al. Non-activated APJ suppresses the angiotensin II type 1 receptor, whereas apelin-activated APJ acts conversely. Hypertens. Res. 34, 701–706 (2011).

    Article  PubMed  CAS  Google Scholar 

  20. Yang, R. et al. Apelin/APJ axis improves angiotensin II-induced endothelial cell senescence through AMPK/SIRT1 signaling pathway. Arch. Med. Sci. 14, 725–734 (2018).

    PubMed  CAS  Google Scholar 

  21. Ishida, J. et al. Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J. Biol. Chem. 279, 26274–26279 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. Iwanaga, Y., Kihara, Y., Takenaka, H. & Kita, T. Down-regulation of cardiac apelin system in hypertrophied and failing hearts: possible role of angiotensin II–angiotensin type 1 receptor system. J. Mol. Cell Cardiol. 41, 798–806 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Siddiquee, K. et al. Apelin protects against angiotensin II-induced cardiovascular fibrosis and decreases plasminogen activator inhibitor type-1 production. J. Hypertens. 29, 724–731 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Barnes, G. D. et al. Sustained cardiovascular actions of APJ agonism during renin–angiotensin system activation and in patients with heart failure. Circ. Heart Fail. 6, 482–491 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Sato, T. et al. ELABELA–APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage. Cardiovasc. Res. 113, 760–769 (2017).

    Article  PubMed  CAS  Google Scholar 

  26. Zhang, Z. Z. et al. Apelin is a negative regulator of angiotensin II-mediated adverse myocardial remodeling and dysfunction. Hypertension 70, 1165–1175 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Wang, W. et al. Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs. Proc. Natl Acad. Sci. USA 116, 13006–13015 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Read, C. et al. International Union of Basic and Clinical Pharmacology. CVII. Structure and pharmacology of the apelin receptor with a recommendation that elabela/toddler is a second endogenous peptide ligand. Pharmacol. Rev. 71, 467–502 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tucker, B. et al. Zebrafish angiotensin II receptor-like 1a (agtrl1a) is expressed in migrating hypoblast, vasculature, and in multiple embryonic epithelia. Gene Expr. Patterns 7, 258–265 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. Scott, I. C. et al. The G protein-coupled receptor agtrl1b regulates early development of myocardial progenitors. Dev. Cell 12, 403–413 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. Kalin, R. E. et al. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev. Biol. 305, 599–614 (2007).

    Article  PubMed  Google Scholar 

  32. Tatemoto, K. et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 251, 471–476 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. Lee, D. K. et al. Characterization of apelin, the ligand for the APJ receptor. J. Neurochem. 74, 34–41 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. Chng, S. C., Ho, L., Tian, J. & Reversade, B. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev. Cell 27, 672–680 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Pauli, A. et al. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343, 1248636 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maguire, J. J., Kleinz, M. J., Pitkin, S. L. & Davenport, A. P. [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54, 598–604 (2009).

    Article  PubMed  CAS  Google Scholar 

  37. Zhen, E. Y., Higgs, R. E. & Gutierrez, J. A. Pyroglutamyl apelin-13 identified as the major apelin isoform in human plasma. Anal. Biochem. 442, 1–9 (2013).

    Article  PubMed  CAS  Google Scholar 

  38. Shin, K., Pandey, A., Liu, X. Q., Anini, Y. & Rainey, J. K. Preferential apelin-13 production by the proprotein convertase PCSK3 is implicated in obesity. FEBS Open. Bio 3, 328–333 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fischer, C. et al. Plasma kallikrein cleaves and inactivates apelin-17: palmitoyl- and PEG-extended apelin-17 analogs as metabolically stable blood pressure-lowering agents. Eur. J. Med. Chem. 166, 119–124 (2019).

    Article  PubMed  CAS  Google Scholar 

  40. Murza, A., Belleville, K., Longpre, J. M., Sarret, P. & Marsault, E. Stability and degradation patterns of chemically modified analogs of apelin-13 in plasma and cerebrospinal fluid. Biopolymers 102, 297–303 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. McKinnie, S. M. et al. The metalloprotease neprilysin degrades and inactivates apelin peptides. Chembiochem 17, 1495–1498 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Velazquez, E. J. et al. Angiotensin–neprilysin inhibition in acute decompensated heart failure. N. Engl. J. Med. 380, 539–548 (2019).

    Article  PubMed  CAS  Google Scholar 

  43. Vickers, C. et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 277, 14838–14843 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. Wang, W. et al. Angiotensin-converting enzyme 2 metabolizes and partially inactivates Pyr-Apelin-13 and Apelin-17: physiological effects in the cardiovascular system. Hypertension 68, 365–377 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. Yang, P. et al. [Pyr(1)]Apelin-13(1–12) is a biologically active ACE2 metabolite of the endogenous cardiovascular peptide [Pyr(1)]Apelin-13. Front. Neurosci. 11, 92 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 87, E1–E9 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. To, K. F. & Lo, A. W. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J. Pathol. 203, 740–743 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Benton, D. J. et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588, 327–330 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Nyimanu, D. et al. Development and validation of an LC–MS/MS method for detection and quantification of in vivo derived metabolites of [Pyr(1)]apelin-13 in humans. Sci. Rep. 9, 19934 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Charo, D. N. et al. Endogenous regulation of cardiovascular function by apelin-APJ. Am. J. Physiol. Heart Circ. Physiol 297, H1904–H1913 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zeng, X. X., Wilm, T. P., Sepich, D. S. & Solnica-Krezel, L. Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev. Cell 12, 391–402 (2007).

    Article  PubMed  CAS  Google Scholar 

  54. Freyer, L. et al. Loss of apela peptide in mice causes low penetrance embryonic lethality and defects in early mesodermal derivatives. Cell Rep. 20, 2116–2130 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sharma, B. et al. Alternative progenitor cells compensate to rebuild the coronary vasculature in Elabela- and APJ-deficient hearts. Dev. Cell 42, 655–666 e653 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yang, P. et al. Elabela/toddler is an endogenous agonist of the apelin APJ receptor in the adult cardiovascular system, and exogenous administration of the peptide compensates for the downregulation of its expression in pulmonary arterial hypertension. Circulation 135, 1160–1173 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hosoya, M. et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J. Biol. Chem. 275, 21061–21067 (2000).

    Article  PubMed  CAS  Google Scholar 

  58. O’Carroll, A. M., Selby, T. L., Palkovits, M. & Lolait, S. J. Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim. Biophys. Acta 1492, 72–80 (2000).

    Article  PubMed  Google Scholar 

  59. Medhurst, A. D. et al. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J. Neurochem. 84, 1162–1172 (2003).

    Article  PubMed  CAS  Google Scholar 

  60. Dray, C. et al. Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans. Am. J. Physiol. Endocrinol. Metab. 298, E1161–1169 (2010).

    Article  PubMed  CAS  Google Scholar 

  61. Katugampola, S. D., Maguire, J. J., Matthewson, S. R. & Davenport, A. P. [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br. J. Pharmacol. 132, 1255–1260 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kleinz, M. J., Skepper, J. N. & Davenport, A. P. Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul. Pept. 126, 233–240 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. Wang, G. et al. Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology 145, 1342–1348 (2004).

    Article  PubMed  CAS  Google Scholar 

  64. Kleinz, M. J. & Davenport, A. P. Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul. Pept. 118, 119–125 (2004).

    Article  PubMed  CAS  Google Scholar 

  65. Marsault, E. et al. The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Ann. N. Y. Acad. Sci. 1455, 12–33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boucher, J. et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146, 1764–1771 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. Kawamata, Y. et al. Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta 1538, 162–171 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. Deng, C., Chen, H., Yang, N., Feng, Y. & Hsueh, A. J. Apela regulates fluid homeostasis by binding to the APJ receptor to activate Gi signaling. J. Biol. Chem. 290, 18261–18268 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. O’Carroll, A. M. et al. Expression and functional implications of the renal apelinergic system in rodents. PLoS ONE 12, e0183094 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Perjes, A. et al. Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart. Basic. Res. Cardiol. 111, 2 (2016).

    Article  PubMed  Google Scholar 

  71. Wang, Z. et al. Elabela–apelin receptor signaling pathway is functional in mammalian systems. Sci. Rep. 5, 8170 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. El Messari, S. et al. Functional dissociation of apelin receptor signaling and endocytosis: implications for the effects of apelin on arterial blood pressure. J. Neurochem. 90, 1290–1301 (2004).

    Article  PubMed  CAS  Google Scholar 

  73. Nyimanu, D. et al. Apelin-36-[L28A] and Apelin-36-[L28C(30kDa-PEG)] peptides that improve diet induced obesity are G protein biased ligands at the apelin receptor. Peptides 121, 170139 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. McKinnie, S. M. K. et al. Synthetic modification within the “RPRL” region of apelin peptides: impact on cardiovascular activity and stability to neprilysin and plasma degradation. J. Med. Chem. 60, 6408–6427 (2017).

    Article  PubMed  CAS  Google Scholar 

  75. Read, C. et al. Apelin peptides linked to anti-serum albumin domain antibodies retain affinity in vitro and are efficacious receptor agonists in vivo. Basic. Clin. Pharmacol. Toxicol. 126 (Suppl 6), 96–103 (2020).

    Article  PubMed  CAS  Google Scholar 

  76. Langelaan, D. N., Bebbington, E. M., Reddy, T. & Rainey, J. K. Structural insight into G-protein coupled receptor binding by apelin. Biochemistry 48, 537–548 (2009).

    Article  PubMed  CAS  Google Scholar 

  77. Macaluso, N. J., Pitkin, S. L., Maguire, J. J., Davenport, A. P. & Glen, R. C. Discovery of a competitive apelin receptor (APJ) antagonist. ChemMedChem 6, 1017–1023 (2011).

    Article  PubMed  CAS  Google Scholar 

  78. Murza, A. et al. Elucidation of the structure–activity relationships of apelin: influence of unnatural amino acids on binding, signaling, and plasma stability. ChemMedChem 7, 318–325 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Zhang, Y. et al. Identifying structural determinants of potency for analogs of apelin-13: integration of C-terminal truncation with structure–activity. Bioorg Med. Chem. 22, 2992–2997 (2014).

    Article  PubMed  CAS  Google Scholar 

  80. Ma, Y. et al. Structural basis for apelin control of the human apelin receptor. Structure 25, 858–866.e854 (2017).

    Article  PubMed  CAS  Google Scholar 

  81. Langelaan, D. N. et al. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. Biochim. Biophys. Acta 1828, 1471–1483 (2013).

    Article  PubMed  CAS  Google Scholar 

  82. Gerbier, R. et al. New structural insights into the apelin receptor: identification of key residues for apelin binding. FASEB J. 29, 314–322 (2015).

    Article  PubMed  CAS  Google Scholar 

  83. Couvineau, P., Llorens-Cortes, C. & Iturrioz, X. Elabela/Toddler and apelin bind differently to the apelin receptor. Faseb j. 34, 7989–8000 (2020).

    Article  PubMed  CAS  Google Scholar 

  84. Habata, Y. et al. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim. Biophys. Acta 1452, 25–35 (1999).

    Article  PubMed  CAS  Google Scholar 

  85. Masri, B., Lahlou, H., Mazarguil, H., Knibiehler, B. & Audigier, Y. Apelin (65–77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein. Biochem. Biophys. Res. Commun. 290, 539–545 (2002).

    Article  PubMed  CAS  Google Scholar 

  86. Masri, B., Morin, N., Pedebernade, L., Knibiehler, B. & Audigier, Y. The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J. Biol. Chem. 281, 18317–18326 (2006).

    Article  PubMed  CAS  Google Scholar 

  87. Hashimoto, Y. et al. G protein-coupled APJ receptor signaling induces focal adhesion formation and cell motility. Int. J. Mol. Med. 16, 787–792 (2005).

    PubMed  CAS  Google Scholar 

  88. Szokodi, I. et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ. Res. 91, 434–440 (2002).

    Article  PubMed  CAS  Google Scholar 

  89. Dray, C. et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 8, 437–445 (2008).

    Article  PubMed  CAS  Google Scholar 

  90. Evans, N. A. et al. Visualizing differences in ligand-induced beta-arrestin-GFP interactions and trafficking between three recently characterized G protein-coupled receptors. J. Neurochem. 77, 476–485 (2001).

    Article  PubMed  CAS  Google Scholar 

  91. Lee, D. K., Ferguson, S. S., George, S. R. & O’Dowd, B. F. The fate of the internalized apelin receptor is determined by different isoforms of apelin mediating differential interaction with beta-arrestin. Biochem. Biophys. Res. Commun. 395, 185–189 (2010).

    Article  PubMed  CAS  Google Scholar 

  92. Zhou, N. et al. Cell–cell fusion and internalization of the CNS-based, HIV-1 co-receptor, APJ. Virology 307, 22–36 (2003).

    Article  PubMed  CAS  Google Scholar 

  93. Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M. M. & Sexton, P. M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018).

    Article  PubMed  CAS  Google Scholar 

  94. Scimia, M. C. et al. APJ acts as a dual receptor in cardiac hypertrophy. Nature 488, 394–398 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Japp, A. G. et al. Vascular effects of apelin in vivo in man. J. Am. Coll. Cardiol. 52, 908–913 (2008).

    Article  PubMed  CAS  Google Scholar 

  96. Japp, A. G. et al. Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation 121, 1818–1827 (2010).

    Article  PubMed  CAS  Google Scholar 

  97. Brame, A. L. et al. Design, characterization, and first-in-human study of the vascular actions of a novel biased apelin receptor agonist. Hypertension 65, 834–840 (2015).

    Article  PubMed  CAS  Google Scholar 

  98. Pope, G. R., Tilve, S., McArdle, C. A., Lolait, S. J. & O’Carroll, A. M. Agonist-induced internalization and desensitization of the apelin receptor. Mol. Cell Endocrinol. 437, 108–119 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Murza, A. et al. Discovery and structure–activity relationship of a bioactive fragment of ELABELA that modulates vascular and cardiac functions. J. Med. Chem. 59, 2962–2972 (2016).

    Article  PubMed  CAS  Google Scholar 

  100. Wang, W. et al. Loss of Apelin exacerbates myocardial infarction adverse remodeling and ischemia–reperfusion injury: therapeutic potential of synthetic Apelin analogues. J. Am. Heart Assoc. 2, e000249 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Read, C. et al. Cardiac action of the first G protein biased small molecule apelin agonist. Biochem. Pharmacol. 116, 63–72 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Ason, B. et al. Cardiovascular response to small molecule APJ activation. JCI Insight 5, e132898 (2020).

    Article  PubMed Central  Google Scholar 

  103. Salcedo, A. et al. Apelin effects in human splanchnic arteries. Role of nitric oxide and prostanoids. Regul. Pept. 144, 50–55 (2007).

    Article  PubMed  CAS  Google Scholar 

  104. Lee, D. K. et al. Modification of the terminal residue of apelin-13 antagonizes its hypotensive action. Endocrinology 146, 231–236 (2005).

    Article  PubMed  CAS  Google Scholar 

  105. Tatemoto, K. et al. The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul. Pept. 99, 87–92 (2001).

    Article  PubMed  CAS  Google Scholar 

  106. Wang, C., Du, J. F., Wu, F. & Wang, H. C. Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol 294, H2540–H2546 (2008).

    Article  PubMed  CAS  Google Scholar 

  107. Perjes, A. et al. Apelin increases cardiac contractility via protein kinase Cepsilon- and extracellular signal-regulated kinase-dependent mechanisms. PLoS ONE 9, e93473 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kuba, K. et al. Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload. Circ. Res. 101, e32–42 (2007).

    Article  PubMed  CAS  Google Scholar 

  109. Farkasfalvi, K. et al. Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem. Biophys. Res. Commun. 357, 889–895 (2007).

    Article  PubMed  CAS  Google Scholar 

  110. Ashley, E. A. et al. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc. Res. 65, 73–82 (2005).

    Article  PubMed  CAS  Google Scholar 

  111. Sato, T. et al. Apelin is a positive regulator of ACE2 in failing hearts. J. Clin. Invest. 123, 5203–5211 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sato, T. et al. Loss of apelin augments angiotensin II-induced cardiac dysfunction and pathological remodeling. Int J Mol Sci 20, 239 (2019).

    Article  PubMed Central  Google Scholar 

  113. Cheng, C. C. et al. Apelin regulates the electrophysiological characteristics of atrial myocytes. Eur. J. Clin. Invest. 43, 34–40 (2013).

    Article  PubMed  CAS  Google Scholar 

  114. Cox, C. M., D’Agostino, S. L., Miller, M. K., Heimark, R. L. & Krieg, P. A. Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev. Biol. 296, 177–189 (2006).

    Article  PubMed  CAS  Google Scholar 

  115. Kidoya, H. et al. Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J. 27, 522–534 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kasai, A. et al. Retardation of retinal vascular development in apelin-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 1717–1722 (2008).

    Article  PubMed  CAS  Google Scholar 

  117. Eyries, M. et al. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ. Res. 103, 432–440 (2008).

    Article  PubMed  CAS  Google Scholar 

  118. Ronkainen, V. P. et al. Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J. 21, 1821–1830 (2007).

    Article  PubMed  CAS  Google Scholar 

  119. Adam, F. et al. Apelin: an antithrombotic factor that inhibits platelet function. Blood 127, 908–920 (2016).

    Article  PubMed  CAS  Google Scholar 

  120. Zhang, G. et al. Biphasic roles for soluble guanylyl cyclase (sGC) in platelet activation. Blood 118, 3670–3679 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Masoud, A. G. et al. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury. J. Clin. Invest. 130, 94–107 (2020).

    Article  PubMed  CAS  Google Scholar 

  122. Cheng, H. et al. Involvement of apelin/APJ axis in thrombogenesis in valve heart disease patients with atrial fibrillation. Int. Heart J. 60, 145–150 (2019).

    Article  PubMed  CAS  Google Scholar 

  123. Chun, H. J. et al. Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J. Clin. Invest. 118, 3343–3354 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Hashimoto, T. et al. Requirement of apelin–apelin receptor system for oxidative stress-linked atherosclerosis. Am. J. Pathol. 171, 1705–1712 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Japp, A. G. & Newby, D. E. The apelin–APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem. Pharmacol. 75, 1882–1892 (2008).

    Article  PubMed  CAS  Google Scholar 

  126. Földes, G. et al. Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem. Biophys. Res. Commun. 308, 480–485 (2003).

    Article  PubMed  Google Scholar 

  127. Chong, K. S., Gardner, R. S., Morton, J. J., Ashley, E. A. & McDonagh, T. A. Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure. Eur. J. Heart Fail. 8, 355–360 (2006).

    Article  PubMed  CAS  Google Scholar 

  128. Chen, M. M. et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 108, 1432–1439 (2003).

    Article  PubMed  CAS  Google Scholar 

  129. Fukushima, H., Kobayashi, N., Takeshima, H., Koguchi, W. & Ishimitsu, T. Effects of olmesartan on apelin/APJ and Akt/endothelial nitric oxide synthase pathway in dahl rats with end-stage heart failure. J. Cardiovasc. Pharmacol. 55, 83–88 (2010).

    Article  PubMed  CAS  Google Scholar 

  130. Berry, M. F. et al. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation 110, II187–II193 (2004).

    Article  PubMed  Google Scholar 

  131. Azizi, Y., Faghihi, M., Imani, A., Roghani, M. & Nazari, A. Post-infarct treatment with [Pyr1]-apelin-13 reduces myocardial damage through reduction of oxidative injury and nitric oxide enhancement in the rat model of myocardial infarction. Peptides 46, 76–82 (2013).

    Article  PubMed  CAS  Google Scholar 

  132. Kido, M. et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J. Am. Coll. Cardiol. 46, 2116–2124 (2005).

    Article  PubMed  CAS  Google Scholar 

  133. Abbasloo, E., Najafipour, H. & Vakili, A. Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin. Exp. Pharmacol. Physiol. 47, 393–402 (2020).

    Article  PubMed  CAS  Google Scholar 

  134. Ellinor, P. T., Low, A. F. & Macrae, C. A. Reduced apelin levels in lone atrial fibrillation. Eur. Heart J. 27, 222–226 (2006).

    Article  PubMed  CAS  Google Scholar 

  135. Gurger, M. et al. The association between apelin-12 levels and paroxysmal supraventricular tachycardia. J. Cardiovasc. Med. 15, 642–646 (2014).

    Article  Google Scholar 

  136. Falcone, C. et al. Apelin plasma levels predict arrhythmia recurrence in patients with persistent atrial fibrillation. Int. J. Immunopathol. Pharmacol. 23, 917–925 (2010).

    Article  PubMed  CAS  Google Scholar 

  137. Kim, Y. M. et al. Apelin increases atrial conduction velocity, refractoriness, and prevents inducibility of atrial fibrillation. JCI Insight 5, e126525 (2020).

    Article  PubMed Central  Google Scholar 

  138. Watanabe, H. et al. Close bidirectional relationship between chronic kidney disease and atrial fibrillation: the Niigata preventive medicine study. Am. Heart J. 158, 629–636 (2009).

    Article  PubMed  Google Scholar 

  139. Ananthapanyasut, W. et al. Prevalence of atrial fibrillation and its predictors in nondialysis patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 173–181 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kumar, S. et al. Anticoagulation in concomitant chronic kidney disease and atrial fibrillation: JACC review topic of the week. J. Am. Coll. Cardiol. 74, 2204–2215 (2019).

    Article  PubMed  CAS  Google Scholar 

  141. Hus-Citharel, A. et al. Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney Int. 74, 486–494 (2008).

    Article  PubMed  CAS  Google Scholar 

  142. Reaux-Le Goazigo, A., Morinville, A., Burlet, A., Llorens-Cortes, C. & Beaudet, A. Dehydration-induced cross-regulation of apelin and vasopressin immunoreactivity levels in magnocellular hypothalamic neurons. Endocrinology 145, 4392–4400 (2004).

    Article  PubMed  CAS  Google Scholar 

  143. Reaux, A. et al. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J. Neurochem. 77, 1085–1096 (2001).

    Article  PubMed  CAS  Google Scholar 

  144. De Mota, N. et al. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc. Natl Acad. Sci. USA 101, 10464–10469 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Azizi, M. et al. Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J. Am. Soc. Nephrol. 19, 1015–1024 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Hus-Citharel, A. et al. Apelin counteracts vasopressin-induced water reabsorption via cross talk between apelin and vasopressin receptor signaling pathways in the rat collecting duct. Endocrinology 155, 4483–4493 (2014).

    Article  PubMed  Google Scholar 

  147. Boulkeroua, C. et al. Apelin-13 regulates vasopressin-induced aquaporin-2 expression and trafficking in kidney collecting duct cells. Cell Physiol. Biochem. 53, 687–700 (2019).

    Article  PubMed  CAS  Google Scholar 

  148. Sawhney, S. et al. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am. J. Kidney Dis. 69, 18–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hoste, E. A. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 41, 1411–1423 (2015).

    Article  PubMed  Google Scholar 

  150. See, E. J. et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int. 95, 160–172 (2019).

    Article  PubMed  Google Scholar 

  151. Chen, H. et al. Apelin protects against acute renal injury by inhibiting TGF-beta1. Biochim. Biophys. Acta 1852, 1278–1287 (2015).

    Article  PubMed  CAS  Google Scholar 

  152. Gholampour, F., Bagheri, A., Barati, A., Masoudi, R. & Owji, S. M. Remote ischemic perconditioning modulates apelin expression after renal ischemia–reperfusion injury. J. Surg. Res. 247, 429–437 (2020).

    Article  PubMed  CAS  Google Scholar 

  153. Sagiroglu, T. et al. Effects of apelin and leptin on renal functions following renal ischemia/reperfusion: an experimental study. Exp. Ther. Med. 3, 908–914 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Kim, J. S. et al. Protective role of apelin against cyclosporine-induced renal tubular injury in rats. Transpl. Proc. 49, 1499–1509 (2017).

    Article  CAS  Google Scholar 

  155. Chen, H. et al. ELABELA and an ELABELA fragment protect against AKI. J. Am. Soc. Nephrol. 28, 2694–2707 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Couser, W. G., Remuzzi, G., Mendis, S. & Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 80, 1258–1270 (2011).

    Article  PubMed  Google Scholar 

  157. Muller, T. et al. Apelinergic system in the kidney: implications for diabetic kidney disease. Physiol. Rep. 6, e13939 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Guo, C. et al. Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities. J. Cell Mol. Med. 19, 2273–2285 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Day, R. T., Cavaglieri, R. C. & Feliers, D. Apelin retards the progression of diabetic nephropathy. Am. J. Physiol. Ren. Physiol 304, F788–F800 (2013).

    Article  CAS  Google Scholar 

  160. Zhang, B. H., Wang, W., Wang, H., Yin, J. & Zeng, X. J. Promoting effects of the adipokine, apelin, on diabetic nephropathy. PLoS ONE 8, e60457 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Hu, H., He, L., Li, L. & Chen, L. Apelin/APJ system as a therapeutic target in diabetes and its complications. Mol. Genet. Metab. 119, 20–27 (2016).

    Article  PubMed  CAS  Google Scholar 

  162. Chen, H. et al. Apelin inhibits the development of diabetic nephropathy by regulating histone acetylation in Akita mouse. J. Physiol. 592, 505–521 (2014).

    Article  PubMed  CAS  Google Scholar 

  163. Zhang, J., Yin, J., Wang, Y., Li, B. & Zeng, X. Apelin impairs myogenic response to induce diabetic nephropathy in mice. FASEB J. 32, 4315–4327 (2018).

    Article  PubMed  CAS  Google Scholar 

  164. Liu, Y., Zhang, J., Wang, Y. & Zeng, X. Apelin involved in progression of diabetic nephropathy by inhibiting autophagy in podocytes. Cell Death Dis. 8, e3006 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Blanchard, A. et al. An abnormal apelin/vasopressin balance may contribute to water retention in patients with the syndrome of inappropriate antidiuretic hormone (SIADH) and heart failure. J. Clin. Endocrinol. Metab. 98, 2084–2089 (2013).

    Article  PubMed  CAS  Google Scholar 

  166. Urwyler, S. A. et al. Plasma apelin concentrations in patients with polyuria–polydipsia syndrome. J. Clin. Endocrinol. Metab. 101, 1917–1923 (2016).

    Article  PubMed  CAS  Google Scholar 

  167. Lacquaniti, A. et al. Apelin and copeptin: two opposite biomarkers associated with kidney function decline and cyst growth in autosomal dominant polycystic kidney disease. Peptides 49, 1–8 (2013).

    Article  PubMed  CAS  Google Scholar 

  168. Kocer, D., Karakukcu, C., Ozturk, F., Eroglu, E. & Kocyigit, I. Evaluation of fibrosis markers: apelin and transforming growth factor-beta1 in autosomal dominant polycystic kidney disease patients. Ther. Apher. Dial. 20, 517–522 (2016).

    Article  PubMed  CAS  Google Scholar 

  169. Nogueira, A., Pires, M. J. & Oliveira, P. A. Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. Vivo 31, 1–22 (2017).

    Article  CAS  Google Scholar 

  170. Wang, Y. et al. beta-Arrestin-biased AT1R stimulation promotes extracellular matrix synthesis in renal fibrosis. Am. J. Physiol. Ren. Physiol 313, F1–F8 (2017).

    Article  CAS  Google Scholar 

  171. Maschio, G. et al. Effect of the angiotensin-converting-enzyme benazepril on the progression of chronic renal insufficiency. N. Engl. J. Med. 334, 939–945 (1996).

    Article  PubMed  CAS  Google Scholar 

  172. Xu, C. et al. ELABELA antagonizes intrarenal renin–angiotensin system to lower blood pressure and protects against renal injury. Am. J. Physiol. Ren. Physiol 318, F1122–F1135 (2020).

    Article  CAS  Google Scholar 

  173. Wang, L. Y. et al. The regulatory peptide apelin: a novel inhibitor of renal interstitial fibrosis. Amino Acids 46, 2693–2704 (2014).

    Article  PubMed  CAS  Google Scholar 

  174. Schreiber, C. A., Holditch, S. J., Generous, A. & Ikeda, Y. Sustained ELABELA gene therapy in high-salt diet-induced hypertensive rats. Curr. Gene Ther. 16, 349–360 (2017).

    Article  PubMed  Google Scholar 

  175. Nishida, M. et al. The role of apelin on the alleviative effect of angiotensin receptor blocker in unilateral ureteral obstruction-induced renal fibrosis. Nephron Extra 2, 39–47 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Castan-Laurell, I., Masri, B. & Valet, P. The apelin/APJ system as a therapeutic target in metabolic diseases. Expert. Opin. Ther. Targets 23, 215–225 (2019).

    Article  PubMed  CAS  Google Scholar 

  177. Bertrand, C., Valet, P. & Castan-Laurell, I. Apelin and energy metabolism. Front. Physiol. 6, 115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03956576 (2018).

  179. Sorli, S. C., Le Gonidec, S., Knibiehler, B. & Audigier, Y. Apelin is a potent activator of tumour neoangiogenesis. Oncogene 26, 7692–7699 (2007).

    Article  PubMed  CAS  Google Scholar 

  180. Picault, F. X. et al. Tumour co-expression of apelin and its receptor is the basis of an autocrine loop involved in the growth of colon adenocarcinomas. Eur. J. Cancer 50, 663–674 (2014).

    Article  PubMed  CAS  Google Scholar 

  181. Heo, K. et al. Hypoxia-induced up-regulation of apelin is associated with a poor prognosis in oral squamous cell carcinoma patients. Oral. Oncol. 48, 500–506 (2012).

    Article  PubMed  CAS  Google Scholar 

  182. Berta, J. et al. Apelin expression in human non-small cell lung cancer. Role in angiogenesis and prognosis. J. Thorac. Oncol., 1120–1129 (2010).

  183. Uribesalgo, I. et al. Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy. EMBO Mol. Med. 11, e9266 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Davenport, A. P. et al. First in human study of a novel biased apelin receptor ligand, MM54, A G-alpha(i) agonist/beta-arrestin antagonist. Circ. Res. 123, e69–e81 (2018).

    Google Scholar 

  185. Harford-Wright, E. et al. Pharmacological targeting of apelin impairs glioblastoma growth. Brain 140, 2939–2954 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Mastrella, G. et al. Targeting APLN/APLNR improves antiangiogenic efficiency and blunts proinvasive side effects of VEGFA/VEGFR2 blockade in glioblastoma. Cancer Res. 79, 2298–2313 (2019).

    Article  PubMed  CAS  Google Scholar 

  187. Soulet, F. et al. ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation. JCI Insight 5, 2298 (2020).

    Article  Google Scholar 

  188. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Tolkach, Y. et al. Apelin and apelin receptor expression in renal cell carcinoma. Br. J. Cancer 120, 633–639 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Yau, J. W. Y. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35, 556–564 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lu, Q., Feng, J. & Jiang, Y. R. The role of apelin in the retina of diabetic rats. PLoS ONE 8, e69703 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Qin, D., Zheng, X.-X. & Jiang, Y.-R. Apelin-13 induces proliferation, migration, and collagen I mRNA in human RPE cells via PI3K/Akt and MEK/Erk signalling pathways. Mol. Vis. 2013, 2227–2236 (2013).

    Google Scholar 

  193. Tao, Y. et al. Apelin in plasma and vitreous and in fibrovascular retinal membranes of patients with proliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 51, 4237–4242 (2010).

    Article  PubMed  Google Scholar 

  194. Du, J. H. et al. Elevation of serum apelin-13 associated with proliferative diabetic retinopathy in type 2 diabetic patients. Int. J. Ophthalmol. 7, 968–973 (2014).

    PubMed  PubMed Central  Google Scholar 

  195. Kasai, A. et al. Inhibition of apelin expression switches endothelial cells from proliferative to mature state in pathological retinal angiogenesis. Angiogenesis 16, 723–734 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

F.A.C. is supported by a Kidney Research UK Training Fellowship (TF_006_20171124). D.N., J.J.M. and A.P.D. are supported in whole or part by the Wellcome Trust (WT203814/Z/16/A for D.N.; WT107715/Z/15/Z for A.P.D. and J.J.M.). D.E.N. is supported by the British Heart Foundation (FS/06/064, FS/09/019, CH09/002, RG/16/10/32375, RE/18/5/34216) and Wellcome Trust (WT103782AIA). N.D. is supported by a Senior Clinical Research Fellowship from the Chief Scientist Office (SCAF/19/02).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the data, discussing the content, writing the text and reviewing or editing the manuscript before submission.

Corresponding author

Correspondence to Neeraj Dhaun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks Mirjam Christ-Crain, who co-reviewed with Sophie Monnerat, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

‘Message–address’ concept of peptide binding

The concept that agonists contain two distinct parts: one determines receptor efficacy and activation (the ‘message’); the other influences receptor selectivity (the ‘address’).

Inotrope

A substance that alters the force of contraction of a muscle. This term is normally used to refer to effects on the myocardium and, unless otherwise specified, implies increased contractility.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapman, F.A., Nyimanu, D., Maguire, J.J. et al. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol 17, 840–853 (2021). https://doi.org/10.1038/s41581-021-00461-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-021-00461-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing