Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges

Abstract

Haemodialysis is life sustaining but expensive, provides limited removal of uraemic solutes, is associated with poor patient quality of life and has a large carbon footprint. Innovative dialysis technologies such as portable, wearable and implantable artificial kidney systems are being developed with the aim of addressing these issues and improving patient care. An important challenge for these technologies is the need for continuous regeneration of a small volume of dialysate. Dialysate recycling systems based on sorbents have great potential for such regeneration. Novel dialysis membranes composed of polymeric or inorganic materials are being developed to improve the removal of a broad range of uraemic toxins, with low levels of membrane fouling compared with currently available synthetic membranes. To achieve more complete therapy and provide important biological functions, these novel membranes could be combined with bioartificial kidneys, which consist of artificial membranes combined with kidney cells. Implementation of these systems will require robust cell sourcing; cell culture facilities annexed to dialysis centres; large-scale, low-cost production; and quality control measures. These challenges are not trivial, and global initiatives involving all relevant stakeholders, including academics, industrialists, medical professionals and patients with kidney disease, are required to achieve important technological breakthroughs.

Key points

  • Haemodialysis is expensive and is associated with high patient mortality and poor quality of life; portable, wearable and implantable artificial kidney systems are being developed to improve patient care.

  • An important challenge for designing portable or wearable artificial kidney systems is the continuous regeneration of a small volume of dialysate; recycling systems based on sorbents have great potential for dialysate regeneration.

  • Novel dialysis membranes composed of polymeric or inorganic materials are being developed to improve the removal of uraemic toxins, with low levels of membrane fouling.

  • Bioartificial kidney systems can provide important biological functions and thereby potentially improve patient outcomes; however, their implementation has manufacturing, feasibility and logistics challenges.

  • Important technological breakthroughs can be achieved via global initiatives involving relevant stakeholders including academics, industrialists, medical professionals and patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dialysis technologies.
Fig. 2: Removal of urea using a mixed matrix membrane.
Fig. 3: A bioartificial kidney.

Similar content being viewed by others

References

  1. Renal Data System - USA, Annual Data Report https://usrds-adr.niddk.nih.gov/2022 (2022).

  2. Saran, R. et al. US Renal Data System 2019 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 75, A6–A7 (2020).

    Article  PubMed  Google Scholar 

  3. Fresenius Annual Report 2021. https://www.fresenius.com/sites/default/files/2022-03/Fresenius_Annual_Report_2021.pdf (2021).

  4. Zhou, B. et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).

    Article  Google Scholar 

  5. Magliano, D. J. et al. Trends in incidence of total or type 2 diabetes: systematic review. Br. Med. J. https://doi.org/10.1136/bmj.l5003 (2019).

    Article  Google Scholar 

  6. Geetha, D. et al. Impact of the COVID-19 pandemic on the kidney community: lessons learned and future directions. Nat. Rev. Nephrol. 18, 724–737 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mittal, S. K. et al. Self‐assessed physical and mental function of haemodialysis patients. Nephrol. Dial. Transplant. 16, 1387–1394 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Zazzeroni, L. et al. Comparison of quality of life in patients undergoing hemodialysis and peritoneal dialysis: a systematic review and meta-analysis. Kidney Blood Press. Res. 42, 717–727 (2017).

    Article  PubMed  Google Scholar 

  9. van Sandwijk, M. S. et al. Fatigue, anxiety, depression and quality of life in kidney transplant recipients, haemodialysis patients, patients with a haematological malignancy and healthy controls. Nephrol. Dial. Transplant. 34, 833–838 (2019).

    Article  PubMed  Google Scholar 

  10. ERA-EDTA. ERA-EDTA Registry — Annual Report 2019 (2019).

  11. Yang, F., Liao, M., Wang, P., Yang, Z. & Liu, Y. The cost-effectiveness of kidney replacement therapy modalities: a systematic review of full economic evaluations. Appl. Health Econ. Health Policy 19, 163–180 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Bonenkamp, A. A. et al. Health-related quality of life in home dialysis patients compared to in-center hemodialysis patients: a systematic review and meta-analysis. Kidney Med. 2, 139–154 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Filipčič, T., Bogataj, Š., Pajek, J. & Pajek, M. Physical activity and quality of life in hemodialysis patients and healthy controls: a cross-sectional study. Int. J. Environ. Res. Public. Health 18, 1–10 (2021).

    Article  Google Scholar 

  14. Mathew, A. et al. Mortality and hospitalizations in intensive dialysis: a systematic review and meta-analysis. Can. J. Kidney Health Dis. 5, 2054358117749531 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kjellstrand, C. M. et al. Short daily haemodialysis: survival in 415 patients treated for 1006 patient-years. Nephrol. Dial. Transplant. 23, 3283–3289 (2008).

    Article  PubMed  Google Scholar 

  16. Kurella, M., Suri, R. S. & Chertow, G. M. Frequent hemodialysis and psychosocial function. Semin. Dial. 18, 132–136 (2005).

    Article  PubMed  Google Scholar 

  17. Bonenkamp, A. A. et al. Home haemodialysis in the Netherlands: state of the art. Neth. J. Med. 76, 144–157 (2018).

    CAS  PubMed  Google Scholar 

  18. Walker, R. C., Howard, K. & Morton, R. L. Home hemodialysis: a comprehensive review of patient-centered and economic considerations. Clinicoecon. Outcomes Res. 9, 149–161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fessi, H. et al. Safety and efficacy of short daily hemodialysis with physidia S3 system: clinical performance assessment during the training period. J. Clin. Med. 11, 2123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Komenda, P. V. J. et al. Hemodialysis with the quanta SC+: efficacy and safety of a self-care hemodialysis machine. Kidney Med. 2, 724–731.e721 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Glickman, J. D., Teitelbaum, I. & Golper, T. A. Prescribing home hemodialysis. Adv. Chronic Kidney Dis. 28, 157–163 (2021).

    Article  PubMed  Google Scholar 

  22. Di Liberato, L. et al. SP482A New portable device for home haemodialysis. Nephrol. Dial. Transplant. https://doi.org/10.1093/NDT/GFZ103.SP482 (2019).

    Article  Google Scholar 

  23. van Gelder, M. K. et al. From portable dialysis to a bioengineered kidney. Expert. Rev. Med. Devices 15, 323–336 (2018).

    Article  PubMed  Google Scholar 

  24. Hestekin, C. N. et al. Simulating nephron ion transport function using activated wafer electrodeionization. Commun. Mater. 1, 20 (2020).

    Article  Google Scholar 

  25. Groth, T. et al. Wearable and implantable artificial kidney devices for end-stage kidney disease treatment — current status and review. Artif. Organs https://doi.org/10.1111/aor.14396 (2022).

    Article  PubMed  Google Scholar 

  26. Vanholder, R. et al. The European Green Deal and nephrology: a call for action by the European Kidney Health Alliance. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfac160 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gura, V. et al. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight 1, e86397 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wester, M. et al. A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: a study in awake goats. Nephrol. Dial. Transplant. 32, 951–959 (2017).

    CAS  PubMed  Google Scholar 

  29. Wallenas, A., Meinander, N., Malmborg, C., Landholm, S. & Bengtsson, H. Cartridge and apparatus for performing adsorption dialysis. Patent WO2016190794A3 (2016).

  30. Yin, C. Y., Aroua, M. K. & Daud, W. M. A. W. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 52, 403–415 (2007).

    Article  CAS  Google Scholar 

  31. Lee, S. et al. Removal of uremic solutes from dialysate by activated carbon. Clin. J. Am. Soc. Nephrol. 17, 1168–1175 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. van Gelder, M. K. et al. Urea removal strategies for dialysate regeneration in a wearable artificial kidney. Biomaterials 234, 119735 (2020).

    Article  PubMed  Google Scholar 

  33. Weiner, I. D., Mitch, W. E. & Sands, J. M. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol. 10, 1444–1458 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Blumenkrantz, M. J. et al. Applications of the Redy® sorbent system to hemodialysis and peritoneal dialysis. Artif. Organs 3, 230–236 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. Hecking, M. et al. Dialysate sodium concentration and the association with interdialytic weight gain, hospitalization, and mortality. Clin. J. Am. Soc. Nephrol. 7, 92–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Soto-Herranz, M., Sánchez-Báscones, M., Antolín-Rodríguez, J. M. & Martín-Ramos, P. Evaluation of different capture solutions for ammonia recovery in suspended gas permeable membrane systems. Membranes 12, 572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ye, K., Wang, G., Cao, D. & Wang, G. Recent advances in the electro-oxidation of urea for direct urea fuel cell and urea electrolysis. Top. Curr. Chem. 376, 42 (2018).

    Article  Google Scholar 

  38. Wester, M. et al. Removal of urea in a wearable dialysis device: a reappraisal of electro-oxidation. Artif. Organs 38, 998–1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Wester, M. et al. Removal of urea by electro-oxidation in a miniature dialysis device: a study in awake goats. Am. J. Physiol. Renal Physiol. 315, F1385–F1397 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Gelder, M. K. et al. Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products. Artif. Organs 45, 1422–1428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shao, G. et al. Dialysate regeneration with urea selective membrane coupled to photoelectrochemical oxidation system. Adv. Mater. Interfaces 9, 2102308 (2022).

    Article  CAS  Google Scholar 

  42. Dector, D. et al. Harvesting energy from real human urine in a photo-microfluidic fuel cell using TiO2–Ni anode electrode. Int. J. Hydrog. Energy 46, 26163–26173 (2021).

    Article  CAS  Google Scholar 

  43. Zhu, B., Liang, Z. & Zou, R. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 16, 1906133 (2020).

    Article  CAS  Google Scholar 

  44. Shao, G., Zang, Y. & Hinds, B. J. TiO2 nanowires based system for urea photodecomposition and dialysate regeneration. ACS Appl. Nano Mater. 2, 6116–6123 (2019).

    Article  CAS  Google Scholar 

  45. Li, J. et al. Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis. Angew. Chem. Int. Ed. 60, 26656–26662 (2021).

    Article  CAS  Google Scholar 

  46. Tatarchuk, S. W., Medvedev, J. J., Li, F., Tobolovskaya, Y. & Klinkova, A. Nickel-catalyzed urea electrolysis: from nitrite and cyanate as major products to nitrogen evolution. Angew. Chem. Int. Ed. 61, e202209839 (2022).

    Article  CAS  Google Scholar 

  47. Rebiai, L. et al. Photoelectrocatalytic conversion of urea under solar illumination using Ni decorated Ti-Fe2O3 electrodes. Electrochim. Acta 438, 141516 (2023).

    Article  CAS  Google Scholar 

  48. Cheah, W. K., Sim, Y. L. & Yeoh, F. Y. Amine-functionalized mesoporous silica for urea adsorption. Mater. Chem. Phys. 175, 151–157 (2016).

    Article  CAS  Google Scholar 

  49. Cheng, Y. C. et al. Clearance of low molecular-weight uremic toxins p-cresol, creatinine, and urea from simulated serum by adsorption. J. Mol. Liq. 252, 203–210 (2018).

    Article  CAS  Google Scholar 

  50. Giordano, C. et al. Cold carbon apparatus for hemodialysis. J. Dial. 1, 165–179 (1976).

    Article  PubMed  Google Scholar 

  51. Kim, J. H. et al. Development of a cold dialysate regeneration system for home hemodialysis. Blood Purif. 28, 84–92 (2009).

    Article  PubMed  Google Scholar 

  52. Ooi, C. H. et al. Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption. J. Environ. Manag. 197, 199–205 (2017).

    Article  CAS  Google Scholar 

  53. Wernert, V., Schäf, O., Ghobarkar, H. & Denoyel, R. Adsorption properties of zeolites for artificial kidney applications. Microporous Mesoporous Mater. 83, 101–113 (2005).

    Article  CAS  Google Scholar 

  54. Meng, F. et al. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano 12, 10518–10528 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Zandi, P. et al. Shedding light on miniaturized dialysis using MXene 2D materials: a computational chemistry approach. ACS Omega 6, 6312–6325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, Y. G., Yang, Y. D., Guo, X. M. & Chen, G. R. Effect of molecular weight and degree of deacetylation of chitosan on urea adsorption properties of copper chitosan. J. Appl. Polym. Sci. 89, 1520–1523 (2003).

    Article  CAS  Google Scholar 

  57. Alizadeh, T. Preparation of molecularly imprinted polymer containing selective cavities for urea molecule and its application for urea extraction. Anal. Chim. Acta 669, 94–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, J., Chen, X., Shao, Z. & Zhou, P. Preparation and characterization of chitosan/Cu(II) affinity membrane for urea adsorption. J. Appl. Polym. Sci. 90, 1108–1112 (2003).

    Article  CAS  Google Scholar 

  59. Xue, C. & Wilson, L. D. Kinetic study on urea uptake with chitosan based sorbent materials. Carbohydr. Polym. 135, 180–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, C. Y. et al. Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcohol) potentiostat sensors. Biosens. Bioelectron. 24, 2611–2617 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Lee, M. H. et al. Synthesis of magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine. ACS Appl. Mater. Interfaces 2, 1729–1736 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Cheng, Y. et al. Preparation of urea-imprinted cross-linked chitosan and its adsorption behavior. Nanotechnology 47, 1063–1078 (2014).

    CAS  Google Scholar 

  63. Jong, J. A. W. et al. A ninhydrin-type urea sorbent for the development of a wearable artificial kidney. Macromol. Biosci. 20, 1900396 (2020).

    Article  CAS  Google Scholar 

  64. Jong, J. A. W. et al. Phenylglyoxaldehyde-functionalized polymeric sorbents for urea removal from aqueous solutions. ACS Appl. Polym. Mater. 2, 515–527 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Geremia, I. et al. New mixed matrix membrane for the removal of urea from dialysate solution. Sep. Purif. Technol. 277, 119408 (2021).

    Article  CAS  Google Scholar 

  66. Storr, M. & Ward, R. A. Membrane innovation: closer to native kidneys. Nephrol. Dial. Transplant. 33, iii22–iii27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geremia, I. & Stamatialis, D. Innovations in dialysis membranes for improved kidney replacement therapy. Nat. Rev. Nephrol. 16, 550–551 (2020).

    Article  PubMed  Google Scholar 

  68. Cornelis, T. et al. Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration. Nephrol. Dial. Transplant. 30, 1395–1402 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Dam, M., Weijs, P. J. M., van Ittersum, F. J. & van Jaarsveld, B. C. Physical performance in patients treated with nocturnal hemodialysis — a systematic review of the evidence. BMC Nephrol. 20, 317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Graham-Brown, M. P., Churchward, D. R., Smith, A. C., Baines, R. J. & Burton, J. O. A 4-month programme of in-centre nocturnal haemodialysis was associated with improvements in patient outcomes. Clin. Kidney J. 8, 789–795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zawada, A. M. et al. Polyvinylpyrrolidone in hemodialysis membranes: impact on platelet loss during hemodialysis. Hemodial. Int. 25, 498–506 (2021).

    Article  PubMed  Google Scholar 

  72. Woiterski, C., Jäger, S. & Dröschel, S. Comparative study on elution of polyvinylpyrrolidone on dialyzers using ultraviolet analysis and iodine method. ASAIO J. 69, 225–230 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Namekawa, K., Matsuda, M., Fukuda, M., Kaneko, A. & Sakai, K. Poly(N-vinyl-2-pyrrolidone) elution from polysulfone dialysis membranes by varying solvent and wall shear stress. J. Artif. Organs 15, 185–192 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, Q., Lu, X., Yang, S., Zhang, Q. & Zhao, L. Preparation of anticoagulant polyvinylidene fluoride hollow fiber hemodialysis membranes. Biomed. Tech. 62, 57–65 (2017).

    Article  Google Scholar 

  75. Fu, X. & Ning, J. P. Synthesis and biocompatibility of an argatroban-modified polysulfone membrane that directly inhibits thrombosis. J. Mater. Sci. Mater. Med. 29, 66 (2018).

    Article  PubMed  Google Scholar 

  76. Dai, Y., Dai, S., Xie, X. & Ning, J. Immobilizing argatroban and mPEG-NH2 on a polyethersulfone membrane surface to prepare an effective nonthrombogenic biointerface. J. Biomater. Sci. Polym. Ed. 30, 608–628 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. ter Beek, O. et al. New membranes based on polyethersulfone — SlipSkin™ polymer blends with low fouling and high blood compatibility. Sep. Purif. Technol. 225, 60–73 (2019).

    Article  Google Scholar 

  78. ter Beek, O. E. M., Pavlenko, D. & Stamatialis, D. Hollow fiber membranes for long-term hemodialysis based on polyethersulfone-SlipSkin™ polymer blends. J. Membr. Sci. https://doi.org/10.1016/j.memsci.2020.118068 (2020).

    Article  Google Scholar 

  79. Ghosh, A. et al. Effective clearance of uremic toxins using functionalised silicon nanoporous membranes. Biomed. Microdev. 23, 4 (2021).

    Article  CAS  Google Scholar 

  80. Fissell, W. H. et al. High-performance silicon nanopore hemofiltration membranes. J. Memb. Sci. 326, 58–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kensinger, C. et al. First implantation of silicon nanopore membrane hemofilters. ASAIO J. 62, 491–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. DesOrmeaux, J. P. S. et al. Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates. Nanoscale 6, 10798–10805 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Tang, Y.-S., Tsai, Y.-C., Chen, T.-W. & Li, S.-Y. Artificial kidney engineering: the development of dialysis membranes for blood purification. Membranes 12, 177 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fissell, W. H., Roy, S. & Davenport, A. Achieving more frequent and longer dialysis for the majority: wearable dialysis and implantable artificial kidney devices. Kidney Int. 84, 256–264 (2013).

    Article  PubMed  Google Scholar 

  85. Kim, S. et al. Diffusive silicon nanopore membranes for hemodialysis applications. PLoS One 11, e0159526 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li, L., Marchant, R. E., Dubnisheva, A., Roy, S. & Fissell, W. H. Anti-biofouling sulfobetaine polymer thin films on silicon and silicon nanopore membranes. J. Biomater. Sci. Polym. Ed. 22, 91–106 (2011).

    Article  PubMed  Google Scholar 

  87. Moyer, J. et al. Endovascular nephrectomy in swine for evaluation of implantable devices for renal replacement therapy. Abstract: SA-PO018 ASN 2022 (American Society of Nephrology, 2022).

  88. Song, S. et al. A 769 μW battery-powered single-chip SoC with BLE for multi-modal vital sign monitoring health patches. IEEE Trans. Biomed. Circuits Syst. 13, 1506–1517 (2019).

    Article  PubMed  Google Scholar 

  89. Tijink, M. S. L. et al. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma. Biomaterials 34, 7819–7828 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Geremia, I. et al. Ex vivo evaluation of the blood compatibility of mixed matrix haemodialysis membranes. Acta Biomater. 111, 118–128 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, D. & Stamatialis, D. High flux mixed matrix membrane with low albumin leakage for blood plasma detoxification. J. Membr. Sci. 609, 118187 (2020).

    Article  CAS  Google Scholar 

  92. Geremia, I., Bansal, R. & Stamatialis, D. In vitro assessment of mixed matrix hemodialysis membrane for achieving endotoxin-free dialysate combined with high removal of uremic toxins from human plasma. Acta Biomater. 90, 100–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Catapano, G., Wodetzki, A. & Baurmeister, U. Blood flow outside regularly spaced hollow fibers: the future concept of membrane devices. Int. J. Artif. Organs 15, 327–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Dukhin, S. S. et al. Outside-in hemofiltration for prolonged operation without clogging. J. Memb. Sci. 464, 173–178 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. ter Beek, O. E. M. et al. In vitro study of dual layer mixed matrix hollow fiber membranes for outside-in filtration of human blood plasma. Acta Biomater. 123, 244–253 (2021).

    Article  PubMed  Google Scholar 

  96. Humes, H. D. et al. Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am. J. Kidney Dis. 39, 1078–1087 (2002).

    Article  PubMed  Google Scholar 

  97. Humes, H. D. et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int. 66, 1578–1588 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Buffington, D. A. et al. Bioartificial renal epithelial cell system (BRECS): a compact, cryopreservable extracorporeal renal replacement device. Cell Med. 4, 33–43 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Johnston, K. A. et al. Development of a wearable bioartificial kidney using the bioartificial renal epithelial cell system (BRECS). J. Tissue Eng. Regen. Med. 11, 3048–3055 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Pino, C. J., Westover, A. J., Buffington, D. A. & Humes, H. D. Bioengineered renal cell therapy device for clinical translation. ASAIO J. 63, 305–315 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Schophuizen, C. M. et al. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter. Pflugers Arch. 465, 1701–1714 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Nieskens, T. T. et al. A human renal proximal tubule cell line with stable organic anion transporter 1 and 3 expression predictive for antiviral-induced toxicity. AAPS J. 18, 465–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chevtchik, N. V. et al. A bioartificial kidney device with polarized secretion of immune modulators. J. Tissue Eng. Regen. Med. 12, 1670–1678 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Chevtchik, N. V. et al. Upscaling of a living membrane for bioartificial kidney device. Eur. J. Pharmacol. 790, 28–35 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Mihajlovic, M. et al. Role of vitamin D in maintaining renal epithelial barrier function in uremic conditions. Int. J. Mol. Sci. 18, 2531 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mihajlovic, M. et al. Safety evaluation of conditionally immortalized cells for renal replacement therapy. Oncotarget 10, 5332–5348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fissell, W. H. & Roy, S. The implantable artificial kidney. Semin. Dial. 22, 665–670 (2009).

    Article  PubMed  Google Scholar 

  108. Caressa Chen et al. Demonstrating preclinical proof of concept of an implantable bioartificial kidney (iBAK). Abstract PO0513 ASN 2022 (2022).

  109. Refoyo, R., Skouras, E. D., Chevtchik, N. V., Stamatialis, D. & Burganos, V. N. Transport and reaction phenomena in multilayer membranes functioning as bioartificial kidney devices. J. Membr. Sci. 565, 61–71 (2018).

    Article  CAS  Google Scholar 

  110. Viguerie, A., Swapnasrita, S., Veneziani, A. & Carlier, A. A multi-domain shear-stress dependent diffusive model of cell transport-aided dialysis: analysis and simulation. Math. Biosci. Eng. 18, 8188–8200 (2021).

    Article  PubMed  Google Scholar 

  111. Davenport, A. et al. A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet 370, 2005–2010 (2007).

    Article  PubMed  Google Scholar 

  112. Castro, A. C. et al. Wearable artificial kidney and wearable ultrafiltration device vascular access — future directions. Clin. Kidney J. 12, 300–307 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Lee, K. Engineering perspective on the evolution of push/pull-based dialysis treatments. Expert. Rev. Med. Dev. 10, 611–620 (2013).

    Article  CAS  Google Scholar 

  114. Anjewierden, D., Liddiard, G. A. & Gale, B. K. An electrostatic microvalve for pneumatic control of microfluidic systems. J. Micromech. Microeng. 22, 025019 (2012).

    Article  Google Scholar 

  115. Atik, A. C., Özkan, M. D., Özgür, E., Külah, H. & Yıldırım, E. Modeling and fabrication of electrostatically actuated diaphragms for on-chip valving of MEMS-compatible microfluidic systems. J. Micromech. Microeng. 30, 115001 (2020).

    Article  CAS  Google Scholar 

  116. Htay, H. et al. Preliminary safety study of the automated wearable artificial kidney (AWAK) in peritoneal dialysis patients. Perit. Dial. Int. 42, 394–402 (2022).

    Article  PubMed  Google Scholar 

  117. Bluechel, C. G., Koh, Y. N., Tan, C. S., Chen, K. & Zhuang, K. D. Animal trial of sorbent cartridge for portable artificial kidney (PAK). Abstract PO0962 ASN 2022 (2022).

  118. Borillo, B. B., Chen, T. T., Khawar, O. & Poppe, C. Validation of automated sodium control in a novel dialysis system. In ASN Kidney Week https://www.asn-online.org/education/kidneyweek/2021/program-abstract.aspx?controlId=3604706 (ASN, 2021).

  119. Ahmadi, M., Sud, R. & Graansma, C. Sorbent for use in renal therapy. US Patent Application 2022/0161233, https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/20220161233 (2022).

  120. Wieringa, F. P. & Kooman, J. P. Smart sensors for real-time monitoring of patients on dialysis. Nat. Rev. Nephrol. 16, 554–555 (2020).

    Article  PubMed  Google Scholar 

  121. Lindeboom, L. et al. On the potential of wearable bioimpedance for longitudinal fluid monitoring in end-stage kidney disease. Nephrol. Dial. Transplant. 37, 2048–2054 (2021).

    Article  Google Scholar 

  122. Paats, J. et al. Optical method and biochemical source for the assessment of the middle-molecule uremic toxin β2-microglobulin in spent dialysate. Toxins 13, 255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dam, V. A. T., Zevenbergen, M. A. G. & van Schaijk, R. Flexible ion sensors for bodily fluids. Proc. Eng. 168, 93–96 (2016).

    Article  CAS  Google Scholar 

  124. Brom-Verheijden, G. J. A. M., Goedbloed, M. H. & Zevenbergen, M. A. G. A microfabricated 4-electrode conductivity sensor with enhanced range. Proceedings 2, 797 (2018).

    Google Scholar 

  125. KHI. Kidney Health Initiative — kidney replacement therapy roadmap. https://khi.asn-online.org/roadmap/ (2018).

  126. Vanholder, R., Conway, P. T., Gallego, D., Scheres, E. & Wieringa, F. The European Kidney Health Alliance (EKHA) and the Decade of the KidneyTM. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfac211 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wieringa, F. P. & Sheldon, M. The Kidney Health Initiative innovation roadmap for renal replacement therapies: building the yellow brick road, while updating the map. Artif. Organs 44, 111–122 (2020).

    Article  PubMed  Google Scholar 

  128. Wieringa, F. P., Sheldon, M. I. & Hidalgo-Simon, A. Regulatory approaches to stimulate innovative renal replacement therapies. Nat. Rev. Nephrol. 16, 546–547 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.L. Ramada acknowledges the financial support of the Top Sector Life Sciences & Health (Health~Holland), NODIAL project 21OP + 035). D. Stamatialis, S.M. Mihaila, R. Masereeuw, K. Gerritsen and N. Noor acknowledge the financial support of the Strategic alliance of the University of Twente, University of Utrecht, and University Medical Center Utrecht. D. Stamatialis and R. Masereeuw acknowledge the financial support of the “European Uremic Toxin working group” (EUTox) of the “European Society for Artificial Organs” (ESAO) endorsed by the “European Renal Association-European Dialysis Transplantation Association” (ERA-EDTA). K. Gerritsen, J. de Vries, R. Masereeuw and F. Wieringa acknowledge the financial support of the European Commission (KIDNEW, HORIZON-EIC-2022 Pathfinder program, grant agreement no. 101099092). The authors thank J.A.W. Jong (Neokidney BV) for critically reviewing the manuscript and Dr. A. Verschueren (IMEC) for creating the initial concept for Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Dimitrios Stamatialis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Ira Kurtz and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramada, D.L., de Vries, J., Vollenbroek, J. et al. Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges. Nat Rev Nephrol 19, 481–490 (2023). https://doi.org/10.1038/s41581-023-00726-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-023-00726-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing