Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurological complications of CAR T cell therapy for cancers

Abstract

Genetically engineered chimeric antigen receptor (CAR) T cells have emerged as a powerful treatment option in patients with B cell malignancies, but neurological adverse effects are common and hamper the success of such therapies. Immune effector cell-associated neurotoxicity syndrome encompasses a wide range of acute neurological adverse effects, including encephalopathy with alterations in cognition and behaviour, language, motor function and coordination. In patients treated with CAR T cells for CNS malignancies, a more localized on-tumour, on-target neurotoxicity syndrome termed tumour inflammation-associated neurotoxicity can develop acutely, resulting in localized oedema with mass effect or in electrophysiological dysfunction with neurological symptoms. Following B cell maturation antigen-targeting CAR T cell therapies, delayed neurological complications, including cranial nerve palsies and a unique delayed-onset parkinsonism syndrome, are increasingly recognized. Management of neurological complications includes symptomatic treatments such as antiepileptic drugs or cerebrospinal fluid diversion, temporary immunosuppression with corticosteroids, various cytokine-targeting agents, and other distinct approaches depending on the nature of the toxicity. As our understanding of the mechanisms that contribute to the various neurological adverse effects of CAR T cell and other T cell-engaging therapies increases, novel treatment strategies to alleviate symptoms, as well as innovative CAR designs, promise to improve the safety and neurotoxicity of these powerful immunotherapies.

Key points

  • Chimeric antigen receptor (CAR) T cell therapies for cancers are associated with a wide range of both acute and delayed neurological adverse events, and the underlying mechanisms of such diverse complications remain incompletely understood.

  • Immune effector cell-associated neurotoxicity syndrome, classically presenting with encephalopathy, is the most common acute neurological complication but is usually fully reversible.

  • Tumour inflammation-associated neurotoxicity is a distinct form of localized neurotoxicity syndrome that is uniquely seen in patients treated for CNS malignancies.

  • Delayed-onset neurotoxicities, such as cranial nerve palsies, peripheral neuropathies or parkinsonism, occur particularly with B cell maturation antigen-targeting CAR T cell therapies, can be irreversible and are the most challenging in clinical practice.

  • Current management strategies mostly rely on supportive care, corticosteroids and cytokine inhibitors, although their effectiveness varies depending on the type and timing of the underlying neurotoxicity syndrome.

  • Future directions to limit the most severe forms of neurotoxicity could include novel CAR designs with safety switches, and controlled trials testing neuroprotective interventions will allow us to better understand and potentially prevent these conditions and improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relative timescales for onset of chimeric antigen receptor (CAR) T cell-mediated neurotoxicities.
Fig. 2: Potential pathological mechanisms and treatment approaches for chimeric antigen receptor (CAR) T cell-mediated neurotoxicities.

Similar content being viewed by others

References

  1. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Choi, B. D. et al. Intraventricular CARv3-TEAM-E T Cells in recurrent glioblastoma. N. Engl. J. Med. 390, 1290–1298 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  8. Rejeski, K. et al. The CAR-HEMATOTOX risk-stratifies patients for severe infections and disease progression after CD19 CAR-T in R/R LBCL. J. Immunother. Cancer 10, e004475 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article  PubMed  Google Scholar 

  11. Karschnia, P. et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood 133, 2212–2221 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Gudera, J. A., Baehring, J. M. & Karschnia, P. Parkinsonism following chimeric antigen receptor T cell therapy. JAMA Neurol. 81, 1223–1224 (2024).

    Article  Google Scholar 

  13. Karschnia, P. et al. Neurotoxicity and management of primary and secondary central nervous system lymphoma after adoptive immunotherapy with CD19-directed chimeric antigen receptor T-cells. Neuro Oncol. 25, 2239–2249 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transpl. 25, 625–638 (2019).

    Article  CAS  Google Scholar 

  15. Graham, C. E. et al. Non-ICANS neurological complications after CAR T-cell therapies: recommendations from the EBMT Practice Harmonisation and Guidelines Committee. Lancet Oncol. 26, e203–e213 (2025).

    Article  CAS  PubMed  Google Scholar 

  16. Karschnia, P. et al. Neurologic toxicities following adoptive immunotherapy with BCMA-directed CAR T cells. Blood 142, 1243–1248 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Bagley, S. J. et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results. Nat. Med. 30, 1320–1329 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Shah, N. N. et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J. Clin. Oncol. 38, 1938–1950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bachy, E. et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat. Med. 28, 2145–2154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furqan, F. et al. Outpatient administration of CAR T-cell therapies using a strategy of no remote monitoring and early CRS intervention. Blood Adv. 8, 4320–4329 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grant, S. J. et al. Clinical presentation, risk factors, and outcomes of immune effector cell-associated neurotoxicity syndrome following chimeric antigen receptor T cell therapy: a systematic review. Transpl. Cell Ther. 28, 294–302 (2022).

    Article  CAS  Google Scholar 

  22. First-ever CAR T-cell therapy approved in U.S. Cancer Discov. 7, OF1 (2017).

  23. Gust, J., Ponce, R., Liles, W. C., Garden, G. A. & Turtle, C. J. Cytokines in CAR T cell-associated neurotoxicity. Front. Immunol. 11, 577027 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Santomasso, B. D. et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 8, 958–971 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karschnia, P. et al. Clinicopathologic findings in fatal neurotoxicity after adoptive immunotherapy with CD19-directed CAR T-cells. Hemasphere 5, e533 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berger, S. C. et al. Molecular monitoring of T-cell kinetics and migration in severe neurotoxicity after real-world CD19-specific chimeric antigen receptor T cell therapy. Haematologica 108, 444–456 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Vinnakota, J. M. et al. Targeting TGFβ-activated kinase-1 activation in microglia reduces CAR T immune effector cell-associated neurotoxicity syndrome. Nat. Cancer 5, 1227–1249 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Schoeberl, F. et al. Neurofilament light chain serum levels correlate with the severity of neurotoxicity after CAR T-cell treatment. Blood Adv. 6, 3022–3026 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Butt, O. H. et al. Assessment of pretreatment and posttreatment evolution of neurofilament light chain levels in patients who develop immune effector cell-associated neurotoxicity syndrome. JAMA Oncol. 8, 1652–1657 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ursu, R. et al. Long-term neurological safety in B-cell lymphoma patients treated with anti-CD19 CAR T-cell therapy. Neurology 99, 511–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Beuchat, I. et al. EEG findings in CAR T-cell-associated neurotoxicity: clinical and radiological correlations. Neuro Oncol. 24, 313–325 (2022).

    Article  PubMed  Google Scholar 

  34. Stoecklein, S. et al. Functional connectivity MRI provides an imaging correlate for chimeric antigen receptor T-cell-associated neurotoxicity. Neurooncol. Adv. 5, vdad135 (2023).

    PubMed  PubMed Central  Google Scholar 

  35. Gust, J. et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mahdi, J. et al. Tumor inflammation-associated neurotoxicity. Nat. Med. 29, 803–810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salvador, A. F., de Lima, K. A. & Kipnis, J. Neuromodulation by the immune system: a focus on cytokines. Nat. Rev. Immunol. 21, 526–541 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Lin, F. Y. et al. Phase I trial of GD2.CART cells augmented with constitutive interleukin-7 receptor for treatment of high-grade pediatric CNS tumors. J. Clin. Oncol. 42, 2769–2779 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Monje, M. et al. Intravenous and intracranial GD2-CAR T cells for H3K27M+ diffuse midline gliomas. Nature 637, 708–715 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Abramson, J. S. et al. Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma. N. Engl. J. Med. 377, 783–784 (2017).

    Article  PubMed  Google Scholar 

  41. Winkler, F. et al. Cancer neuroscience: state of the field, emerging directions. Cell 186, 1689–1707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Martin, T. et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. 41, 1265–1274 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Cohen, A. D. et al. Incidence and management of CAR-T neurotoxicity in patients with multiple myeloma treated with ciltacabtagene autoleucel in CARTITUDE studies. Blood Cancer J. 12, 32 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marella, M. et al. Comprehensive BCMA expression profiling in adult normal human brain suggests a low risk of on-target neurotoxicity in BCMA-targeting multiple myeloma therapy. J. Histochem. Cytochem. 70, 273–287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Graham, C. E. et al. Chemotherapy-induced reversal of ciltacabtagene autoleucel-associated movement and neurocognitive toxicity. Blood 142, 1248–1252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alarcón, F., Zijlmans, J. C., Dueñas, G. & Cevallos, N. Post-stroke movement disorders: report of 56 patients. J. Neurol. Neurosurg. Psychiatry 75, 1568–1574 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gust, J. BCMA-CAR T-cell treatment-associated parkinsonism. Blood 142, 1181–1183 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Van De Donk, N. W. C. J. et al. Clinical experience with cranial nerve impairment in the CARTITUDE-1, CARTITUDE-2 cohorts A, B, and C, and CARTITUDE-4 studies of ciltacabtagene autoleucel (cilta-cel). Blood 142, 3501 (2023).

    Article  Google Scholar 

  51. Patrick, N., Bahlis, N. & Peters, S. Chimeric antigen receptor-T cell mediated bilateral facial nerve palsy: a case report. Neurohospitalist 13, 308–311 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kathari, Y. K. et al. Immune-mediated facial nerve paralysis in a myeloma patient post B-cell maturation antigen-targeted chimeric antigen receptor T cells. Haematologica 109, 682–688 (2024).

    Article  PubMed  Google Scholar 

  53. Koch, C. et al. Diabetes insipidus and Guillain-Barré-like syndrome following CAR-T cell therapy: a case report. J. Immunother. Cancer 11, e006059 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nair, R. et al. Acute leucoencephalomyelopathy and quadriparesis after CAR T-cell therapy. Haematologica 106, 1504–1506 (2021).

    Article  PubMed  Google Scholar 

  55. Sheikh, S. et al. Transverse myelitis after anti-CD19 directed CAR T cell therapy for relapsed large B cell lymphoma. eJHaem 3, 223–227 (2022).

    Article  PubMed  Google Scholar 

  56. Deschênes-Simard, X., Santomasso, B. D. & Dahi, P. B. Clinical features, pathophysiology, and management of acute myelopathy following CAR T-cell therapy. Blood 144, 2083–2094 (2024).

    Article  PubMed  Google Scholar 

  57. Santomasso, B. D., Gust, J. & Perna, F. How I treat unique and difficult-to-manage cases of CAR T-cell therapy-associated neurotoxicity. Blood 141, 2443–2451 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuboki, M. et al. Severe motor weakness due to disturbance in peripheral nerves following tisagenlecleucel treatment. In Vivo 35, 3407–3411 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kaulen, L. D. et al. Toxicities and outcome after CD19-directed chimeric antigen receptor T-cell therapy for secondary neurolymphomatosis. Am. J. Hematol. 99, 2411–2415 (2024).

    Article  PubMed  Google Scholar 

  60. Kress, J. P. & Hall, J. B. ICU-acquired weakness and recovery from critical illness. N. Engl. J. Med. 370, 1626–1635 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Amidi, Y. et al. Forecasting immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T-cell therapy. J. Immunother. Cancer 10, e005459 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rubin, D. B. et al. Clinical predictors of neurotoxicity after chimeric antigen receptor T-cell therapy. JAMA Neurol. 77, 1536–1542 (2020).

    Article  PubMed  Google Scholar 

  63. Zandaki, D. et al. EASIX and m-EASIX predict CRS and ICANS in pediatric and AYA patients after CD19-CAR T-cell therapy. Blood Adv. 9, 270–279 (2025).

    Article  CAS  PubMed  Google Scholar 

  64. Pennisi, M. et al. Modified EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Adv. 5, 3397–3406 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao, Y. et al. Modified EASIX scores predict severe CRS/ICANS in patients with acute myeloid leukemia following CLL1 CAR-T cell therapy. Ann. Hematol. 103, 969–980 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Roddie, C. et al. Effective bridging therapy can improve CD19 CAR-T outcomes while maintaining safety in patients with large B-cell lymphoma. Blood Adv. 7, 2872–2883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ahmed, N. et al. Optimizing the post-CAR T monitoring period in recipients of axicabtagene ciloleucel, tisagenlecleucel, and lisocabtagene maraleucel. Blood Adv. 8, 5346–5354 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Winter, S. F., Martinez-Lage, M., Clement, N. F., Hochberg, E. P. & Dietrich, J. Fatal neurotoxicity after chimeric antigen receptor T-cell therapy: an unexpected case of fludarabine-associated progressive leukoencephalopathy. Eur. J. Cancer 144, 178–181 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Tanner, C. M. & Ostrem, J. L. Parkinson’s disease. N. Engl. J. Med. 391, 442–452 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. England, J. D. & Asbury, A. K. Peripheral neuropathy. Lancet 363, 2151–2161 (2004).

    Article  PubMed  Google Scholar 

  71. Santomasso, B. D. et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J. Clin. Oncol. 39, 3978–3992 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Gust, J., Taraseviciute, A. & Turtle, C. J. Neurotoxicity associated with CD19-targeted CAR-T cell therapies. CNS Drugs 32, 1091–1101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Locke, F. L. et al. Tocilizumab prophylaxis following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Transpl. Cell Ther. 30, 1065–1079 (2024).

    Article  CAS  Google Scholar 

  74. Jain, M. D., Smith, M. & Shah, N. N. How I treat refractory CRS and ICANS after CAR T-cell therapy. Blood 141, 2430–2442 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Strati, P. et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 4, 3123–3127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wehrli, M. et al. Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS). J. Immunother. Cancer 10, e003847 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gazeau, N. et al. Anakinra for refractory cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T cell therapy. Transpl. Cell Ther. 29, 430–437 (2023).

    Article  CAS  Google Scholar 

  78. Zurko, J. C. et al. Use of early intrathecal therapy to manage high-grade immune effector cell-associated neurotoxicity syndrome. JAMA Oncol. 8, 773–775 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shah, N. N., Johnson, B. D., Fenske, T. S., Raj, R. V. & Hari, P. Intrathecal chemotherapy for management of steroid-refractory CAR T-cell-associated neurotoxicity syndrome. Blood Adv. 4, 2119–2122 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bailey, S. R. et al. Blockade or deletion of IFNγ reduces macrophage activation without compromising CAR T-cell function in hematologic malignancies. Blood Cancer Discov. 3, 136–153 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bajwa, A. et al. Siltuximab for chimeric antigen receptor T-cell therapy related CRS and ICANS — a multicenter retrospective analysis. Blood Adv. 9, 170–175 (2024).

    Article  PubMed Central  Google Scholar 

  82. Chung, M. et al. Immune checkpoint inhibitor induced anti-glutamic acid decarboxylase 65 (anti-GAD 65) limbic encephalitis responsive to intravenous immunoglobulin and plasma exchange. J. Neurol. 267, 1023–1025 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, M. et al. Management of a patient with mantle cell lymphoma who developed severe neurotoxicity after chimeric antigen receptor T-cell therapy in ZUMA-2. J. Immunother. Cancer 8, e001114 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Weber, E. W. et al. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 3, 711–717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pan, J. et al. Ruxolitinib mitigates steroid-refractory CRS during CAR T therapy. J. Cell Mol. Med. 25, 1089–1099 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Sumransub, N. et al. Simvastatin with intrathecal dexamethasone reduces neurotoxicity in adults receiving chimeric antigen receptor (CAR) T-cells treatment. Blood 142, 3493 (2023).

    Article  Google Scholar 

  87. Blumenberg, V. et al. Cyclophosphamide mitigates non-ICANS neurotoxicities after ciltacabtagene autoleucel treatment. Blood 145, 2788–2793 (2025).

    Article  CAS  PubMed  Google Scholar 

  88. Frigault, M. J. et al. Safety and efficacy of tisagenlecleucel in primary CNS lymphoma: a phase 1/2 clinical trial. Blood 139, 2306–2315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park, S. H. et al. Pathological classification of the intramedullary spinal cord tumors according to 2021 World Health Organization classification of central nervous system tumors, a single-institute experience. Neurospine 19, 780–791 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Park, J. H. et al. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat. Med. 29, 1710–1717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Strati, P. et al. A phase 1 study of prophylactic anakinra to mitigate ICANS in patients with large B-cell lymphoma. Blood Adv. 7, 6785–6789 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Philip, B. et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124, 1277–1287 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Ying, Z. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 25, 947–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sahillioglu, A. C. & Schumacher, T. N. Safety switches for adoptive cell therapy. Curr. Opin. Immunol. 74, 190–198 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Perna, F. et al. CAR T-cell toxicities: from bedside to bench, how novel toxicities inform laboratory investigations. Blood Adv. 8, 4348–4358 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jörg Dietrich.

Ethics declarations

Competing interests

P.K. has served as a consultant for the American Society of Clinical Oncology. J.D. has served as a consultant and on advisory boards for Amgen, Novartis, Janssen and Johnson & Johnson. He has received research support from Ono Pharmaceuticals and royalties from Wolters Kluwer.

Peer review

Peer review information

Nature Reviews Neurology thanks B. Santomasso and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karschnia, P., Dietrich, J. Neurological complications of CAR T cell therapy for cancers. Nat Rev Neurol 21, 422–431 (2025). https://doi.org/10.1038/s41582-025-01112-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01112-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer