Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

α-Synuclein pathology as a target in neurodegenerative diseases

Abstract

α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration. We also highlight the existence of disease-specific α-synuclein strains and their mechanisms of pathological spread, and discuss seed amplification assays and PET tracers as emerging diagnostic tools for detecting pathological α-synuclein in clinical settings. We also discuss α-synuclein aggregation and clearance mechanisms, and review cell-autonomous and non-cell-autonomous processes that contribute to neuronal death, including the roles of adaptive and innate immunity in α-synuclein-driven neurodegeneration. Finally, we highlight promising therapeutic approaches that target pathological α-synuclein and provide insights into emerging areas of research.

Key points

  • α-Synuclein can self-aggregate, oligomerize and fibrillize into different pathological strains that are associated with various α-synucleinopathies.

  • Parkinson disease and related α-synucleinopathies are widely thought to be prion-like disorders, in which α-synuclein pathology spreads via a templating mechanism.

  • Neurodegeneration that results from pathological α-synuclein is mediated by cell-autonomous and non-cell-autonomous mechanisms.

  • Parthanatos is the main cell death pathway by which pathological α-synuclein induces neurodegeneration.

  • Pathological α-synuclein molecular pathway analysis has created new therapeutic opportunities for Parkinson disease and related α-synucleinopathies.

  • PET imaging and α-synuclein seed amplification assays will guide future clinical studies by enabling the monitoring of α-synuclein pathology and responses to therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key advances in the field of α-synuclein biology and pathobiology.
Fig. 2: Structure of α-synuclein with alterations associated with Parkinson disease.
Fig. 3: Characteristics of body-first and brain-first Parkinson disease.
Fig. 4: Pathways of α-synuclein-related neurodegeneration and possible interventions.

Similar content being viewed by others

References

  1. Goedert, M. & Spillantini, M. G. Lewy body diseases and multiple system atrophy as α-synucleinopathies. Mol. Psychiatry 3, 462–465 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Baba, M. et al. Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wakabayashi, K., Yoshimoto, M., Tsuji, S. & Takahashi, H. α-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci. Lett. 249, 180–182 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Hamilton, R. L. Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using α-synuclein immunohistochemistry. Brain Pathol. 10, 378–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Bi, M., Du, X., Jiao, Q., Chen, X. & Jiang, H. Expanding the role of proteasome homeostasis in Parkinson’s disease: beyond protein breakdown. Cell Death Dis. 12, 154 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peng, C., Trojanowski, J. Q. & Lee, V. M. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 16, 199–212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sohrabi, T. et al. Common mechanisms underlying α-synuclein-induced mitochondrial dysfunction in Parkinson’s disease. J. Mol. Biol. 435, 167992 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Stykel, M. G. & Ryan, S. D. Nitrosative stress in Parkinson’s disease. NPJ Parkinsons Dis. 8, 104 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maroteaux, L., Campanelli, J. T. & Scheller, R. H. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8, 2804–2815 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ueda, K. et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 11282–11286 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Twohig, D. & Nielsen, H. M. α-Synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener. 14, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Appel-Cresswell, S. et al. α-Synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disord. 28, 811–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Daida, K. et al. α-Synuclein V15A variant in familial Parkinson’s disease exhibits a weaker lipid-binding property. Mov. Disord. 37, 2075–2085 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gadhave, K. et al. α-Synuclein strain dynamics correlate with cognitive shifts in Parkinson’s disease. Preprint at bioRxiv https://doi.org/10.1101/2024.10.22.619694 (2024).

  17. Hoffman-Zacharska, D. et al. Novel A18T and pA29S substitutions in α-synuclein may be associated with sporadic Parkinson’s disease. Parkinsonism Relat. Disord. 19, 1057–1060 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Lesage, S. et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann. Neurol. 73, 459–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Pasanen, P. et al. Novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol. Aging 35, 2180.e1–2180.e5 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Yoshino, H. et al. Homozygous α-synuclein p.A53V in familial Parkinson’s disease. Neurobiol. Aging 57, 248.e7–248.e12 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Zarranz, J. J. et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Chartier-Harlin, M. C. et al. α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, V. M. & Trojanowski, J. Q. Mechanisms of Parkinson’s disease linked to pathological α-synuclein: new targets for drug discovery. Neuron 52, 33–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. McNaught, K. S. & Olanow, C. W. Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol. Aging 27, 530–545 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mezey, E. et al. α-Synuclein in neurodegenerative disorders: murderer or accomplice? Nat. Med. 4, 755–757 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Galvin, J. E., Giasson, B., Hurtig, H. I., Lee, V. M. & Trojanowski, J. Q. Neurodegeneration with brain iron accumulation, type 1 is characterized by α-, β-, and γ-synuclein neuropathology. Am. J. Pathol. 157, 361–368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell. Biol. 4, 160–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Anderson, J. P. et al. Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 281, 29739–29752 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Shahmoradian, S. H. et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22, 1099–1109 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Trinkaus, V. A. et al. In situ architecture of neuronal α-Synuclein inclusions. Nat. Commun. 12, 2110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kahle, P. J. α-Synucleinopathy models and human neuropathology: similarities and differences. Acta Neuropathol. 115, 87–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Giasson, B. I., Murray, I. V., Trojanowski, J. Q. & Lee, V. M. A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J. Biol. Chem. 276, 2380–2386 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Maroteaux, L. & Scheller, R. H. The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Brain Res. Mol. Brain Res. 11, 335–343 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Davidson, W. S., Jonas, A., Clayton, D. F. & George, J. M. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T. Jr. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35, 13709–13715 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Bartels, T., Choi, J. G. & Selkoe, D. J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, W. et al. A soluble α-synuclein construct forms a dynamic tetramer. Proc. Natl Acad. Sci. USA 108, 17797–17802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burre, J. et al. Properties of native brain α-synuclein. Nature 498, E4–E6 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buell, A. K. et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl Acad. Sci. USA 111, 7671–7676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gould, N. et al. Evidence of native α-synuclein conformers in the human brain. J. Biol. Chem. 289, 7929–7934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Theillet, F. X. et al. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Meade, R. M., Fairlie, D. P. & Mason, J. M. α-Synuclein structure and Parkinson’s disease — lessons and emerging principles. Mol. Neurodegener. 14, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mor, D. E., Ugras, S. E., Daniels, M. J. & Ischiropoulos, H. Dynamic structural flexibility of α-synuclein. Neurobiol. Dis. 88, 66–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Adamczyk, A., Solecka, J. & Strosznajder, J. B. Expression of α-synuclein in different brain parts of adult and aged rats. J. Physiol. Pharmacol. 56, 29–37 (2005).

    CAS  PubMed  Google Scholar 

  48. Lavedan, C. The synuclein family. Genome Res. 8, 871–880 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Brenz Verca, M. S., Bahi, A., Boyer, F., Wagner, G. C. & Dreyer, J. L. Distribution of α- and γ-synucleins in the adult rat brain and their modification by high-dose cocaine treatment. Eur. J. Neurosci. 18, 1923–1938 (2003).

    Article  PubMed  Google Scholar 

  50. Burre, J. et al. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lopez-Ortega, E., Ruiz, R. & Tabares, L. CSPα, a molecular co-chaperone essential for short and long-term synaptic maintenance. Front. Neurosci. 11, 39 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O. M. & Sudhof, T. C. α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123, 383–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Runwal, G. M. & Edwards, R. H. The role of α-synuclein in exocytosis. Exp. Neurol. 373, 114668 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Fernagut, P. O. & Chesselet, M. F. α-Synuclein and transgenic mouse models. Neurobiol. Dis. 17, 123–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Nemani, V. M. et al. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scott, D. A. et al. A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J. Neurosci. 30, 8083–8095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gaugler, M. N. et al. Nigrostriatal overabundance of α-synuclein leads to decreased vesicle density and deficits in dopamine release that correlate with reduced motor activity. Acta Neuropathol. 123, 653–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Lundblad, M., Decressac, M., Mattsson, B. & Bjorklund, A. Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons. Proc. Natl Acad. Sci. USA 109, 3213–3219 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aniszewska, A., Bergstrom, J., Ingelsson, M. & Ekmark-Lewen, S. Modeling Parkinson’s disease-related symptoms in α-synuclein overexpressing mice. Brain Behav. 12, e2628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manzanza, N. O., Sedlackova, L. & Kalaria, R. N. α-Synuclein post-translational modifications: implications for pathogenesis of Lewy body disorders. Front. Aging Neurosci. 13, 690293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, J., Li, X. & Li, J. D. The roles of post-translational modifications on α-synuclein in the pathogenesis of Parkinson’s diseases. Front. Neurosci. 13, 381 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang, S. et al. Post-translational modifications of soluble α-synuclein regulate the amplification of pathological α-synuclein. Nat. Neurosci. 26, 213–225 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arawaka, S. et al. The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson’s disease. J. Neurosci. 26, 9227–9238 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Okochi, M. et al. Constitutive phosphorylation of the Parkinson’s disease associated α-synuclein. J. Biol. Chem. 275, 390–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Paleologou, K. E. et al. Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α-synuclein oligomerization, and influences synuclein-membrane interactions. J. Neurosci. 30, 3184–3198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Waxman, E. A. & Giasson, B. I. Specificity and regulation of casein kinase-mediated phosphorylation of α-synuclein. J. Neuropathol. Exp. Neurol. 67, 402–416 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Brahmachari, S. et al. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J. Clin. Invest. 126, 2970–2988 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ellis, C. E., Schwartzberg, P. L., Grider, T. L., Fink, D. W. & Nussbaum, R. L. α-Synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases. J. Biol. Chem. 276, 3879–3884 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Mahul-Mellier, A. L. et al. c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson’s disease. Hum. Mol. Genet. 23, 2858–2879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakamura, T., Yamashita, H., Takahashi, T. & Nakamura, S. Activated Fyn phosphorylates α-synuclein at tyrosine residue 125. Biochem. Biophys. Res. Commun. 280, 1085–1092 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Sano, K. et al. Tyrosine 136 phosphorylation of α-synuclein aggregates in the Lewy body dementia brain: involvement of serine 129 phosphorylation by casein kinase 2. Acta Neuropathol. Commun. 9, 182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao, K. et al. Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proc. Natl Acad. Sci. USA 117, 20305–20315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramalingam, N. & Dettmer, U. α-Synuclein serine129 phosphorylation — the physiology of pathology. Mol. Neurodegener. 18, 84 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stewart, T. et al. Phosphorylated α-synuclein in Parkinson’s disease: correlation depends on disease severity. Acta Neuropathol. Commun. 3, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson’s disease. Nature 404, 394–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Kontaxi, C. & Edwards, R. H. Synuclein phosphorylation: pathogenic or physiologic. NPJ Parkinsons Dis. 9, 47 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ramalingam, N. et al. Dynamic physiological α-synuclein S129 phosphorylation is driven by neuronal activity. NPJ Parkinsons Dis. 9, 4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parra-Rivas, L. A. et al. Serine-129 phosphorylation of α-synuclein is an activity-dependent trigger for physiologic protein–protein interactions and synaptic function. Neuron 111, 4006–4023.e10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burmann, B. M. et al. Regulation of α-synuclein by chaperones in mammalian cells. Nature 577, 127–132 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Brahmachari, S. et al. Parkin interacting substrate zinc finger protein 746 is a pathological mediator in Parkinson’s disease. Brain 142, 2380–2401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Imam, S. Z. et al. Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson’s disease model. PLoS ONE 8, e65129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Karim, M. R. et al. α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment. Mol. Neurodegener. 15, 27 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Karuppagounder, S. S. et al. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci. Rep. 4, 4874 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Karuppagounder, S. S. et al. The c-Abl inhibitor IkT-148009 suppresses neurodegeneration in mouse models of heritable and sporadic Parkinson’s disease. Sci. Transl. Med. 15, eabp9352 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Lee, S. et al. The c-Abl inhibitor, radotinib HCl, is neuroprotective in a preclinical Parkinson’s disease mouse model. Hum. Mol. Genet. 27, 2344–2356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hasegawa, M. et al. Phosphorylated α-synuclein is ubiquitinated in α-synucleinopathy lesions. J. Biol. Chem. 277, 49071–49076 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Tofaris, G. K., Razzaq, A., Ghetti, B., Lilley, K. S. & Spillantini, M. G. Ubiquitination of α-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J. Biol. Chem. 278, 44405–44411 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Liani, E. et al. Ubiquitylation of synphilin-1 and α-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson’s disease. Proc. Natl Acad. Sci. USA 101, 5500–5505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rott, R. et al. Monoubiquitylation of α-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells. J. Biol. Chem. 283, 3316–3328 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Kalia, L. V. et al. Ubiquitinylation of α-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS ONE 6, e14695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shin, Y., Klucken, J., Patterson, C., Hyman, B. T. & McLean, P. J. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates α-synuclein degradation decisions between proteasomal and lysosomal pathways. J. Biol. Chem. 280, 23727–23734 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Tofaris, G. K. et al. Ubiquitin ligase Nedd4 promotes α-synuclein degradation by the endosomal–lysosomal pathway. Proc. Natl Acad. Sci. USA 108, 17004–17009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rott, R. et al. SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation and pathological aggregation. Proc. Natl Acad. Sci. USA 114, 13176–13181 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Burai, R., Ait-Bouziad, N., Chiki, A. & Lashuel, H. A. Elucidating the role of site-specific nitration of α-synuclein in the pathogenesis of Parkinson’s disease via protein semisynthesis and mutagenesis. J. Am. Chem. Soc. 137, 5041–5052 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Giasson, B. I. et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290, 985–989 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M. & Ischiropoulos, H. Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem. 275, 18344–18349 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Gao, H. M. et al. Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration. J. Neurosci. 28, 7687–7698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Benner, E. J. et al. Nitrated α-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS ONE 3, e1376 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tansey, M. G. et al. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22, 657–673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chavarria, C. & Souza, J. M. Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch. Biochem. Biophys. 533, 25–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Martinez-Vicente, M. et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Campbell, B. C. et al. The solubility of α-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J. Neurochem. 76, 87–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Farzadfard, A. et al. The C-terminal tail of α-synuclein protects against aggregate replication but is critical for oligomerization. Commun. Biol. 5, 123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Izawa, Y. et al. Role of C-terminal negative charges and tyrosine residues in fibril formation of α-synuclein. Brain Behav. 2, 595–605 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li, W. et al. Aggregation promoting C-terminal truncation of α-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc. Natl Acad. Sci. USA 102, 2162–2167 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Prasad, K., Beach, T. G., Hedreen, J. & Richfield, E. K. Critical role of truncated α-synuclein and aggregates in Parkinson’s disease and incidental Lewy body disease. Brain Pathol. 22, 811–825 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  107. van der Wateren, I. M., Knowles, T. P. J., Buell, A. K., Dobson, C. M. & Galvagnion, C. C-terminal truncation of α-synuclein promotes amyloid fibril amplification at physiological pH. Chem. Sci. 9, 5506–5516 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang, C. et al. C-terminal truncation modulates α-synuclein’s cytotoxicity and aggregation by promoting the interactions with membrane and chaperone. Commun. Biol. 5, 798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Periquet, M., Fulga, T., Myllykangas, L., Schlossmacher, M. G. & Feany, M. B. Aggregated α-synuclein mediates dopaminergic neurotoxicity in vivo. J. Neurosci. 27, 3338–3346 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tofaris, G. K. et al. Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human α-synuclein(1–120): implications for Lewy body disorders. J. Neurosci. 26, 3942–3950 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Choi, D. H. et al. Role of matrix metalloproteinase 3-mediated α-synuclein cleavage in dopaminergic cell death. J. Biol. Chem. 286, 14168–14177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dufty, B. M. et al. Calpain-cleavage of α-synuclein: connecting proteolytic processing to disease-linked aggregation. Am. J. Pathol. 170, 1725–1738 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Iwata, A. et al. α-Synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum. Mol. Genet. 12, 2625–2635 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Mishizen-Eberz, A. J. et al. Distinct cleavage patterns of normal and pathologic forms of α-synuclein by calpain I in vitro. J. Neurochem. 86, 836–847 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Sung, J. Y. et al. Proteolytic cleavage of extracellular secreted α-synuclein via matrix metalloproteinases. J. Biol. Chem. 280, 25216–25224 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, W. et al. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc. Natl Acad. Sci. USA 113, 9587–9592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, Z. et al. Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson’s disease. Nat. Struct. Mol. Biol. 24, 632–642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  119. Braak, H., de Vos, R. A., Bohl, J. & Del Tredici, K. Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, B. et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 88, 1996–2002 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Svensson, E. et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol. 78, 522–529 (2015).

    Article  PubMed  Google Scholar 

  123. Kim, S. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roguski, A., Rayment, D., Whone, A. L., Jones, M. W. & Rolinski, M. A neurologist’s guide to REM sleep behavior disorder. Front. Neurol. 11, 610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Horsager, J. et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143, 3077–3088 (2020).

    Article  PubMed  Google Scholar 

  126. Borghammer, P. et al. Neuropathological evidence of body-first vs. brain-first Lewy body disease. Neurobiol. Dis. 161, 105557 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Dorsey, E. R., De Miranda, B. R., Horsager, J. & Borghammer, P. The body, the brain, the environment, and Parkinson’s disease. J. Parkinsons Dis. 14, 363–381 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Brundin, P., Li, J. Y., Holton, J. L., Lindvall, O. & Revesz, T. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat. Rev. Neurosci. 9, 741–745 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Kordower, J. H., Chu, Y., Hauser, R. A., Olanow, C. W. & Freeman, T. B. Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov. Disord. 23, 2303–2306 (2008).

    Article  PubMed  Google Scholar 

  131. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Luk, K. C. et al. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl Acad. Sci. USA 106, 20051–20056 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Masuda-Suzukake, M. et al. Prion-like spreading of pathological α-synuclein in brain. Brain 136, 1128–1138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Henderson, M. X. et al. Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat. Neurosci. 22, 1248–1257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mezias, C., Rey, N., Brundin, P. & Raj, A. Neural connectivity predicts spreading of α-synuclein pathology in fibril-injected mouse models: involvement of retrograde and anterograde axonal propagation. Neurobiol. Dis. 134, 104623 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Pandya, S. et al. Predictive model of spread of Parkinson’s pathology using network diffusion. NeuroImage 192, 178–194 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Henrich, M. T. et al. Determinants of seeding and spreading of α-synuclein pathology in the brain. Sci. Adv. 6, eabc2487 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee, S. J. Origins and effects of extracellular α-synuclein: implications in Parkinson’s disease. J. Mol. Neurosci. 34, 17–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Lee, H. J., Bae, E. J. & Lee, S. J. Extracellular α-synuclein — a novel and crucial factor in Lewy body diseases. Nat. Rev. Neurol. 10, 92–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. El-Agnaf, O. M. et al. α-Synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J. 17, 1945–1947 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. El-Agnaf, O. M. et al. Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J. 20, 419–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Kim, J. Y., Illigens, B. M., McCormick, M. P., Wang, N. & Gibbons, C. H. α-Synuclein in skin nerve fibers as a biomarker for α-synucleinopathies. J. Clin. Neurol. 15, 135–142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Konopleva, L. F., Shostka, I. P., Gromova, I. I. & Rogova, L. D. Primary familial pulmonary hypertension. Vrach. Delo 1, 53–56 (1977).

    Google Scholar 

  148. Maass, F. et al. Increased α-synuclein tear fluid levels in patients with Parkinson’s disease. Sci. Rep. 10, 8507 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nam, D. et al. Detection and assessment of α-synuclein oligomers in the urine of Parkinson’s disease patients. J. Parkinsons Dis. 10, 981–991 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Holmes, B. B. et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl Acad. Sci. USA 110, E3138–E3147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mao, X. et al. Aplp1 interacts with Lag3 to facilitate transmission of pathologic α-synuclein. Nat. Commun. 15, 4663 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mao, X. et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, eaah3374 (2016).

    Article  Google Scholar 

  153. George, S. et al. Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson’s disease. Mol. Neurodegener. 14, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kim, C. et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013).

    Article  PubMed  Google Scholar 

  155. Shrivastava, A. N. et al. α-Synuclein assemblies sequester neuronal α3-Na+/K+-ATPase and impair Na+ gradient. EMBO J. 34, 2408–2423 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Birol, M., Wojcik, S. P., Miranker, A. D. & Rhoades, E. Identification of N-linked glycans as specific mediators of neuronal uptake of acetylated α-synuclein. PLoS Biol. 17, e3000318 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Aulic, S. et al. α-Synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication. Sci. Rep. 7, 10050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. De Cecco, E. & Legname, G. The role of the prion protein in the internalization of α-synuclein amyloids. Prion 12, 23–27 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Thom, T. et al. Cellular prion protein mediates α-synuclein uptake, localization, and toxicity in vitro and in vivo. Mov. Disord. 37, 39–51 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Urrea, L., Ferrer, I., Gavin, R. & Del Rio, J. A. The cellular prion protein (PrPC) as neuronal receptor for α-synuclein. Prion 11, 226–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Urrea, L. et al. Involvement of cellular prion protein in α-synuclein transport in neurons. Mol. Neurobiol. 55, 1847–1860 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Choi, Y. R. et al. Prion-like propagation of α-synuclein is regulated by the FcγRIIB-SHP-1/2 signaling pathway in neurons. Cell Rep. 22, 136–148 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Chen, K. et al. LRP1 is a neuronal receptor for α-synuclein uptake and spread. Mol. Neurodegener. 17, 57 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Diaz-Ortiz, M. E. et al. GPNMB confers risk for Parkinson’s disease through interaction with α-synuclein. Science 377, eabk0637 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sanyal, A. et al. Constitutive endolysosomal perforation in neurons allows induction of α-synuclein aggregation by internalized pre-formed fibrils. Preprint at bioRxiv https://doi.org/10.1101/2023.12.30.573738 (2024).

  166. Danzer, K. M. et al. Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J. 25, 326–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Emmanouilidou, E. et al. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tsigelny, I. F. et al. Role of α-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS J. 279, 1000–1013 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Abounit, S. et al. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J. 35, 2120–2138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Loria, F. et al. α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathol. 134, 789–808 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Fraser, H. & Dickinson, A. G. Scrapie in mice. Agent-strain differences in the distribution and intensity of grey matter vacuolation. J. Comp. Pathol. 83, 29–40 (1973).

    Article  CAS  PubMed  Google Scholar 

  172. Bousset, L. et al. Structural and functional characterization of two α-synuclein strains. Nat. Commun. 4, 2575 (2013).

    Article  PubMed  Google Scholar 

  173. Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Lau, A. et al. α-Synuclein strains target distinct brain regions and cell types. Nat. Neurosci. 23, 21–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Van der Perren, A. et al. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. 139, 977–1000 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Dhavale, D. D. et al. Structure of α-synuclein fibrils derived from human Lewy body dementia tissue. Nat. Commun. 15, 2750 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yang, Y. et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 610, 791–795 (2022).

    Article  CAS  PubMed  Google Scholar 

  179. Peng, C. et al. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557, 558–563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Just, M. K. et al. α-Synuclein strain variability in body-first and brain-first synucleinopathies. Front. Aging Neurosci. 14, 907293 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Okuzumi, A. et al. α-Synuclein seeding assay using RT-QuIC. Methods Mol. Biol. 2322, 3–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Shahnawaz, M. et al. Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol. 74, 163–172 (2017).

    Article  PubMed  Google Scholar 

  183. Kang, U. J. et al. Comparative study of cerebrospinal fluid α-synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov. Disord. 34, 536–544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shahnawaz, M. et al. Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578, 273–277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Simuni, T. et al. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol. 23, 178–190 (2024).

    Article  CAS  PubMed  Google Scholar 

  186. Oftedal, L., Maple-Grodem, J., Tysnes, O. B., Alves, G. & Lange, J. Seed amplification assay as a diagnostic tool in newly-diagnosed Parkinson’s disease. J. Parkinsons Dis. 13, 841–844 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Concha-Marambio, L., Pritzkow, S., Shahnawaz, M., Farris, C. M. & Soto, C. Seed amplification assay for the detection of pathologic α-synuclein aggregates in cerebrospinal fluid. Nat. Protoc. 18, 1179–1196 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fernandes Gomes, B. et al. α-Synuclein seed amplification assay as a diagnostic tool for parkinsonian disorders. Parkinsonism Relat. Disord. 117, 105807 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Siderowf, A. et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 22, 407–417 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kluge, A. et al. Detecting misfolded α-synuclein in blood years before the diagnosis of Parkinson’s disease. Mov. Disord. 39, 1289–1299 (2024).

    Article  CAS  PubMed  Google Scholar 

  191. Grossauer, A. et al. α-Synuclein seed amplification assays in the diagnosis of synucleinopathies using cerebrospinal fluid — a systematic review and meta-analysis. Mov. Disord. Clin. Pract. 10, 737–747 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Okuzumi, A. et al. Propagative α-synuclein seeds as serum biomarkers for synucleinopathies. Nat. Med. 29, 1448–1455 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bellomo, G. et al. α-Synuclein seed amplification assays for diagnosing synucleinopathies: the way forward. Neurology 99, 195–205 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Chahine, L. M. et al. Central and peripheral α-synuclein in Parkinson disease detected by seed amplification assay. Ann. Clin. Transl. Neurol. 10, 696–705 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yoo, D. et al. Diagnostic value of α-synuclein seeding amplification assays in α-synucleinopathies: a systematic review and meta-analysis. Parkinsonism Relat. Disord. 104, 99–109 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Brockmann, K. et al. CSF α-synuclein seed amplification kinetic profiles are associated with cognitive decline in Parkinson’s disease. NPJ Parkinsons Dis. 10, 24 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Endo, H. et al. Imaging α-synuclein pathologies in animal models and patients with Parkinson’s and related diseases. Neuron 112, 2540–2557.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  198. Smith, R. et al. The α-synuclein PET tracer [18F] ACI-12589 distinguishes multiple system atrophy from other neurodegenerative diseases. Nat. Commun. 14, 6750 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Xiang, J. et al. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 186, 3350–3367.e19 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Alarcon-Aris, D. et al. Selective α-synuclein knockdown in monoamine neurons by intranasal oligonucleotide delivery: potential therapy for Parkinson’s disease. Mol. Ther. 26, 550–567 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Cole, T. A. et al. α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson’s disease. JCI Insight 6, e135633 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Uehara, T. et al. Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson’s disease. Sci. Rep. 9, 7567 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Alarcon-Aris, D. et al. Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson’s disease-like mouse model and in monkeys. EBioMedicine 59, 102944 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Yang, J. et al. Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson’s disease. Neurobiol. Dis. 148, 105218 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Shalaby, K. E., Aouida, M., Gupta, V., Abdesselem, H. & El-Agnaf, O. M. A. Development of non-viral vectors for neuronal-targeted delivery of CRISPR-Cas9 RNA-proteins as a therapeutic strategy for neurological disorders. Biomater. Sci. 10, 4959–4977 (2022).

    Article  CAS  PubMed  Google Scholar 

  206. Fellner, L. et al. Anle138b partly ameliorates motor deficits despite failure of neuroprotection in a model of advanced multiple system atrophy. Front. Neurosci. 10, 99 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lemos, M. et al. Targeting α-synuclein by PD03 AFFITOPE® and anle138b rescues neurodegenerative pathology in a model of multiple system atrophy: clinical relevance. Transl. Neurodegener. 9, 38 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Levin, J. et al. The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol. 127, 779–780 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Wagner, J. et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol. 125, 795–813 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wegrzynowicz, M. et al. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson’s disease model. Acta Neuropathol. 138, 575–595 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wrasidlo, W. et al. A de novo compound targeting α-synuclein improves deficits in models of Parkinson’s disease. Brain 139, 3217–3236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Grosso Jasutkar, H., Oh, S. E. & Mouradian, M. M. Therapeutics in the pipeline targeting α-synuclein for Parkinson’s disease. Pharm. Rev. 74, 207–237 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Teil, M. et al. Targeting α-synuclein for PD therapeutics: a pursuit on all fronts. Biomolecules https://doi.org/10.3390/biom10030391 (2020).

  214. McFarthing, K. et al. Parkinson’s disease drug therapies in the clinical trial pipeline: 2024 update. J. Parkinsons Dis. 14, 899–912 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Messer, A. & Butler, D. C. Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol. Dis. 134, 104619 (2020).

    Article  CAS  PubMed  Google Scholar 

  216. Spencer, B. et al. α-Synuclein conformational antibodies fused to penetratin are effective in models of Lewy body disease. Ann. Clin. Transl. Neurol. 3, 588–606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Bae, E. J. et al. Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32, 13454–13469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Brundin, P., Dave, K. D. & Kordower, J. H. Therapeutic approaches to target α-synuclein pathology. Exp. Neurol. 298, 225–235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Sanchez-Guajardo, V., Annibali, A., Jensen, P. H. & Romero-Ramos, M. α-Synuclein vaccination prevents the accumulation of Parkinson disease-like pathologic inclusions in striatum in association with regulatory T cell recruitment in a rat model. J. Neuropathol. Exp. Neurol. 72, 624–645 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Spencer, B. et al. Anti-α-synuclein immunotherapy reduces α-synuclein propagation in the axon and degeneration in a combined viral vector and transgenic model of synucleinopathy. Acta Neuropathol. Commun. 5, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Lang, A. E. et al. Trial of cinpanemab in early Parkinson’s disease. N. Engl. J. Med. 387, 408–420 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Pagano, G. et al. Trial of prasinezumab in early-stage Parkinson’s disease. N. Engl. J. Med. 387, 421–432 (2022).

    Article  CAS  PubMed  Google Scholar 

  223. Pagano, G. et al. Prasinezumab slows motor progression in rapidly progressing early-stage Parkinson’s disease. Nat. Med. 30, 1096–1103 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    Article  CAS  PubMed  Google Scholar 

  225. Decressac, M. et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl Acad. Sci. USA 110, E1817–E1826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ebrahimi-Fakhari, D. et al. Distinct roles in vivo for the ubiquitin–proteasome system and the autophagy–lysosomal pathway in the degradation of α-synuclein. J. Neurosci. 31, 14508–14520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Spencer, B. et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci. 29, 13578–13588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lopes da Fonseca, T., Villar-Pique, A. & Outeiro, T. F. The interplay between α-synuclein clearance and spreading. Biomolecules 5, 435–471 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Lee, J. et al. Targeted degradation of α-synuclein aggregates in Parkinson’s disease using the AUTOTAC technology. Mol. Neurodegener. 18, 41 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gao, J., Perera, G., Bhadbhade, M., Halliday, G. M. & Dzamko, N. Autophagy activation promotes clearance of α-synuclein inclusions in fibril-seeded human neural cells. J. Biol. Chem. 294, 14241–14256 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  232. Wang, Y. T. & Lu, J. H. Targeting chaperone-mediated autophagy for Parkinson’s disease therapy. Neural Regen. Res. 18, 1723–1724 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Frazzitta, G. et al. The beneficial role of intensive exercise on Parkinson disease progression. Am. J. Phys. Med. Rehabil. 92, 523–532 (2013).

    Article  PubMed  Google Scholar 

  234. Malczynska-Sims, P., Chalimoniuk, M. & Sulek, A. The effect of endurance training on brain-derived neurotrophic factor and inflammatory markers in healthy people and Parkinson’s disease. A narrative review. Front. Physiol. 11, 578981 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Schenkman, M. et al. Effect of high-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 75, 219–226 (2018).

    Article  PubMed  Google Scholar 

  236. Zarbakhsh, S. et al. Irisin protects the substantia nigra dopaminergic neurons in the rat model of Parkinson’s disease. Iran. J. Basic Med. Sci. 22, 722–728 (2019).

    PubMed  PubMed Central  Google Scholar 

  237. Zhang, X. et al. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson’s disease. NPJ Parkinsons Dis. 9, 13 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Kam, T. I. et al. Amelioration of pathologic α-synuclein-induced Parkinson’s disease by irisin. Proc. Natl Acad. Sci. USA 119, e2204835119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Panwar, V. et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target Ther. 8, 375 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Khan, M. R. et al. Enhanced mTORC1 signaling and protein synthesis in pathologic α-synuclein cellular and animal models of Parkinson’s disease. Sci. Transl. Med. 15, eadd0499 (2023).

    Article  CAS  PubMed  Google Scholar 

  241. Bove, J., Martinez-Vicente, M. & Vila, M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat. Rev. Neurosci. 12, 437–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  242. Moors, T. E. et al. Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol. Neurodegener. 12, 11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Jahrling, J. B. & Laberge, R. M. Age-related neurodegeneration prevention through mTOR inhibition: potential mechanisms and remaining questions. Curr. Top. Med. Chem. 15, 2139–2151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Sidransky, E. & Lopez, G. The link between the GBA gene and parkinsonism. Lancet Neurol. 11, 986–998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Smith, L. & Schapira, A. H. V. GBA variants and Parkinson disease: mechanisms and treatments. Cells https://doi.org/10.3390/cells11081261 (2022).

  247. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Menozzi, E., Toffoli, M. & Schapira, A. H. V. Targeting the GBA1 pathway to slow Parkinson disease: insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol. Ther. 246, 108419 (2023).

    Article  CAS  PubMed  Google Scholar 

  249. Park, H., Kam, T. I., Dawson, T. M. & Dawson, V. L. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. Int. Rev. Cell Mol. Biol. 353, 1–29 (2020).

    Article  CAS  PubMed  Google Scholar 

  250. Kam, T. I. et al. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Mao, K. et al. Poly (ADP-ribose) polymerase 1 inhibition prevents neurodegeneration and promotes α-synuclein degradation via transcription factor EB-dependent autophagy in mutant α-synuclein A53T model of Parkinson’s disease. Aging Cell 19, e13163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Burguillos, M. A. et al. Apoptosis-inducing factor mediates dopaminergic cell death in response to LPS-induced inflammatory stimulus: evidence in Parkinson’s disease patients. Neurobiol. Dis. 41, 177–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  253. Wang, Y. et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 354, eaad6872 (2016).

    Article  Google Scholar 

  254. Park, H. et al. PAAN/MIF nuclease inhibition prevents neurodegeneration in Parkinson’s disease. Cell 185, 1943–1959.e21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Geibl, F. F. et al. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson’s disease. Mol. Neurodegener. https://doi.org/10.1186/s13024-024-00756-2 (2024).

  256. Andrabi, S. A. et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl Acad. Sci. USA 103, 18308–18313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Andrabi, S. A. et al. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc. Natl Acad. Sci. USA 111, 10209–10214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Fouquerel, E. et al. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep. 8, 1819–1831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Hossain, M. I. et al. Poly(ADP-ribose) mediates bioenergetic defects and redox imbalance in neurons following oxygen and glucose deprivation. FASEB J. 38, e23556 (2024).

    Article  CAS  PubMed  Google Scholar 

  260. Ko, H. S. et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc. Natl Acad. Sci. USA 107, 16691–16696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Panicker, N. et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron 110, 2422–2437.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Blagov, A. V. et al. Prospects for the development of pink1 and parkin activators for the treatment of Parkinson’s disease. Pharmaceutics https://doi.org/10.3390/pharmaceutics14112514 (2022).

  263. Brahmachari, S. et al. c-Abl and Parkinson’s disease: mechanisms and therapeutic potential. J. Parkinsons Dis. 7, 589–601 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hebron, M. L., Lonskaya, I. & Moussa, C. E. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson’s disease models. Hum. Mol. Genet. 22, 3315–3328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Imam, S. Z. et al. Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J. Neurosci. 31, 157–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Pagan, F. L. et al. Nilotinib effects on safety, tolerability, and potential biomarkers in parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 77, 309–317 (2020).

    Article  PubMed  Google Scholar 

  267. Simuni, T. et al. Efficacy of nilotinib in patients with moderately advanced parkinson disease: a randomized clinical trial. JAMA Neurol. 78, 312–320 (2021).

    Article  PubMed  Google Scholar 

  268. Werner, M. H. & Olanow, C. W. Parkinson’s disease modification through Abl kinase inhibition: an opportunity. Mov. Disord. 37, 6–15 (2022).

    Article  CAS  PubMed  Google Scholar 

  269. Chandia-Cristi, A. et al. Prophylactic treatment with the c-Abl inhibitor, neurotinib, diminishes neuronal damage and the convulsive state in pilocarpine-induced mice. Cell Rep. 43, 114144 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Lee, M. H. et al. Bi-directional regulation of AIMP2 and its splice variant on PARP-1-dependent neuronal cell death; therapeutic implication for Parkinson’s disease. Acta Neuropathol. Commun. 12, 5 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Lee, Y. et al. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 16, 1392–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Kumar, M. et al. Defects in mitochondrial biogenesis drive mitochondrial alterations in PARKIN-deficient human dopamine neurons. Stem Cell Rep. 15, 629–645 (2020).

    Article  CAS  Google Scholar 

  273. Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144, 689–702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Stevens, D. A. et al. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc. Natl Acad. Sci. USA 112, 11696–11701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Jo, A. et al. PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease. Sci. Transl. Med. 13, eaax8891 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Kim, H. et al. S-nitrosylated PARIS leads to the sequestration of PGC-1α into insoluble deposits in Parkinson’s disease model. Cells https://doi.org/10.3390/cells11223682 (2022).

  277. Lee, Y. et al. PINK1 primes parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival. Cell Rep. 18, 918–932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Yan, Y. Q. et al. Parkin regulates microglial NLRP3 and represses neurodegeneration in Parkinson’s disease. Aging Cell 22, e13834 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Gordon, R. et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Nguyen, L. T. N. et al. Role of NLRP3 inflammasome in Parkinson’s disease and therapeutic considerations. J. Parkinsons Dis. 12, 2117–2133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Harms, A. S., Ferreira, S. A. & Romero-Ramos, M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol. 141, 527–545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Brochard, V. et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119, 182–192 (2009).

    CAS  PubMed  Google Scholar 

  284. Galiano-Landeira, J., Torra, A., Vila, M. & Bove, J. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease. Brain 143, 3717–3733 (2020).

    Article  PubMed  Google Scholar 

  285. Hamza, T. H. et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Wissemann, W. T. et al. Association of Parkinson disease with structural and regulatory variants in the HLA region. Am. J. Hum. Genet. 93, 984–993 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Naito, T. et al. Trans-ethnic fine-mapping of the major histocompatibility complex region linked to Parkinson’s disease. Mov. Disord. 36, 1805–1814 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Theodore, S., Cao, S., McLean, P. J. & Standaert, D. G. Targeted overexpression of human α-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol. 67, 1149–1158 (2008).

    Article  CAS  PubMed  Google Scholar 

  289. Williams, G. P. et al. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain 144, 2047–2059 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Cebrian, C. et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat. Commun. 5, 3633 (2014).

    Article  CAS  PubMed  Google Scholar 

  291. Gate, D. et al. CD4+ T cells contribute to neurodegeneration in Lewy body dementia. Science 374, 868–874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Iba, M. et al. Neuroinflammation is associated with infiltration of T cells in Lewy body disease and α-synuclein transgenic models. J. Neuroinflammation 17, 214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Su, X. et al. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol. Aging 29, 1690–1701 (2008).

    Article  CAS  PubMed  Google Scholar 

  294. Zhang, W. et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 19, 533–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  295. Barkholt, P., Sanchez-Guajardo, V., Kirik, D. & Romero-Ramos, M. Long-term polarization of microglia upon α-synuclein overexpression in nonhuman primates. Neuroscience 208, 85–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  296. Bido, S. et al. Microglia-specific overexpression of α-synuclein leads to severe dopaminergic neurodegeneration by phagocytic exhaustion and oxidative toxicity. Nat. Commun. 12, 6237 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Castro-Sanchez, S. et al. Cx3cr1-deficiency exacerbates α-synuclein-A53T induced neuroinflammation and neurodegeneration in a mouse model of Parkinson’s disease. Glia 66, 1752–1762 (2018).

    Article  PubMed  Google Scholar 

  298. Duffy, M. F. et al. Lewy body-like α-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J. Neuroinflammation 15, 129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Rauschenberger, L. et al. Age-dependent neurodegeneration and neuroinflammation in a genetic A30P/A53T double-mutated α-synuclein mouse model of Parkinson’s disease. Neurobiol. Dis. 171, 105798 (2022).

    Article  CAS  PubMed  Google Scholar 

  300. Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291 (1988).

    Article  CAS  PubMed  Google Scholar 

  302. McGeer, P. L. & McGeer, E. G. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat. Disord. 10, S3–S7 (2004).

    Article  PubMed  Google Scholar 

  303. Klegeris, A. et al. α-Synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol. Aging 29, 739–752 (2008).

    Article  CAS  PubMed  Google Scholar 

  304. Lee, S. B. et al. Identification of the amino acid sequence motif of α-synuclein responsible for macrophage activation. Biochem. Biophys. Res. Commun. 381, 39–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  305. Grozdanov, V. et al. Increased immune activation by pathologic α-synuclein in Parkinson’s disease. Ann. Neurol. 86, 593–606 (2019).

    Article  CAS  PubMed  Google Scholar 

  306. Heidari, A., Yazdanpanah, N. & Rezaei, N. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. J. Neuroinflammation 19, 135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Kim, C. et al. Antagonizing neuronal toll-like receptor 2 prevents synucleinopathy by activating autophagy. Cell Rep. 13, 771–782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Kim, C. et al. Immunotherapy targeting Toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol. Neurodegener. 13, 43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Stefanova, N. et al. Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons. Am. J. Pathol. 179, 954–963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Choi, Y. R. et al. FcγRIIB mediates the inhibitory effect of aggregated α-synuclein on microglial phagocytosis. Neurobiol. Dis. 83, 90–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  311. Panicker, N. et al. Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J. Exp. Med. 216, 1411–1430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Fan, Z. et al. Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. J. Neuroinflammation 17, 11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Hinkle, J. T. et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc. Natl Acad. Sci. USA 119, e2118819119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Jiang, S. Y. et al. The cGAS–STING–YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson’s disease via LCN2-dependent astrocyte senescence. Cell Death Differ. 30, 2280–2292 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Standaert, D. G. & Childers, G. M. α-Synuclein-mediated DNA damage, STING activation, and neuroinflammation in Parkinson’s disease. Proc. Natl Acad. Sci. USA 119, e2204058119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Sterling, J. K. et al. Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological α-synuclein. Cell Rep. 38, 110358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Hoenen, C. et al. α-Synuclein proteins promote pro-inflammatory cascades in microglia: stronger effects of the A53T mutant. PLoS ONE 11, e0162717 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Jiang, T. et al. P2X7 receptor is critical in α-synuclein-mediated microglial NADPH oxidase activation. Neurobiol. Aging 36, 2304–2318 (2015).

    Article  CAS  PubMed  Google Scholar 

  319. Zhang, W. et al. Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant α-synuclein. Glia 55, 1178–1188 (2007).

    Article  PubMed  Google Scholar 

  320. Lee, H. J. et al. Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J. Biol. Chem. 285, 9262–9272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Braak, H., Sastre, M. & Del Tredici, K. Development of α-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol. 114, 231–241 (2007).

    Article  CAS  PubMed  Google Scholar 

  322. Wakabayashi, K., Hayashi, S., Yoshimoto, M., Kudo, H. & Takahashi, H. NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 99, 14–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  323. Klegeris, A. et al. α-Synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J. 20, 2000–2008 (2006).

    Article  CAS  PubMed  Google Scholar 

  324. Sengul, B., Dursun, E., Verkhratsky, A. & Gezen-Ak, D. Overexpression of α-synuclein reorganises growth factor profile of human astrocytes. Mol. Neurobiol. 58, 184–203 (2021).

    Article  CAS  PubMed  Google Scholar 

  325. Fellner, L. et al. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61, 349–360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  326. Rannikko, E. H., Weber, S. S. & Kahle, P. J. Exogenous α-synuclein induces Toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci. 16, 57 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Angelova, P. R. et al. Ca2+ is a key factor in α-synuclein-induced neurotoxicity. J. Cell Sci. 129, 1792–1801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Stefanova, N., Klimaschewski, L., Poewe, W., Wenning, G. K. & Reindl, M. Glial cell death induced by overexpression of α-synuclein. J. Neurosci. Res. 65, 432–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  329. Gu, X. L. et al. Astrocytic expression of Parkinson’s disease-related A53T α-synuclein causes neurodegeneration in mice. Mol. Brain 3, 12 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 599, 102–107 (2021).

    Article  CAS  PubMed  Google Scholar 

  332. Erbil, D. et al. GLP-1’s role in neuroprotection: a systematic review. Brain Inj. 33, 734–819 (2019).

    Article  PubMed  Google Scholar 

  333. Brauer, R. et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain 143, 3067–3076 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  334. Athauda, D. et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 390, 1664–1675 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Aviles-Olmos, I. et al. Exenatide and the treatment of patients with Parkinson’s disease. J. Clin. Invest. 123, 2730–2736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Meissner, W. G. et al. Trial of lixisenatide in early Parkinson’s disease. N. Engl. J. Med. 390, 1176–1185 (2024).

    Article  CAS  PubMed  Google Scholar 

  337. McGarry, A. et al. Safety, tolerability, and efficacy of NLY01 in early untreated Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 23, 37–45 (2024).

    Article  CAS  PubMed  Google Scholar 

  338. Athauda, D. et al. Post hoc analysis of the exenatide-PD trial — factors that predict response. Eur. J. Neurosci. 49, 410–421 (2019).

    Article  PubMed  Google Scholar 

  339. Vijiaratnam, N. et al. Exenatide once weekly over 2 years as a potential disease-modifying treatment for Parkinson’s disease: protocol for a multicentre, randomised, double blind, parallel group, placebo controlled, phase 3 trial: the ‘Exenatide-PD3’ study. BMJ Open 11, e047993 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  340. Berg, D. et al. Prodromal Parkinson disease subtypes — key to understanding heterogeneity. Nat. Rev. Neurol. 17, 349–361 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health/National Institute on Aging AG085688, the JPB Foundation, Aligning Science Across Parkinson’s (020608) through the Michael J. Fox Foundation for Parkinson’s Research, Farmer Family Foundation Parkinson’s Research Initiative, Robert J. and Claire Pasarow Foundation, Parkinson’s Foundation and the National Research Foundation of Korea (RS-2023-00278580). The authors acknowledge the joint participation by the Adrienne Helis Malvin Medical Research Foundation and the Diana Helis Henry Research Foundation through its direct engagement in the continuous active conduct of medical research in conjunction with the Johns Hopkins Hospital and the Johns Hopkins University School of Medicine and the Foundation’s Parkinson’s Disease Program M-2019 and H-2021, respectively. T.M.D. is the Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases.

Author information

Authors and Affiliations

Authors

Contributions

H.P., T.-I.K. and T.M.D. researched data for the article and wrote the article. V.L.D. and T.M.D. reviewed and edited the manuscript before submission. All authors made substantial contributions to discussion of the content.

Corresponding author

Correspondence to Ted M. Dawson.

Ethics declarations

Competing interests

T.M.D. owns stock in Aevum Therapeutics and stock options in D&D Pharmatech, Inhibikase Therapeutics and Ventyx Biosciences; holds equity in D&D Pharmatech; is compensated for his role on the scientific advisory boards of Aevum and Ventyx; is entitled to royalties from AbbVie; and is a founder and inventor of technology for Neuraly, which is now a subsidiary of D&D Pharmatech. V.L.D. owns stock options in D&D Pharmatech and Inhibikase Therapeutics; holds equity in D&D Pharmatech; and is a founder and inventor of technology for Neuraly, which is now a subsidiary of D&D Pharmatech. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks R. Takahashi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Kam, TI., Dawson, V.L. et al. α-Synuclein pathology as a target in neurodegenerative diseases. Nat Rev Neurol 21, 32–47 (2025). https://doi.org/10.1038/s41582-024-01043-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-024-01043-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing