Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Environmental influences on the pace of brain development

Abstract

Childhood socio-economic status (SES), a measure of the availability of material and social resources, is one of the strongest predictors of lifelong well-being. Here we review evidence that experiences associated with childhood SES affect not only the outcome but also the pace of brain development. We argue that higher childhood SES is associated with protracted structural brain development and a prolonged trajectory of functional network segregation, ultimately leading to more efficient cortical networks in adulthood. We hypothesize that greater exposure to chronic stress accelerates brain maturation, whereas greater access to novel positive experiences decelerates maturation. We discuss the impact of variation in the pace of brain development on plasticity and learning. We provide a generative theoretical framework to catalyse future basic science and translational research on environmental influences on brain development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations between socio-economic status and cortical thickness.
Fig. 2: Associations between socio-economic status and functional brain network segregation.
Fig. 3: Integrative theory: childhood experiences affect the pace of brain development.

Similar content being viewed by others

References

  1. Duncan, G. J., Magnuson, K., Kalil, A. & Ziol-Guest, K. The importance of early childhood poverty. Soc. Indic. Res. 108, 87–98 (2012).

    Google Scholar 

  2. Duncan, G. J., Yeung, W. J., Brooks-Gunn, J. & Smith, J. R. How much does childhood poverty affect the life chances of children? Am. Sociol. Rev. 63, 406–423 (1998).

    Google Scholar 

  3. Cohen, S., Janicki-Deverts, D., Chen, E. & Matthews, K. A. Childhood socioeconomic status and adult health. Ann. N. Y. Acad. Sci. 1186, 37–55 (2010).

    PubMed  Google Scholar 

  4. Evans, G. W. & Cassells, R. C. Childhood poverty, cumulative risk exposure, and mental health in emerging adults. Clin. Psychol. Sci. J. Assoc. Psychol. Sci. 2, 287–296 (2014).

    Google Scholar 

  5. Farah, M. J. The neuroscience of socioeconomic status: correlates, causes, and consequences. Neuron 96, 56–71 (2017).

    CAS  PubMed  Google Scholar 

  6. Hair, N. L., Hanson, J. L., Wolfe, B. L. & Pollak, S. D. Association of child poverty, brain development, and academic achievement. JAMA Pediatr. 169, 822 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Finn, A. S. et al. Functional brain organization of working memory in adolescents varies in relation to family income and academic achievement. Dev. Sci. 20, e12450 (2017).

    Google Scholar 

  8. Mackey, A. P. et al. Neuroanatomical correlates of the income-achievement gap. Psychol. Sci. 26, 925–933 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Kraemer, H. C., Yesavage, J. A., Taylor, J. L. & Kupfer, D. How can we learn about developmental processes from cross-sectional studies, or can we? Am. J. Psychiatry 157, 163–171 (2000).

    CAS  PubMed  Google Scholar 

  10. Innocenti, G. M. & Price, D. J. Exuberance in the development of cortical networks. Nat. Rev. Neurosci. 6, 955–965 (2005).

    CAS  PubMed  Google Scholar 

  11. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).

    CAS  PubMed  Google Scholar 

  12. Li, G., Lin, W., Gilmore, J. H. & Shen, D. Spatial patterns, longitudinal development, and hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age. J. Neurosci. 35, 9150–9162 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stiles, J. & Jernigan, T. L. The basics of brain development. Neuropsychol. Rev. 20, 327–348 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Natu, V. S. et al. Apparent thinning of human visual cortex during childhood is associated with myelination. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1904931116 (2019).

    Article  PubMed  Google Scholar 

  15. Goriounova, N. A. et al. Large and fast human pyramidal neurons associate with intelligence. eLife 7, e41714 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Brown, T. T. & Jernigan, T. L. Brain development during the preschool years. Neuropsychol. Rev. 22, 313–333 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Schnack, H. G. et al. Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb. Cortex 25, 1608–1617 (2015).

    PubMed  Google Scholar 

  18. Lawson, G. M., Duda, J. T., Avants, B. B., Wu, J. & Farah, M. J. Associations between children’s socioeconomic status and prefrontal cortical thickness. Dev. Sci. 16, 641–652 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Leonard, J. A. et al. Associations between cortical thickness and reasoning differ by socioeconomic status in development. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2019.100641 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alnæs, D., Kaufmann, T., Marquand, A. F., Smith, S. M. & Westlye, L. T. Patterns of sociocognitive stratification and perinatal risk in the child brain. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2001517117 (2020).

    Article  PubMed  Google Scholar 

  21. Jha, S. C. et al. Environmental influences on infant cortical thickness and surface area. Cereb. Cortex 29, 1139–1149 (2019).

    PubMed  Google Scholar 

  22. Piccolo, L. R., Merz, E. C., He, X., Sowell, E. R. & Noble, K. G. Age-related differences in cortical thickness vary by socioeconomic status. PLoS ONE 11, e0162511 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Khundrakpam, B. et al. Non-linear effects of socioeconomic status on brain development: associations between parental occupation, cortical thickness and language skills in childhood and adolescence. bioRxiv https://doi.org/10.1101/575993 (2019).

    Article  Google Scholar 

  24. Parker, N. et al. Income inequality, gene expression, and brain maturation during adolescence. Sci. Rep. 7, 7397 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. McDermott, C. L. et al. Longitudinally mapping childhood socioeconomic status associations with cortical and subcortical morphology. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.1808-18.2018 (2018).

    Article  PubMed  Google Scholar 

  26. Judd, N. et al. Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. Proc. Natl Acad. Sci. USA 117, 12411–12418 (2020).

    CAS  PubMed  Google Scholar 

  27. Noble, K. G. et al. Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 18, 773–778 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. LeWinn, K. Z., Sheridan, M. A., Keyes, K. M., Hamilton, A. & McLaughlin, K. A. Sample composition alters associations between age and brain structure. Nat. Commun. 8, 874 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Chechik, G., Meilijson, I. & Ruppin, E. Synaptic pruning in development: a novel account in neural terms. in Computational Neuroscience (ed. Bower, J. M.) 149–154 (Springer, 1998).

  30. Baxter, R. A. & Levy, W. B. Constructing multilayered neural networks with sparse, data-driven connectivity using biologically-inspired, complementary, homeostatic mechanisms. Neural Netw. 122, 68–93 (2020).

    PubMed  Google Scholar 

  31. Thomas, M. S. C. Do more intelligent brains retain heightened plasticity for longer in development? A computational investigation. Dev. Cogn. Neurosci. 19, 258–269 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Ju, H., Colbert, C. M. & Levy, W. B. Limited synapse overproduction can speed development but sometimes with long-term energy and discrimination penalties. PLOS Comput. Biol. 13, e1005750 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Church, J. A., Petersen, S. E. & Schlaggar, B. L. The “task B problem” and other considerations in developmental functional neuroimaging. Hum. Brain Mapp. 31, 852–862 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    CAS  PubMed  Google Scholar 

  35. Wig, G. S. Segregated systems of human brain networks. Trends Cogn. Sci. 21, 981–996 (2017).

    PubMed  Google Scholar 

  36. Gur, R. E. et al. Burden of environmental adversity associated with psychopathology, maturation, and brain behavior parameters in youths. JAMA Psychiatry https://doi.org/10.1001/jamapsychiatry.2019.0943 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Marshall, N. A. et al. Socioeconomic disadvantage and altered corticostriatal circuitry in urban youth. Hum. Brain Mapp. 39, 1982–1994 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Fareri, D. S. et al. Normative development of ventral striatal resting state connectivity in humans. NeuroImage 118, 422–437 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Hanson, J. L. et al. Resting state coupling between the amygdala and ventromedial prefrontal cortex is related to household income in childhood and indexes future psychological vulnerability to stress. Dev. Psychopathol. https://doi.org/10.1017/S0954579419000592 (2019).

    Article  PubMed  Google Scholar 

  40. Barch, D. et al. Effect of hippocampal and amygdala connectivity on the relationship between preschool poverty and school-age depression. Am. J. Psychiatry 173, 625–634 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Gabard-Durnam, L. J. et al. The development of human amygdala functional connectivity at rest from 4 to 23 years: a cross-sectional study. NeuroImage 95, 193–207 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Guerra-Carrillo, B., Mackey, A. P. & Bunge, S. A. Resting-state fMRI: a window into human brain plasticity. Neuroscientist 20, 522–533 (2014).

    PubMed  Google Scholar 

  43. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19, 566 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bassett, D. S., Xia, C. H. & Satterthwaite, T. D. Understanding the emergence of neuropsychiatric disorders with network neuroscience. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 742–753 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Zuo, X.-N. et al. Human connectomics across the life span. Trends Cogn. Sci. 21, 32–45 (2017).

    PubMed  Google Scholar 

  47. Petersen, S. E. & Sporns, O. Brain networks and cognitive architectures. Neuron 88, 207–219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bassett, D. S. & Bullmore, E. T. Small-world brain networks revisited. Neuroscientist 23, 499–516 (2017).

    PubMed  Google Scholar 

  49. Gu, S. et al. Emergence of system roles in normative neurodevelopment. Proc. Natl Acad. Sci. USA 112, 13681–13686 (2015).

    CAS  PubMed  Google Scholar 

  50. Thomason, M. E. et al. Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus. PLoS ONE 9, e94423 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Zhao, T., Xu, Y. & He, Y. Graph theoretical modeling of baby brain networks. NeuroImage https://doi.org/10.1016/j.neuroimage.2018.06.038 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kaiser, M. & Varier, S. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens. Netw. Comput. Neural Syst. 22, 143–147 (2011).

    Google Scholar 

  53. Kaiser, M. Mechanisms of connectome development. Trends Cogn. Sci. 21, 703–717 (2017).

    PubMed  Google Scholar 

  54. Larivière, S. et al. Multiscale structure–function gradients in the neonatal connectome. Cereb. Cortex https://doi.org/10.1093/cercor/bhz069 (2019).

    Article  PubMed Central  Google Scholar 

  55. Eyre, M. et al. The developing human connectome project: typical and disrupted functional connectivity across the perinatal period. bioRxiv https://doi.org/10.1101/2020.01.20.912881 (2020).

    Article  Google Scholar 

  56. Grayson, D. S. & Fair, D. A. Development of large-scale functional networks from birth to adulthood: a guide to the neuroimaging literature. NeuroImage 160, 15–31 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Marek, S., Hwang, K., Foran, W., Hallquist, M. N. & Luna, B. The contribution of network organization and integration to the development of cognitive control. PLoS Biol. 13, e1002328 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Kraft, A. W. et al. Electrically coupled inhibitory interneurons constrain long-range connectivity of cortical networks. NeuroImage 215, 116810 (2020).

    CAS  PubMed  Google Scholar 

  59. Heuvel, M. P., van den, Scholtens, L. H., Barrett, L. F., Hilgetag, C. C. & de.Reus, M. A. Bridging cytoarchitectonics and connectomics in human cerebral cortex. J. Neurosci. 35, 13943–13948 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Scholtens, L. H., Schmidt, R., Reus, M. A. de & van den Heuvel, M. P. Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J. Neurosci. 34, 12192–12205 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wei, Y., Scholtens, L. H., Turk, E. & van den Heuvel, M. P. Multiscale examination of cytoarchitectonic similarity and human brain connectivity. Netw. Neurosci. https://doi.org/10.1162/netn_a_00057 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. van den Heuvel, M. P. et al. Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting-state functional connectivity: chemoarchitecture and fMRI connectivity. Hum. Brain Mapp. 37, 3103–3113 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Gao, W. et al. Functional network development during the first year: relative sequence and socioeconomic correlations. Cereb. Cortex 25, 2919–2928 (2015).

    PubMed  Google Scholar 

  64. Tooley, U. A. et al. Associations between neighborhood SES and functional brain network development. Cereb. Cortex 30, 1–19 (2020).

    PubMed  Google Scholar 

  65. Gellci, K. et al. Community and household-level socioeconomic disadvantage and functional organization of the salience and emotion network in children and adolescents. NeuroImage 184, 729–740 (2019).

    PubMed  Google Scholar 

  66. Noble, K. G., Houston, S. M., Kan, E. & Sowell, E. R. Neural correlates of socioeconomic status in the developing human brain: neural correlates of socioeconomic status. Dev. Sci. 15, 516–527 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. McLaughlin, K. A., Sheridan, M. A. & Lambert, H. K. Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neurosci. Biobehav. Rev. 47, 578–591 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Sheridan, M. A. & McLaughlin, K. A. Dimensions of early experience and neural development: deprivation and threat. Trends Cogn. Sci. 18, 580–585 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. McLaughlin, K. A. & Sheridan, M. A. Beyond cumulative risk: a dimensional approach to childhood adversity. Curr. Dir. Psychol. Sci. 25, 239–245 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Baum, A., Garofalo, J. P. & Yali, A. M. Socioeconomic status and chronic stress: does stress account for SES effects on health? Ann. N. Y. Acad. Sci. 896, 131–144 (1999).

    CAS  PubMed  Google Scholar 

  71. Callaghan, B. L. & Tottenham, N. The stress acceleration hypothesis: effects of early-life adversity on emotion circuits and behavior. Curr. Opin. Behav. Sci. 7, 76–81 (2016).

    PubMed  Google Scholar 

  72. Callaghan, B. L. & Tottenham, N. The neuro-environmental loop of plasticity: a cross-species analysis of parental effects on emotion circuitry development following typical and adverse caregiving. Neuropsychopharmacology 41, 163–176 (2016).

    PubMed  Google Scholar 

  73. Monroe, S. M. Modern approaches to conceptualizing and measuring human life stress. Annu. Rev. Clin. Psychol. 4, 33–52 (2008).

    PubMed  Google Scholar 

  74. Belsky, J. Early-life adversity accelerates child and adolescent development. Curr. Dir. Psychol. Sci. 28, 241–246 (2019).

    Google Scholar 

  75. Short, A. K. & Baram, T. Z. Early-life adversity and neurological disease: age-old questions and novel answers. Nat. Rev. Neurol. https://doi.org/10.1038/s41582-019-0246-5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gee, D. G. et al. Early developmental emergence of human amygdala–prefrontal connectivity after maternal deprivation. Proc. Natl Acad. Sci. USA 110, 15638–15643 (2013).

    CAS  PubMed  Google Scholar 

  77. Herringa, R. J. et al. Enhanced prefrontal-amygdala connectivity following childhood adversity as a protective mechanism against internalizing in adolescence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 326–334 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. McEwen, B. S. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44 (1998).

    CAS  PubMed  Google Scholar 

  79. Zhang, X., Chen, X. & Zhang, X. The impact of exposure to air pollution on cognitive performance. Proc. Natl Acad. Sci. USA 115, 9193–9197 (2018).

    CAS  PubMed  Google Scholar 

  80. Mezick, E. J. et al. Influence of race and socioeconomic status on sleep: Pittsburgh sleep SCORE project. Psychosom. Med. 70, 410–416 (2008).

    PubMed  PubMed Central  Google Scholar 

  81. Wen, M., Zhang, X., Harris, C. D., Holt, J. B. & Croft, J. B. Spatial disparities in the distribution of parks and green spaces in the USA. Ann. Behav. Med. Publ. Soc. Behav. Med. 45, 18–27 (2013).

    Google Scholar 

  82. Martens, D. S. et al. Prenatal air pollution and newborns’ predisposition to accelerated biological aging. JAMA Pediatr. 171, 1160 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. James, S. et al. Sleep duration and telomere length in children. J. Pediatr. 187, 247–252.e1 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Irwin, M. R., Olmstead, R. & Carroll, J. E. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry 80, 40–52 (2016).

    PubMed  Google Scholar 

  85. Miller, G. E., Chen, E. & Parker, K. J. Psychological stress in childhood and susceptibility to the chronic diseases of aging: moving toward a model of behavioral and biological mechanisms. Psychol. Bull. 137, 959–997 (2011).

    PubMed  PubMed Central  Google Scholar 

  86. Lam, L. L. et al. Factors underlying variable DNA methylation in a human community cohort. Proc. Natl Acad. Sci. USA 109, 17253–17260 (2012).

    CAS  PubMed  Google Scholar 

  87. Mitchell, C. et al. Social disadvantage, genetic sensitivity, and children’s telomere length. Proc. Natl Acad. Sci. USA 111, 5944–5949 (2014).

    CAS  PubMed  Google Scholar 

  88. Austin, M. K. et al. Early-life socioeconomic disadvantage, not current, predicts accelerated epigenetic aging of monocytes. Psychoneuroendocrinology 97, 131–134 (2018).

    PubMed  Google Scholar 

  89. James-Todd, T., Tehranifar, P., Rich-Edwards, J., Titievsky, L. & Terry, M. B. The impact of socioeconomic status across early life on age at menarche among a racially diverse population of girls. Ann. Epidemiol. 20, 836–842 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. Sun, Y., Mensah, F. K., Azzopardi, P., Patton, G. C. & Wake, M. Childhood social disadvantage and pubertal timing: a national birth cohort from Australia. Pediatrics https://doi.org/10.1542/peds.2016-4099 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Belsky, J., Ruttle, P. L., Boyce, W. T., Armstrong, J. M. & Essex, M. J. Early adversity, elevated stress physiology, accelerated sexual maturation, and poor health in females. Dev. Psychol. 51, 816–822 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Colich, N. L., Rosen, M. L., Williams, E. S. & McLaughlin, K. A. Biological aging in childhood and adolescence following experiences of threat and deprivation: a systematic review and meta-analysis. Psychol. Bull. 146, 721–764 (2020).

    PubMed  PubMed Central  Google Scholar 

  93. Snell-Rood, E. & Snell-Rood, C. The developmental support hypothesis: adaptive plasticity in neural development in response to cues of social support. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190491 (2020).

    Google Scholar 

  94. Weisbecker, V. & Goswami, A. Brain size, life history, and metabolism at the marsupial/placental dichotomy. Proc. Natl Acad. Sci. USA 107, 16216–16221 (2010).

    CAS  PubMed  Google Scholar 

  95. Snell-Rood, E. C., Davidowitz, G. & Papaj, D. R. Reproductive tradeoffs of learning in a butterfly. Behav. Ecol. 22, 291–302 (2011).

    Google Scholar 

  96. Walker, C.-D. et al. Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress 20, 421–448 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Rice, C. J., Sandman, C. A., Lenjavi, M. R. & Baram, T. Z. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology 149, 4892–4900 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Brunson, K. L. et al. Mechanisms of late-onset cognitive decline after early-life stress. J. Neurosci. 25, 9328–9338 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bath, K. G., Manzano-Nieves, G. & Goodwill, H. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Horm. Behav. 82, 64–71 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Manzano Nieves, G., Bravo, M., Baskoylu, S. & Bath, K. G. Early life adversity decreases pre-adolescent fear expression by accelerating amygdala PV cell development. eLife 9, e55263 (2020).

    PubMed  PubMed Central  Google Scholar 

  101. Naninck, E. F. G. et al. Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus 25, 309–328 (2015).

    CAS  PubMed  Google Scholar 

  102. Ivy, A. S. et al. Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. J. Neurosci. 30, 13005–13015 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, X.-D. et al. Stress during a critical postnatal period induces region-specific structural abnormalities and dysfunction of the prefrontal cortex via CRF1. Neuropsychopharmacology 40, 1203–1215 (2015).

    CAS  PubMed  Google Scholar 

  104. Danese, A. & McEwen, B. S. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol. Behav. 106, 29–39 (2012).

    CAS  PubMed  Google Scholar 

  105. Bradley, R. H., Corwyn, R. F., McAdoo, H. P. & Coll, C. G. The home environments of children in the United States part I: variations by age, ethnicity, and poverty status. Child. Dev. 72, 1844–1867 (2001).

    CAS  PubMed  Google Scholar 

  106. Sheridan, M. A., Peverill, M., Finn, A. S. & Mclaughlin, K. A. Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning. Dev. Psychopathol. 29, 1777–1794 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Rosen, M. L., Sheridan, M. A., Sambrook, K. A., Meltzoff, A. N. & McLaughlin, K. A. Socioeconomic disparities in academic achievement: a multi-modal investigation of neural mechanisms in children and adolescents. NeuroImage 173, 298–310 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Amso, D., Salhi, C. & Badre, D. The relationship between cognitive enrichment and cognitive control: a systematic investigation of environmental influences on development through socioeconomic status. Dev. Psychobiol. 61, 159–178 (2019).

    PubMed  Google Scholar 

  109. Rosen, M. L. et al. Cognitive stimulation as a mechanism linking socioeconomic status with executive function: a longitudinal investigation. Child Dev. https://doi.org/10.1111/cdev.13315 (2019).

    Article  PubMed  Google Scholar 

  110. Diamond, M. C. Response of the brain to enrichment. An. Acad. Bras. Ciênc. 73, 211–220 (2001).

    CAS  PubMed  Google Scholar 

  111. Bennett, E. L., Diamond, M. C., Krech, D. & Rosenzweig, M. R. Chemical and anatomical plasticity of brain. Science 146, 610–619 (1964).

    CAS  PubMed  Google Scholar 

  112. Diamond, M. C., Krech, D. & Rosenzweig, M. R. The effects of an enriched environment on the histology of the rat cerebral cortex. J. Comp. Neurol. 123, 111–119 (1964).

    CAS  PubMed  Google Scholar 

  113. Connor, J. R., Wang, E. C. & Diamond, M. C. Increased length of terminal dendritic segments in old adult rats’ somatosensory cortex: an environmentally induced response. Exp. Neurol. 78, 466–470 (1982).

    CAS  PubMed  Google Scholar 

  114. Schapiro, S. & Vukovich, K. R. Early experience effects upon cortical dendrites: a proposed model for development. Science 167, 292–294 (1970).

    CAS  PubMed  Google Scholar 

  115. Diamond, M. C. et al. Increases in cortical depth and glia numbers in rats subjected to enriched environment. J. Comp. Neurol. 128, 117–125 (1966).

    CAS  PubMed  Google Scholar 

  116. Leal-Galicia, P., Castañeda-Bueno, M., Quiroz-Baez, R. & Arias, C. Long-term exposure to environmental enrichment since youth prevents recognition memory decline and increases synaptic plasticity markers in aging. Neurobiol. Learn. Mem. 90, 511–518 (2008).

    PubMed  Google Scholar 

  117. Markham, J. A. & Greenough, W. T. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 1, 351–363 (2005).

    Google Scholar 

  118. Diamond, M. C. Enriching Heredity: The Impact of the Environment on the Anatomy of the Brain (Free Press, 1988).

  119. Scholz, J., Allemang-Grand, R., Dazai, J. & Lerch, J. P. Environmental enrichment is associated with rapid volumetric brain changes in adult mice. NeuroImage 109, 190–198 (2015).

    PubMed  Google Scholar 

  120. Bennett, E. L., Rosenzweig, M., Diamond, M., Morimoto, H. & Hebert, M. Effects of successive environments on brain measures. Physiol. Behav. 12, 621–631 (1974).

    CAS  PubMed  Google Scholar 

  121. Petersen, A. Brain Maturation and Cognitive Development: Comparative and Cross-cultural Perspectives. (Routledge, 2017).

  122. Chechik, G., Meilijson, I. & Ruppin, E. Synaptic pruning in development: a computational account. Neural Comput. 10, 1759–1777 (1998).

    CAS  PubMed  Google Scholar 

  123. Reh, R. K. et al. Critical period regulation across multiple timescales. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1820836117 (2020).

    Article  PubMed  Google Scholar 

  124. Werker, J. F. & Hensch, T. K. Critical periods in speech perception: new directions. Annu. Rev. Psychol. 66, 173–196 (2015).

    PubMed  Google Scholar 

  125. Guadagno, A., Verlezza, S., Long, H., Wong, T. P. & Walker, C.-D. It is all in the right amygdala: increased synaptic plasticity and perineuronal nets in male, but not female, juvenile rat pups after exposure to early-life stress. J. Neurosci. 40, 8276–8291 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience–dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sumner, J. A., Colich, N. L., Uddin, M., Armstrong, D. & McLaughlin, K. A. Early experiences of threat, but not deprivation, are associated with accelerated biological aging in children and adolescents. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2018.09.008 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Piekarski, D. J., Boivin, J. R. & Wilbrecht, L. Ovarian hormones organize the maturation of inhibitory neurotransmission in the frontal cortex at puberty onset in female mice. Curr. Biol. 27, 1735–1745.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tanti, A. et al. Child abuse associates with an imbalance of oligodendrocyte-lineage cells in ventromedial prefrontal white matter. Mol. Psychiatry https://doi.org/10.1038/mp.2017.231 (2017).

    Article  PubMed  Google Scholar 

  130. Chao, L. L., Tosun, D., Woodward, S. H., Kaufer, D. & Neylan, T. C. Preliminary evidence of increased hippocampal myelin content in veterans with posttraumatic stress disorder. Front. Behav. Neurosci. 9, 333 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. Favuzzi, E. et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron 95, 639–655.e10 (2017).

    CAS  PubMed  Google Scholar 

  132. Duffy, S. N. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn. Mem. 8, 26–34 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. O’Connor, A. M. et al. Environmental enrichment from birth impacts parvalbumin expressing cells and wisteria floribunda agglutinin labelled peri-neuronal nets within the developing murine striatum. Front. Neuroanat. 13, 90 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. Carstens, K. E., Phillips, M. L., Pozzo-Miller, L., Weinberg, R. J. & Dudek, S. M. Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons. J. Neurosci. 36, 6312–6320 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Brainard, M. S. & Knudsen, E. I. Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. J. Neurosci. 18, 3929–3942 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Greifzu, F. et al. Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proc. Natl Acad. Sci. USA 111, 1150–1155 (2014).

    CAS  PubMed  Google Scholar 

  137. Greifzu, F., Kalogeraki, E. & Löwel, S. Environmental enrichment preserved lifelong ocular dominance plasticity, but did not improve visual abilities. Neurobiol. Aging 41, 130–137 (2016).

    PubMed  Google Scholar 

  138. Baroncelli, L. et al. Nurturing brain plasticity: Impact of environmental enrichment. Cell Death Differ. 17, 1092–1103 (2010).

    CAS  PubMed  Google Scholar 

  139. Sale, A. et al. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat. Neurosci. 10, 679–681 (2007).

    CAS  PubMed  Google Scholar 

  140. Foscarin, S. et al. Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoS ONE 6, e16666 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Nguyen, P. T. et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 182, 388–403.e15 (2020).

    CAS  PubMed  Google Scholar 

  142. Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Takesian, A. E., Bogart, L. J., Lichtman, J. W. & Hensch, T. K. Inhibitory circuit gating of auditory critical-period plasticity. Nat. Neurosci. 21, 218–227 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Bao, S., Chan, V. T. & Merzenich, M. M. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412, 79–83 (2001).

    CAS  PubMed  Google Scholar 

  145. Vetencourt, J. F. M. et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385–388 (2008).

    Google Scholar 

  146. Morishita, H., Miwa, J. M., Heintz, N. & Hensch, T. K. Plasticity in adult visual cortex. Science 330, 4 (2010).

    Google Scholar 

  147. Thanos, P. K. et al. Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior. Oncotarget 7, 19111–19123 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Grady, D. L. et al. DRD4 genotype predicts longevity in mouse and human. J. Neurosci. 33, 286–291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Pekarek, B. T., Hunt, P. J. & Arenkiel, B. R. Oxytocin and sensory network plasticity. Front. Neurosci. 14, 30 (2020).

    PubMed  PubMed Central  Google Scholar 

  150. Park, S.-H., Kim, Y.-J., Park, J.-C., Han, J.-S. & Choi, S.-Y. Intranasal oxytocin following uncontrollable stress blocks impairments in hippocampal plasticity and recognition memory in stressed rats. Int. J. Neuropsychopharmacol. 20, 861–866 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Crane, J. W., Holmes, N. M., Fam, J., Westbrook, R. F. & Delaney, A. J. Oxytocin increases inhibitory synaptic transmission and blocks development of long-term potentiation in the lateral amygdala. J. Neurophysiol. 123, 587–599 (2019).

    PubMed  Google Scholar 

  152. Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18, 744–751 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Finc, K. et al. Dynamic reconfiguration of functional brain networks during working memory training. Nat. Commun. 11, 2435 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Mohr, H. et al. Integration and segregation of large-scale brain networks during short-term task automatization. Nat. Commun. 7, 13217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L. & Posner, M. I. Training, maturation, and genetic influences on the development of executive attention. Proc. Natl Acad. Sci. USA 102, 14931–14936 (2005).

    CAS  PubMed  Google Scholar 

  156. Romeo, R. R. et al. Beyond the “30 million word gap:” children’s conversational exposure is associated with language-related brain function. Psychol. Sci. 29, 700–710 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Romeo, R. R. et al. Language exposure relates to structural neural connectivity in childhood. J. Neurosci. 38, 7870–7877 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Gopnik, A. Childhood as a solution to explore–exploit tensions. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190502 (2020).

    Google Scholar 

  159. Frankenhuis, W. E. & Panchanathan, K. Individual differences in developmental plasticity may result from stochastic sampling. Perspect. Psychol. Sci. 6, 336–347 (2011).

    PubMed  Google Scholar 

  160. Frankenhuis, W. E. & Walasek, N. Modeling the evolution of sensitive periods. Dev. Cogn. Neurosci. 41, 100715 (2020).

    PubMed  Google Scholar 

  161. Panchanathan, K. & Frankenhuis, W. E. The evolution of sensitive periods in a model of incremental development. Proc. R. Soc. B Biol. Sci. 283, 20152439 (2016).

    Google Scholar 

  162. Zhu, J., Apparsundaram, S., Bardo, M. T. & Dwoskin, L. P. Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. J. Neurochem. 93, 1434–1443 (2005).

    CAS  PubMed  Google Scholar 

  163. Kim, M.-S. et al. Environmental enrichment enhances synaptic plasticity by internalization of striatal dopamine transporters. J. Cereb. Blood Flow. Metab. 36, 2122–2133 (2016).

    CAS  PubMed  Google Scholar 

  164. Heller, A. S. et al. Association between real-world experiential diversity and positive affect relates to hippocampal–striatal functional connectivity. Nat. Neurosci. https://doi.org/10.1038/s41593-020-0636-4 (2020).

    Article  PubMed  Google Scholar 

  165. Schomaker, J. & Meeter, M. Short- and long-lasting consequences of novelty, deviance and surprise on brain and cognition. Neurosci. Biobehav. Rev. 55, 268–279 (2015).

    CAS  PubMed  Google Scholar 

  166. Valdesolo, P., Shtulman, A. & Baron, A. S. Science is awe-some: the emotional antecedents of science learning. Emot. Rev. 9, 215–221 (2017).

    Google Scholar 

  167. Meyer-Lindenberg, A., Domes, G., Kirsch, P. & Heinrichs, M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538 (2011).

    CAS  PubMed  Google Scholar 

  168. Henrich, J., Heine, S. J. & Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 33, 61–83 (2010).

    Google Scholar 

  169. Sear, R., Sheppard, P. & Coall, D. A. Cross-cultural evidence does not support universal acceleration of puberty in father-absent households. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180124 (2019).

    Google Scholar 

  170. Kyweluk, M. A., Georgiev, A. V., Borja, J. B., Gettler, L. T. & Kuzawa, C. W. Menarcheal timing is accelerated by favorable nutrition but unrelated to developmental cues of mortality or familial instability in Cebu, Philippines. Evol. Hum. Behav. 39, 76–81 (2018).

    Google Scholar 

  171. Wig, G. S., Schlaggar, B. L. & Petersen, S. E. Concepts and principles in the analysis of brain networks: Brain networks. Ann. N. Y. Acad. Sci. 1224, 126–146 (2011).

    PubMed  Google Scholar 

  172. Bertolero, M. A. & Bassett, D. S. On the nature of explanations offered by network science: a perspective from and for practicing neuroscientists. Top. Cogn. Sci. https://arxiv.org/abs/1911.05031 (2020).

  173. Ciric, R. et al. Mitigating head motion artifact in functional connectivity MRI. Nat. Protoc. https://doi.org/10.1038/s41596-018-0065-y (2018).

  174. Satterthwaite, T. D. et al. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage 60, 623–632 (2012).

    PubMed  PubMed Central  Google Scholar 

  175. Parkes, L., Fulcher, B., Yücel, M. & Fornito, A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage 171, 415–436 (2018).

    PubMed  Google Scholar 

  176. Savalia, N. K. et al. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion. Hum. Brain Mapp. 38, 472–492 (2017).

    PubMed  Google Scholar 

  177. Fair, D. A. et al. Correction of respiratory artifacts in MRI head motion estimates. NeuroImage 208, 116400 (2020).

    PubMed  Google Scholar 

  178. Power, J. D. et al. Distinctions among real and apparent respiratory motions in human fMRI data. NeuroImage 201, 116041 (2019).

    PubMed  PubMed Central  Google Scholar 

  179. Power, J. D. et al. Characteristics of respiratory measures in young adults scanned at rest, including systematic changes and “missed” deep breaths. NeuroImage https://doi.org/10.1016/j.neuroimage.2019.116234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Baum, G. L. et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl Acad. Sci.USA 117, 771–778 (2020).

    CAS  PubMed  Google Scholar 

  181. Hofer, S. M., Sliwinski, M. J. & Flaherty, B. P. Understanding ageing: further commentary on the limitations of cross-sectional designs for ageing research. Gerontology 48, 22 (2002).

    Google Scholar 

  182. King, K. M. et al. Longitudinal modeling in developmental neuroimaging research: common challenges, and solutions from developmental psychology. Dev. Cogn. Neurosci. 33, 54–72 (2018).

    PubMed  Google Scholar 

  183. Volkow, N. D. et al. The conception of the ABCD study: From substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).

    PubMed  Google Scholar 

  184. Karlsson, L. et al. Cohort profile: the FINNBRAIN birth cohort study (FINNBRAIN). Int. J. Epidemiol. 47, 15–16j (2018).

    PubMed  Google Scholar 

  185. Volkow, N. D., Gordon, J. A. & Freund, M. P. The healthy brain and child development study — shedding light on opioid exposure, COVID-19, and health disparities. JAMA Psychiatry https://doi.org/10.1001/jamapsychiatry.2020.3803 (2020).

    Article  PubMed  Google Scholar 

  186. Madhyastha, T. et al. Current methods and limitations for longitudinal fMRI analysis across development. Dev. Cogn. Neurosci. 33, 118–128 (2018).

    PubMed  Google Scholar 

  187. Bor, J., Cohen, G. H. & Galea, S. Population health in an era of rising income inequality: USA, 1980–2015. Lancet 389, 1475–1490 (2017).

    PubMed  Google Scholar 

  188. Braveman, P. A., Cubbin, C., Egerter, S., Williams, D. R. & Pamuk, E. Socioeconomic disparities in health in the United States: what the patterns tell us. Am. J. Public Health 100, S186–S196 (2010).

    PubMed  PubMed Central  Google Scholar 

  189. Dufford, A. J., Evans, G. W., Liberzon, I., Swain, J. E. & Kim, P. Childhood socioeconomic status is prospectively associated with surface morphometry in adulthood. Dev. Psychobiol. https://doi.org/10.1002/dev.22096 (2020).

  190. Moored, K. D. et al. Engagement in enriching early life activities is associated with larger hippocampal and amygdala volumes in community-dwelling older adults. J. Gerontol. Ser. B https://doi.org/10.1093/geronb/gby150 (2018).

    Article  Google Scholar 

  191. Chan, T., Parisi, J. M., Moored, K. D. & Carlson, M. C. Variety of enriching early-life activities linked to late-life cognitive functioning in urban community-dwelling African Americans. J. Gerontol. Ser. B 74, 1345–1355 (2019).

    Google Scholar 

  192. Oveisgharan, S., Wilson, R. S., Yu, L., Schneider, J. A. & Bennett, D. A. Association of early-life cognitive enrichment with Alzheimer disease pathological changes and cognitive decline. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.1941 (2020).

    Article  PubMed  Google Scholar 

  193. Gianaros, P. J. et al. Community socioeconomic disadvantage in midlife relates to cortical morphology via neuroendocrine and cardiometabolic pathways. Cereb. Cortex 27, 460–473 (2017).

    PubMed  Google Scholar 

  194. Kim, J. P. et al. Effects of education on aging-related cortical thinning among cognitively normal individuals. Neurology 85, 806–812 (2015).

    PubMed  Google Scholar 

  195. Krishnadas, R. et al. Socioeconomic deprivation and cortical morphology: psychological, social, and biological determinants of ill health study. Psychosom. Med. 75, 616–623 (2013).

    PubMed  Google Scholar 

  196. Sripada, R. K., Swain, J. E., Evans, G. W., Welsh, R. C. & Liberzon, I. Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network. Neuropsychopharmacology 39, 2244–2251 (2014).

    PubMed  PubMed Central  Google Scholar 

  197. Chan, M. Y. et al. Socioeconomic status moderates age-related differences in the brain’s functional network organization and anatomy across the adult lifespan. Proc. Natl Acad. Sci. USA 115, E5144–E5153 (2018).

    CAS  PubMed  Google Scholar 

  198. Baldwin, J. R., Reuben, A., Newbury, J. B. & Danese, A. Agreement between prospective and retrospective measures of childhood maltreatment. JAMA Psychiatry 76, 584–593 (2019).

    PubMed  PubMed Central  Google Scholar 

  199. Tung, J., Archie, E. A., Altmann, J. & Alberts, S. C. Cumulative early life adversity predicts longevity in wild baboons. Nat. Commun. 7, 1–7 (2016).

    Google Scholar 

  200. Millett, G. A. et al. Assessing differential impacts of COVID-19 on black communities. Ann. Epidemiol. 47, 37–44 (2020).

    PubMed  PubMed Central  Google Scholar 

  201. Goyal, M. K. et al. Racial and/or ethnic and socioeconomic disparities of SARS-CoV-2 infection among children. Pediatrics https://doi.org/10.1542/peds.2020-009951 (2020).

  202. Ritchie, S. J. & Tucker-Drob, E. M. How much does education improve intelligence? A meta-analysis. Psychol. Sci. 29, 1358–1369 (2018).

    PubMed  PubMed Central  Google Scholar 

  203. Adler, N. E. et al. Socioeconomic status and health: the challenge of the gradient. Am. Psychol. 49, 15–24 (1994).

    CAS  PubMed  Google Scholar 

  204. Heckman, J. J., Moon, S. H., Pinto, R., Savelyev, P. A. & Yavitz, A. The rate of return to the high/scope perry preschool program. J. Public. Econ. 94, 114–128 (2010).

    PubMed  PubMed Central  Google Scholar 

  205. Campbell, F. A., Ramey, C. T., Pungello, E., Sparling, J. & Miller-Johnson, S. Early childhood education: young adult outcomes from the Abecedarian project. Appl. Dev. Sci. 6, 42–57 (2002).

    Google Scholar 

  206. Maliniak, D., Powers, R. & Walter, B. F. The gender citation gap in international relations. Int. Organ. 67, 889–922 (2013).

    Google Scholar 

  207. Caplar, N., Tacchella, S. & Birrer, S. Quantitative evaluation of gender bias in astronomical publications from citation counts. Nat. Astron. 1, 1–5 (2017).

    Google Scholar 

  208. Dion, M. L., Sumner, J. L. & Mitchell, S. M. Gendered citation patterns across political science and social science methodology fields. Polit. Anal. 26, 312–327 (2018).

    Google Scholar 

  209. Dworkin, J. D. et al. The extent and drivers of gender imbalance in neuroscience reference lists. Nat. Neurosci. 23, 918–926 (2020).

    CAS  PubMed  Google Scholar 

  210. Dworkin, J., Zurn, P. & Bassett, D. S. (In)citing action to realize an equitable future. Neuron 106, 890–894 (2020).

    CAS  PubMed  Google Scholar 

  211. Zurn, P., Bassett, D. S. & Rust, N. C. The citation diversity statement: a practice of transparency, a way of life. Trends Cogn. Sci. 24, 669–672 (2020).

    PubMed  Google Scholar 

  212. Zhou, D. et al. Gender Diversity Statement and Code Notebook v1.0. (Zenodo, 2020).

  213. Maier-Hein, K. H. et al. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1–13 (2017).

    CAS  Google Scholar 

  214. Krogsrud, S. K. et al. Changes in white matter microstructure in the developing brain — a longitudinal diffusion tensor imaging study of children from 4 to 11 years of age. NeuroImage 124, 473–486 (2016).

    PubMed  PubMed Central  Google Scholar 

  215. Gilmore, J. H., Knickmeyer, R. C. & Gao, W. Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19, 123 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Ozernov-Palchik, O. et al. The relationship between socioeconomic status and white matter microstructure in pre-reading children: A longitudinal investigation. Hum. Brain Mapp. 40, 741–754 (2019).

    PubMed  Google Scholar 

  217. Dufford, A. & Kim, P. Family income, cumulative risk exposure, and white matter structure in middle childhood. Front. Hum. Neurosci. 11, 547 (2017).

    PubMed  PubMed Central  Google Scholar 

  218. Noble, K. G., Korgaonkar, M. S., Grieve, S. M. & Brickman, A. M. Higher education is an age-independent predictor of white matter integrity and cognitive control in late adolescence. Dev. Sci. 16, 653–664 (2013).

    PubMed  PubMed Central  Google Scholar 

  219. Takeuchi, H. et al. The effects of family socioeconomic status on psychological and neural mechanisms as well as their sex differences. Front. Hum. Neurosci. 12, 543 (2018).

    PubMed  Google Scholar 

  220. Kim, D.-J. et al. Childhood poverty and the organization of structural brain connectome. NeuroImage 184, 409–416 (2019).

    PubMed  Google Scholar 

  221. Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    CAS  PubMed  Google Scholar 

  222. Takesian, A. E. & Hensch, T. K. Balancing plasticity/stability across brain development. in Progress in Brain Research Vol. 207 3–34 (Elsevier, 2013).

  223. Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. USA 109, 16480–16485 (2012).

    CAS  PubMed  Google Scholar 

  224. Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E. & Van Essen, D. C. Trends and properties of human cerebral cortex: correlations with cortical myelin content. NeuroImage 93, 165–175 (2014).

    CAS  PubMed  Google Scholar 

  225. Mauney, S. A. et al. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol. Psychiatry 74, 427–435 (2013).

    PubMed  PubMed Central  Google Scholar 

  226. Rogers, S. L., Rankin-Gee, E., Risbud, R. M., Porter, B. E. & Marsh, E. D. Normal development of the perineuronal net in humans; in patients with and without epilepsy. Neuroscience 384, 350–360 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Paredes, M. F. et al. Extensive migration of young neurons into the infant human frontal lobe. Science 354, aaf7073 (2016).

    PubMed  PubMed Central  Google Scholar 

  228. Metherate, R. Nicotinic acetylcholine receptors in sensory cortex. Learn. Mem. 11, 50–59 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Recto for her assistance with figures, and M. Farah, J. Leonard, Y. Hahn and S. Sharp for their helpful comments on earlier versions of the manuscript. U.A.T. was supported by the US National Science Foundation Graduate Research Fellowship. A.P.M. was supported by a Jacobs Foundation Early Career Research Fellowship and the US National Institute on Drug Abuse (1R34DA050297-01). D.S.B. was supported by the John D. and Catherine T. MacArthur Foundation and the Institute for Scientific Interchange Foundation.

Author information

Authors and Affiliations

Authors

Contributions

U.A.T. and A.P.M. researched data for the article and contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Allyson P. Mackey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks K. McLaughlin, E. Sowell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tooley, U.A., Bassett, D.S. & Mackey, A.P. Environmental influences on the pace of brain development. Nat Rev Neurosci 22, 372–384 (2021). https://doi.org/10.1038/s41583-021-00457-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-021-00457-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing