Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging roles of long non-coding RNAs in the nervous system

Abstract

Tens, if not hundreds, of thousands of long non-coding RNAs (lncRNAs) are transcribed from mammalian genomes, especially in the brain, wherein most exhibit region-specific and/or cell-specific expression patterns. Many lncRNAs are nuclear-localized and appear to be the products of developmental enhancers, whereas others are found in the cytoplasm, including at the synapse. Here, we describe the lncRNAs that have been shown to have roles in various aspects of brain development, synaptic function, learning, behaviour and brain disorders. Our emerging understanding indicates that lncRNAs direct many, if not most, of the regulatory transactions that give rise to the structure of the brain and modulate its functions, probably through their guidance of relatively generic effector proteins. Although they hold promise as targets for therapeutic interventions, a concerted effort will be required to characterize the structures, functions, spatial distribution and interacting partners of the lncRNAs expressed in the brain, most of which have not been studied. We suggest that the lncRNAs transcribed from genomic regions associated with human neurological traits and disorders be prioritized for analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long non-coding RNA neural functions.
Fig. 2: Long non-coding RNAs implicated in neurological disorders.
Fig. 3: Long non-coding RNA-based therapeutic strategies.

Similar content being viewed by others

References

  1. Mattick, J. S. The central role of RNA in human development and cognition. FEBS Lett. 585, 1600–1616 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Barry, G. & Mattick, J. S. The role of regulatory RNA in cognitive evolution. Trends Cogn. Sci. 16, 497–503 (2012).

    Article  PubMed  Google Scholar 

  3. Ramos, A. D., Attenello, F. J. & Lim, D. A. Uncovering the roles of long noncoding RNAs in neural development and glioma progression. Neurosci. Lett. 625, 70–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Ng, S.-Y., Lin, L., Soh, B. S. & Stanton, L. W. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet. 29, 461–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021). This review outlines how lncRNAs regulate gene expression through their localization and interactions, highlighting their importance in cell differentiation and disorders.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, S., Lim, K.-H., Kim, S.-H. & Joo, J.-Y. Molecular landscape of long noncoding RNAs in brain disorders. Mol. Psych. 26, 1060–1074 (2021).

    Article  CAS  Google Scholar 

  7. Mattick, J. S. et al. Long noncoding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023). This paper presents the current consensus on the definition and functions of lncRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ravasi, T. et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 16, 11–19 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F. & Mattick, J. S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA 105, 716–712 (2008). This study shows that many lncRNAs are specifically expressed in distinct brain regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liau, W.-S. et al. Fear extinction is regulated by the activity of long noncoding RNAs at the synapse. Nat. Commun. 14, 7616 (2023). This paper shows that many long lncRNAs are localized at the synapse and establishes their functional relevance at the subcellular level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsagakis, I., Douka, K., Birds, I. & Aspden, J. L. Long non-coding RNAs in development and disease: conservation to mechanisms. J. Pathol. 250, 480–495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Korneev, S. & O’Shea, M. Natural antisense RNAs in the nervous system. Rev. Neurosci. 16, 213–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Smalheiser, N. R. et al. Natural antisense transcripts are co-expressed with sense mRNAs in synaptoneurosomes of adult mouse forebrain. Neurosci. Res. 62, 236–239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. You, X. et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 18, 603–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gokool, A., Anwar, F. & Voineagu, I. The landscape of circular RNA expression in the human brain. Biol. Psych. 87, 294–304 (2020).

    Article  CAS  Google Scholar 

  17. Walsh, K., Gokool, A., Alinejad-Rokny, H. & Voineagu, I. NeuroCirc: an integrative resource of circular RNA expression in the human brain. Bioinformatics 37, 3664–3666 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Zajaczkowski, E. L. et al. Localised Cdr1as activity is required for fear extinction memory. Neurobiol. Learn. Mem. 203, 107777 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Milligan, M. J. & Lipovich, L. Pseudogene-derived lncRNAs: emerging regulators of gene expression. Front. Genet. 5, 476 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cheetham, S. W., Faulkner, G. J. & Dinger, M. E. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat. Rev. Genet. 21, 191–201 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Gonzàlez-Porta, M., Frankish, A., Rung, J., Harrow, J. & Brazma, A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 14, R70 (2013). This paper shows that in almost 20% of protein-coding genes, the major transcript does not code for a protein.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mercer, T. R. et al. Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res. 39, 2393–2403 (2011). This paper shows that there is widespread independent expression of 5′-capped 3′ untranslated regions in specific cells, and that these lncRNAs have regulatory functions in cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  23. Kocabas, A., Duarte, T., Kumar, S. & Hynes, M. A. Widespread differential expression of coding region and 3′UTR sequences in neurons and other tissues. Neuron 88, 1149–1156 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Mattick, J. S. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. BioEssays 25, 930–939 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Dinger, M. E., Gascoigne, D. K. & Mattick, J. S. The evolution of RNAs with multiple functions. Biochimie 93, 2013–2018 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, P. et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol. Cancer 19, 22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Senís, E. et al. TUNAR lncRNA encodes a microprotein that regulates neural differentiation and neurite formation by modulating calcium dynamics. Front. Cell Dev. Biol. 9, 747667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mercer, T. R. et al. Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res. 20, 1639–1650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Clark, M. B. et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 21, 885–898 (2012).

    Article  Google Scholar 

  33. Tani, H. et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22, 947–956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi, K., Liu, T., Fu, H., Li, W. & Zheng, X. Genome-wide analysis of lncRNA stability in human. PLoS Comput. Biol. 17, e1008918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016). This review provides a comprehensive understanding of lncRNA biogenesis, structure and function.

    Article  CAS  PubMed  Google Scholar 

  36. Frith, M. C. et al. Evolutionary turnover of mammalian transcription start sites. Genome Res. 16, 713–722 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Phan, M. H. Q. et al. Conservation of regulatory elements with highly diverged sequences across large evolutionary distances. Nat. Genet. 57, 1524–1534 (2025). This paper shows that lack of primary sequence conservation is not an indicator of lack of regulatory function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kutter, C. et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 8, e1002841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pheasant, M. & Mattick, J. S. Raising the estimate of functional human sequences. Genome Res. 17, 1245–1253 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Ponjavic, J., Ponting, C. P. & Lunter, G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 17, 556–565 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith, M. A., Gesell, T., Stadler, P. F. & Mattick, J. S. Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res. 41, 8220–8236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nitsche, A., Rose, D., Fasold, M., Reiche, K. & Stadler, P. F. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. RNA 21, 801–812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 1537–1550 (2011). This paper shows that lncRNAs with low primary sequence conservation (relative to proteins) can retain orthologous regulatory functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quinn, J. J. et al. Rapid evolutionary turnover underlies conserved lncRNA-genome interactions. Genes Dev. 30, 191–207 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Degani, N., Lubelsky, Y., Perry, R. B.-T., Ainbinder, E. & Ulitsky, I. Highly conserved and cis-acting lncRNAs produced from paralogous regions in the center of HOXA and HOXB clusters in the endoderm lineage. PLoS Genet. 17, e1009681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Santos-Rodriguez, G., Voineagu, I. & Weatheritt, R. J. Evolutionary dynamics of circular RNAs in primates. eLife 10, e69148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ross, C. J. & Ulitsky, I. Discovering functional motifs in long noncoding RNAs. WIREs RNA 13, e1708 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Li, S. et al. Gain of bipolar disorder-related lncRNA AP1AR-DT in mice induces depressive and anxiety-like behaviors by reducing Negr1-mediated excitatory synaptic transmission. BMC Med. 22, 543 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rinn, J. L. & Chang, H. Y. Long noncoding RNAs: molecular modalities to organismal functions. Annu. Rev. Biochem. 89, 283–308 (2020). This review describes how structure–function relationships in lncRNAs are linked to organism-level outcomes.

    Article  CAS  PubMed  Google Scholar 

  51. Leontis, N. B., Lescoute, A. & Westhof, E. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol. 16, 279–287 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Westhof, E. & Fritsch, V. The endless subtleties of RNA-protein complexes. Structure 19, 902–903 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Morrissy, A. S., Griffith, M. & Marra, M. A. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res. 21, 1203–1212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Werner, A., Kanhere, A., Wahlestedt, C. & Mattick, J. S. Natural antisense transcripts as versatile regulators of gene expression. Nat. Rev. Genet. 25, 730–744 (2024).

    CAS  PubMed  Google Scholar 

  55. Ang, C. E., Trevino, A. E. & Chang, H. Y. Diverse lncRNA mechanisms in brain development and disease. Curr. Opin. Genet. Dev. 65, 42–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Somasundaram, K., Gupta, B., Jain, N. & Jana, S. LncRNAs divide and rule: the master regulators of phase separation. Front. Genet. 13, 930792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mattick, J. S. Enhancers are genes that express organizational RNAs. Front. RNA Res. 1, 1194526 (2023). This article summarizes the evidence that enhancer loci are genes producing long noncoding RNAs that regulate cell fate and development.

    Article  Google Scholar 

  58. Cabili, M. N. et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 16, 20 (2015). This study demonstrates that most long noncoding RNAs are localized in punctate, probably phase-separated, domains in cells.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bridges, M. C., Daulagala, A. C. & Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol. 220, e202009045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carlevaro-Fita, J. & Johnson, R. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol. Cell 73, 869–883 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Liau, W.-S., Samaddar, S., Banerjee, S. & Bredy, T. W. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol. 18, 1025–1036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakagawa, S. & Hirose, T. Paraspeckle nuclear bodies — useful uselessness? Cell. Mol. Life Sci. 69, 3027–3036 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Ingram, H. B. & Fox, A. H. Unveiling the intricacies of paraspeckle formation and function. Curr. Opin. Cell Biol. 90, 102399 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Barry, G. et al. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Sci. Rep. 7, 40127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Butler, A. A., Johnston, D. R., Kaur, S. & Lubin, F. D. Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment. Sci. Signal. 12, eaaw9277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kukharsky, M. S. et al. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl. Psych. 10, 171 (2020).

    Article  CAS  Google Scholar 

  68. Zhang, B. et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2, 111–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Balaji, A. et al. MALAT1 regulates mRNA processing through sequence dependent RNA-RNA and RNA-protein interactions. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaf784 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kuo, P.-H., Doudeva, L. G., Wang, Y.-T., Shen, C.-K. J. & Yuan, H. S. Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res. 37, 1799–1808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Imre, L. et al. Nucleosome destabilization by polyamines. Arch. Biochem. Biophys. 722, 109184 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gupta, V. K. et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 16, 1453–1460 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, L. et al. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells. J. Cell. Mol. Med. 20, 2102–2110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang, T. et al. The lncRNA MALAT1/miR-30/Spastin axis regulates hippocampal neurite outgrowth. Front. Cell. Neurosci. 14, 555747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kryger, R., Fan, L., Wilce, P. A. & Jaquet, V. MALAT-1, a non protein-coding RNA is upregulated in the cerebellum, hippocampus and brain stem of human alcoholics. Alcohol 46, 629–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, X., Tang, X., Liu, K., Hamblin, M. H. & Yin, K.-J. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J. Neurosci. 37, 1797–1806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiao, W. et al. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. Genes Dev. 38, 294–307 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Madugalle, S. U. et al. Synapse-enriched m6A-modified Malat1 interacts with the novel m6A reader, DPYSL2, and is required for fear-extinction memory. J. Neurosci. 43, 7084–7100 (2023). This study shows that synaptic lncRNAs and RNA modifications have a role in memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mercer, T. R. et al. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 11, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sone, M. et al. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J. Cell Sci. 120, 2498–2506 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Rapicavoli, N. A., Poth, E. M. & Blackshaw, S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev. Biol. 10, 49 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ishizuka, A., Hasegawa, Y., Ishida, K., Yanaka, K. & Nakagawa, S. Formation of nuclear bodies by the lncRNA Gomafu-associating proteins Celf3 and SF1. Genes Cell 19, 704–721 (2014).

    Article  CAS  Google Scholar 

  83. Barry, G. et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol. Psych. 19, 486–494 (2014).

    Article  CAS  Google Scholar 

  84. Ishii, N. et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet. 51, 1087–1099 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Spadaro, P. A. et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biol. Psych. 78, 848–859 (2015).

    Article  CAS  Google Scholar 

  86. Ip, J. Y. et al. Gomafu lncRNA knockout mice exhibit mild hyperactivity with enhanced responsiveness to the psychostimulant methamphetamine. Sci. Rep. 6, 27204 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Michelhaugh, S. K. et al. Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J. Neurochem. 116, 459–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Rao, S.-Q., Hu, H.-L., Ye, N., Shen, Y. & Xu, Q. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population. Schizophr. Res. 166, 125–130 (2015).

    Article  PubMed  Google Scholar 

  89. Teng, P. et al. The human lncRNA GOMAFU suppresses neuronal interferon response pathways affected in neuropsychiatric diseases. Brain Behav. Immun. 112, 175–187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grzejda, D. et al. The long noncoding RNA mimi scaffolds neuronal granules to maintain nervous system maturity. Sci. Adv. 8, eabo5578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, S. J. et al. Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol. 17, 67 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ma, Q. & Chang, H. Y. Single-cell profiling of lncRNAs in the developing human brain. Genome Biol. 17, 68 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Deveson, I. W., Hardwick, S. A., Mercer, T. R. & Mattick, J. S. The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends Genet. 33, 464–478 (2017). This paper explains why lncRNAs are undersampled in many RNA-sequencing experiments.

    Article  CAS  PubMed  Google Scholar 

  95. Goff, L. A. et al. Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA 112, 6855–6862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kadakkuzha, B. M. et al. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front. Cell. Neurosci. 9, 63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bocchi, V. D. et al. The coding and long noncoding single-cell atlas of the developing human fetal striatum. Science 372, eabf5759 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Navandar, M., Vennin, C., Lutz, B. & Gerber, S. Long non-coding RNAs expression and regulation across different brain regions in primates. Sci. Data 11, 545 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Santa, F. et al. A large fraction of extragenic RNA Pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, W., Notani, D. & Rosenfeld, M. G. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat. Rev. Genet. 17, 207–223 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Sartorelli, V. & Lauberth, S. M. Enhancer RNAs are an important regulatory layer of the epigenome. Nat. Struct. Mol. Biol. 27, 521–528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hahn, S. Phase separation, protein disorder, and enhancer function. Cell 175, 1723–1725 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Popay, T. M. & Dixon, J. R. Coming full circle: on the origin and evolution of the looping model for enhancer–promoter communication. J. Biol. Chem. 298, 102117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Ramirez, M. et al. Identification and characterization of transcribed enhancers during cerebellar development through enhancer RNA analysis. BMC Genom. 24, 351 (2023).

    Article  CAS  Google Scholar 

  108. Capauto, D. et al. Characterization of enhancer activity in early human neurodevelopment using massively parallel reporter assay (MPRA) and forebrain organoids. Sci. Rep. 14, 3936 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yoshihara, M. et al. Transcriptional enhancers in human neuronal differentiation provide clues to neuronal disorders. EMBO Rep. 26, 1212–1237 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Reilly, S. K. et al. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347, 1155–1159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zimmer-Bensch, G. Emerging roles of long non-coding RNAs as drivers of brain evolution. Cells 8, 1399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mangan, R. J. et al. Adaptive sequence divergence forged new neurodevelopmental enhancers in humans. Cell 185, 4587–4603 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Prabhakar, S. et al. Human-specific gain of function in a developmental enhancer. Science 321, 1346–1350 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat. Rev. Genet. 21, 292–310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dong, X. et al. Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease. Nat. Neurosci. 21, 1482–1492 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shima, Y. et al. A mammalian enhancer trap resource for discovering and manipulating neuronal cell types. eLife 5, e13503 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wei, W. et al. ADRAM is an experience-dependent long noncoding RNA that drives fear extinction through a direct interaction with the chaperone protein 14-3-3. Cell Rep. 38, 110546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Griffith, E. C., West, A. E. & Greenberg, M. E. Neuronal enhancers fine-tune adaptive circuit plasticity. Neuron 112, 3043–3057 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ptashne, M. How eukaryotic transcriptional activators work. Nature 335, 683–689 (1988).

    Article  CAS  PubMed  Google Scholar 

  123. Orom, U. A. & Shiekhattar, R. Noncoding RNAs and enhancers: complications of a long-distance relationship. Trends Genet. 27, 433–439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mercer, T. R. & Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20, 300–307 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Soibam, B. Super-lncRNAs: identification of lncRNAs that target super-enhancers via RNA:DNA:DNA triplex formation. RNA 23, 1729–1742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, Y., Syed, J. & Sugiyama, H. RNA-DNA triplex formation by long noncoding RNAs. Cell Chem. Biol. 23, 1325–1333 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Isoda, T. et al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell 171, 103–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cajigas, I. et al. Sox2-Evf2 lncRNA mechanisms of chromosome topological control in developing forebrain. Development 148, dev197202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cetin, N. S. et al. Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucleic Acids Res. 47, 2306–2321 (2019).

    Article  CAS  Google Scholar 

  130. Arnold, P. R., Wells, A. D. & Li, X. C. Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate. Front. Cell Dev. Biol. 7, 377 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Soibam, B. & Zhamangaraeva, A. LncRNA:DNA triplex-forming sites are positioned at specific areas of genome organization and are predictors for topologically associated domains. BMC Genom. 22, 397 (2021).

    Article  CAS  Google Scholar 

  132. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Flynn, R. A. & Chang, H. Y. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14, 752–761 (2014). This paper provides an excellent review of the accumulating evidence that lncRNAs regulate cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Deveson, I. W. et al. Universal alternative splicing of noncoding exons. Cell Syst. 6, 245–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Maass, P. G. et al. A misplaced lncRNA causes brachydactyly in humans. J. Clin. Invest. 122, 3990–4002 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Melo, C. A. et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 49, 524–535 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xiang, J. F. et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24, 513–531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Paralkar, V. R. et al. Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 123, 1927–1937 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yin, Y. et al. Opposing roles for the lncRNA Haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell 16, 504–516 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Yang, Y. et al. Enhancer RNA-driven looping enhances the transcription of the long noncoding RNA DHRS4-AS1, a controller of the DHRS4 gene cluster. Sci. Rep. 6, 20961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fatima, R., Choudhury, S. R., T R, D., Bhaduri, U. & Rao, M. R. S. A novel enhancer RNA, Hmrhl, positively regulates its host gene, phkb, in chronic myelogenous leukemia. Noncoding RNA Res. 4, 96–108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lewandowski, J. P. et al. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat. Commun. 10, 5137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Setten, R. L., Chomchan, P., Epps, E. W., Burnett, J. C. & Rossi, J. J. CRED9: a differentially expressed elncRNA regulates expression of transcription factor CEBPA. RNA 27, 891–906 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Alvarez-Dominguez, J. R., Knoll, M., Gromatzky, A. A. & Lodish, H. F. The super-enhancer-derived alncRNA-EC7/Bloodlinc potentiates red blood cell development in trans. Cell Rep. 19, 2503–2514 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shii, L., Song, L., Maurer, K., Zhang, Z. & Sullivan, K. E. SERPINB2 is regulated by dynamic interactions with pause-release proteins and enhancer RNAs. Mol. Immunol. 88, 20–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Gil, N. & Ulitsky, I. Production of spliced long noncoding RNAs specifies regions with increased enhancer activity. Cell Syst. 7, 537–547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tan, J. Y., Biasini, A., Young, R. S. & Marques, A. C. Splicing of enhancer-associated lincRNAs contributes to enhancer activity. Life Sci. Alliance 3, e202000663 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Tan, J. Y. & Marques, A. C. The activity of human enhancers is modulated by the splicing of their associated lncRNAs. PLoS Comput. Biol. 18, e1009722 (2022). This is one of several papers indicating that lncRNAs mediate enhancer activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, J.-H. et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell 81, 3368–3385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pang, K. C., Frith, M. C. & Mattick, J. S. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 22, 1–5 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Hezroni, H. et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 11, 1110–1122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Unfried, J. P. & Ulitsky, I. Substoichiometric action of long noncoding RNAs. Nat. Cell Biol. 24, 608–615 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Rani, N. et al. A primate lncRNA mediates Notch signaling during neuronal development by sequestering miRNA. Neuron 90, 1174–1188 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bond, A. M. et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat. Neurosci. 12, 1020–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kohtz, J. et al. The Evf2 enhancer lncRNA links chromosomal interactions and interneuron diversity. FASEB J. 31, 128.1 (2017).

    Article  Google Scholar 

  157. Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 20, 1470–1484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cajigas, I. et al. The Evf2 ultraconserved enhancer lncRNA functionally and spatially organizes megabase distant genes in the developing forebrain. Mol. Cell 71, 956–972 (2018). This study shows how an enhancer-derived lncRNA organizes chromatin topology to regulate distal genes involved in interneuron diversity and seizure susceptibility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Berghoff, E. G. et al. Evf2 (Dlx6as) lncRNA regulates ultraconserved enhancer methylation and the differential transcriptional control of adjacent genes. Development 140, 4407–4416 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cajigas, I. et al. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling. Development 142, 2641–2652 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Sierra, C. et al. The lncRNA Snhg11, a new candidate contributing to neurogenesis, plasticity, and memory deficits in Down syndrome. Mol. Psych. 29, 2117–2134 (2024).

    Article  CAS  Google Scholar 

  162. Ang, C. E. et al. The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. eLife 8, e41770 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wei, M. et al. Axon-enriched lincRNA ALAE is required for axon elongation via regulation of local mRNA translation. Cell Rep. 35, 109053 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Chen, H.-S. et al. Long noncoding RNA Gm2694 drives depressive-like behaviors in male mice by interacting with GRP78 to disrupt endoplasmic reticulum homeostasis. Sci. Adv. 8, eabn2496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, F. et al. The long noncoding RNA Synage regulates synapse stability and neuronal function in the cerebellum. Cell Death Diff. 28, 2634–2650 (2021).

    Article  CAS  Google Scholar 

  166. Carrieri, C. et al. Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front. Cell. Neurosci. 9, 114 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Maag, J. L. V. et al. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity. Front. Neurosci. 9, 351 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chen, B. J. et al. RNA sequencing reveals pronounced changes in the noncoding transcriptome of aging synaptosomes. Neurobiol. Aging 56, 67–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Cui, X. et al. Identification and characterization of long non-coding RNA Carip in modulating spatial learning and memory. Cell Rep. 38, 110398 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Grinman, E. et al. Activity-regulated synaptic targeting of lncRNA ADEPTR mediates structural plasticity by localizing Sptn1 and AnkB in dendrites. Sci. Adv. 7, eabf0605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Raveendra, B. L. et al. Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function. Proc. Natl Acad. Sci. USA 115, E10197–E10205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, D. et al. Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat. Commun. 9, 1726 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kelly, D. et al. A functional screen uncovers circular RNAs regulating excitatory synaptogenesis in hippocampal neurons. Nat. Commun. 16, 3040 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Silenzi, V. et al. A tripartite circRNA/mRNA/miRNA interaction regulates glutamatergic signaling in the mouse brain. Cell Rep. 43, 114766 (2024).

    Article  CAS  PubMed  Google Scholar 

  175. Ramos, A. D. et al. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16, 439–447 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Saha, P. et al. Sex-specific role for the long noncoding RNA Pnky in mouse behavior. Nat. Commun. 15, 6901 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Issler, O. et al. Sex-specific role for the long non-coding RNA LINC00473 in depression. Neuron 106, 912–926 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Issler, O. et al. The long noncoding RNA FEDORA is a cell type- and sex-specific regulator of depression. Sci. Adv. 8, eabn9494 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Xu, H. et al. Role of long noncoding RNA Gas5 in cocaine action. Biol. Psych. 88, 758–766 (2020).

    Article  CAS  Google Scholar 

  180. Zhao, H. et al. GAS5 which is regulated by Lhx8 promotes the recovery of learning and memory in rats with cholinergic nerve injury. Life Sci. 260, 118388 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Ma, M. et al. A novel pathway regulates social hierarchy via lncRNA AtLAS and postsynaptic synapsin IIb. Cell Res. 30, 105–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Riva, P., Ratti, A. & Venturin, M. The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr. Alzheimer Res. 13, 1219–1231 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Kallweit, L. et al. Chronic RNA G-quadruplex accumulation in aging and Alzheimer’s disease. eLife 14, RP105446 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Bhagat, R. et al. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. Mol. Psych. 28, 4889–4901 (2023).

    Article  CAS  Google Scholar 

  185. Parikshak, N. N. et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540, 423–427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sparber, P., Filatova, A., Khantemirova, M. & Skoblov, M. The role of long non-coding RNAs in the pathogenesis of hereditary diseases. BMC Med. Genom. 12, 42 (2019).

    Article  Google Scholar 

  187. Chen, K.-W. & Chen, J.-A. Functional roles of long non-coding RNAs in motor neuron development and disease. J. Biomed. Sci. 27, 38 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ganesh, V. S. et al. Neurodevelopmental disorder caused by deletion of CHASERR, a lncRNA gene. N. Engl. J. Med. 391, 1511–1518 (2024). This paper shows that a large deletion produces a developmental disorder, consistent with the role of lncRNAs in regulating development and cell differentiation, whereas it is probable that smaller variations are responsible for quantitative trait variation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Li, P. P. et al. ATXN2-AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann. Neurol. 80, 600–615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Perry, R. B.-T., Hezroni, H., Goldrich, M. J. & Ulitsky, I. Regulation of neuroregeneration by long noncoding RNAs. Mol. Cell 72, 553–567 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mehta, S. L., Kim, T. & Vemuganti, R. Long noncoding RNA FosDT promotes ischemic brain injury by interacting with REST-associated chromatin-modifying proteins. J. Neurosci. 35, 16443–16449 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wu, Z. et al. LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol. Neurobiol. 54, 7670–7685 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Xu, Q. et al. Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-κB signaling pathway following cerebral ischemia. Cell Death Dis. 7, e2173 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jung, E. S. et al. Genome-wide association analysis reveals the associations of NPHP4, TYW1-AUTS2 and SEMA6D for Behçet’s disease and HLA-B*46:01 for its intestinal involvement. Dig. Liver Dis. 56, 994–1001 (2024).

    Article  CAS  PubMed  Google Scholar 

  195. Kutlu, G., Semercioglu, S., Ucler, S., Erdal, A. & Inan, L. E. Epileptic seizures in neuro-Behcet disease: why some patients develop seizure and others not? Seizure 26, 32–35 (2015).

    Article  PubMed  Google Scholar 

  196. Zhou, Z.-D., Jankovic, J., Ashizawa, T. & Tan, E.-K. Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions. Nat. Rev. Neurol. 18, 145–157 (2022).

    Article  CAS  PubMed  Google Scholar 

  197. Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Biscarini, S. et al. Characterization of the lncRNA transcriptome in mESC-derived motor neurons: implications for FUS-ALS. Stem Cell Res. 27, 172–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Donnelly, C. J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl Acad. Sci. USA 110, E4530–E4539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Yokoshi, M. et al. Direct binding of Ataxin-2 to distinct elements in 3′ UTRs promotes mRNA stability and protein expression. Mol. Cell 55, 186–198 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Katsushima, K., Jallo, G., Eberhart, C. G. & Perera, R. J. Long non-coding RNAs in brain tumors. NAR Cancer 3, zcaa041 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Kim, S.-H., Lim, K.-H., Yang, S. & Joo, J.-Y. Long non-coding RNAs in brain tumors: roles and potential as therapeutic targets. J. Hematol. Oncol. 14, 77 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chen, S. et al. Noncoding RNAs in pediatric brain tumors: molecular functions and pathological implications. Mol. Ther. Nucleic Acids 26, 417–431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang, L. et al. CRISPR-Cas13d screens identify KILR, a breast cancer risk-associated lncRNA that regulates DNA replication and repair. Mol. Cancer 23, 101 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mercer, T. R., Munro, T. & Mattick, J. S. The potential of long noncoding RNA therapies. Trends Pharmacol. Sci. 43, 269–280 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Jin, J. & Zhong, X.-B. ASO drug Qalsody (tofersen) targets amyotrophic lateral sclerosis. Trends Pharmacol. Sci. 44, 1043–1044 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hagenacker, T. et al. Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study. Lancet Neurol. 19, 317–325 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Liu, S. J. & Lim, D. A. Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep. 19, e46955 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Khorkova, O. et al. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin. Drug Discov. 18, 1011–1029 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Modarresi, F. et al. Knockdown of BACE1-AS nonprotein-coding transcript modulates beta-amyloid-related hippocampal neurogenesis. Int. J. Alzheimer’s Dis. 2011, 929042 (2011).

    Article  Google Scholar 

  214. Meng, L. et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518, 409–412 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Hsiao, J. et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. eBioMedicine 9, 257–277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Coan, M., Haefliger, S., Ounzain, S. & Johnson, R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat. Rev. Genet. 25, 578–595 (2024).

    Article  CAS  PubMed  Google Scholar 

  217. Deguchi, S. et al. Investigator-initiated phase I trial of an oligonucleotide therapeutic targeting long noncoding RNA TUG 1 for recurrent glioblastoma. BMC Cancer 25, 251 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Neveu, M.-A. C. et al. Preclinical development of FTX-001: first in class inhibitor of the long non-coding RNA MALAT1. Cancer Res. 83, abstr. 450 (2023).

    Article  Google Scholar 

  219. Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotech. 35, 222–229 (2017).

    Article  CAS  Google Scholar 

  220. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Gonzales-Aloy, E., Ahmed-Cox, A., Tsoli, M., Ziegler, D. S. & Kavallaris, M. From cells to organoids: the evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv. Drug Deliv. Rev. 196, 114777 (2023).

    Article  CAS  PubMed  Google Scholar 

  222. Barker, S. J. et al. Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood-brain barrier. Sci. Transl. Med. 16, eadi2245 (2024).

    Article  CAS  PubMed  Google Scholar 

  223. Leitão, A. D. G. et al. Novel systemic delivery of a peptide-conjugated antisense oligonucleotide to reduce α-synuclein in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 186, 106285 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Yeoh, Y. Q. et al. Efficient systemic CNS delivery of a therapeutic antisense oligonucleotide with a blood-brain barrier-penetrating ApoE-derived peptide. Biomed. Pharmacother. 175, 116737 (2024).

    Article  CAS  PubMed  Google Scholar 

  225. Min, H. S. et al. Systemic brain delivery of antisense oligonucleotides across the blood–brain barrier with a glucose-coated polymeric nanocarrier. Angew. Chem. Int. Ed. 59, 8173–8180 (2020).

    Article  CAS  Google Scholar 

  226. Porter, A. H., Johnson, N. A. & Tulchinsky, A. Y. A new mechanism for Mendelian dominance in regulatory genetic pathways: competitive binding by transcription factors. Genetics 205, 101–112 (2017).

    Article  PubMed  Google Scholar 

  227. Halow, J. M. et al. Tissue context determines the penetrance of regulatory DNA variation. Nat. Commun. 12, 2850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lappalainen, T., Li, Y. I., Ramachandran, S. & Gusev, A. Genetic and molecular architecture of complex traits. Cell 187, 1059–1075 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang, R. & Schlick, T. How large is the universe of RNA-like motifs? A clustering analysis of RNA graph motifs using topological descriptors. PLoS Comput. Biol. 21, e1013230 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Chen, S., Mao, Q., Cheng, H. & Tai, W. RNA-binding small molecules in drug discovery and delivery: an overview from fundamentals. J. Med. Chem. 67, 16002–16017 (2024).

    Article  CAS  PubMed  Google Scholar 

  232. Donlic, A. et al. Discovery of small molecule ligands for MALAT1 by tuning an RNA-binding scaffold. Angew. Chem. Int. Ed. 130, 13426–13431 (2018).

    Article  Google Scholar 

  233. Abulwerdi, F. A. et al. Selective small-molecule targeting of a triple helix encoded by the long noncoding RNA, MALAT1. ACS Chem. Biol. 14, 223–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Davies, J. W. A., Bredy, T. W. & Marshall, P. R. Cutting-edge RNA technologies to advance the understanding of learning and memory. Neurobiol. Learn. Mem. 219, 108050 (2025). This review highlights tools that enable the study of learning and memory through cell sorting, RNA imaging, subcellular fractionation, laser microdissection, spatial transcriptomics, sequencing and manipulation.

    Article  CAS  PubMed  Google Scholar 

  235. Mardakheh, F. K. & Shechner, D. M. A molecular cartographer’s toolkit for mapping RNA’s uncharted realms. Cell Rep. 44, 115877 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Perez-Perri, J. I. et al. The RNA-binding protein landscapes differ between mammalian organs and cultured cells. Nat. Commun. 14, 2074 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Dodel, M. et al. TREX reveals proteins that bind to specific RNA regions in living cells. Nat. Methods 21, 423–434 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Tsue, A. F. et al. Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping. Nat. Methods 21, 2058–2071 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Biayna, J. & Dumbović, G. Decoding subcellular RNA localization one molecule at a time. Genome Biol. 26, 45 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zollinger, D. R., Lingle, S. E., Sorg, K., Beechem, J. M. & Merritt, C. R. in In Situ Hybridization Protocols (eds Nielsen, B. S. & Jones, J.) 331–345 (Springer, 2020).

  241. Goralski, T. M. et al. Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology. Nat. Commun. 15, 2642 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zhao, X., Lan, Y. & Chen, D. Exploring long non-coding RNA networks from single cell omics data. Comput. Struct. Biotech. J. 20, 4381–4389 (2022).

    Article  CAS  Google Scholar 

  243. Goñi, E. et al. Uncovering functional lncRNAs by scRNA-seq with ELATUS. Nat. Commun. 15, 9709 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Mudge, J. M. et al. GENCODE 2025: reference gene annotation for human and mouse. Nucleic Acids Res. 53, D966–D975 (2024).

    Article  PubMed Central  Google Scholar 

  246. Zhao, L. et al. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res. 49, D165–D171 (2020).

    Article  PubMed Central  Google Scholar 

  247. Isik, S. & Unal, G. Open-source software for automated rodent behavioral analysis. Front. Neurosci. 17, 1149027 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Hsieh, C.-M., Hsu, C.-H., Chen, J.-K. & Liao, L.-D. AI-powered home cage system for real-time tracking and analysis of rodent behavior. iScience 27, 111223 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Isaacson, M. et al. MouseGoggles: an immersive virtual reality headset for mouse neuroscience and behavior. Nat. Methods 22, 380–385 (2025).

    Article  CAS  PubMed  Google Scholar 

  250. Judák, L. et al. Moculus: an immersive virtual reality system for mice incorporating stereo vision. Nat. Methods 22, 386–398 (2025).

    Article  PubMed  Google Scholar 

  251. Dumont, J. R., Salewski, R. & Beraldo, F. Critical mass: the rise of a touchscreen technology community for rodent cognitive testing. Genes Brain Behav. 20, e12650 (2021).

    Article  PubMed  Google Scholar 

  252. Palmer, D. et al. Touchscreen cognitive testing: cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol. Learn. Mem. 182, 107443 (2021).

    Article  PubMed  Google Scholar 

  253. Davies, G. et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 9, 2098 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Zeng, B. et al. Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nat. Genet. 54, 161–169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhong, W. et al. Understanding the function of regulatory DNA interactions in the interpretation of non-coding GWAS variants. Front. Cell Dev. Biol. 10, 957292 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hill, W. D. et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psych. 24, 169–181 (2019).

    Article  CAS  Google Scholar 

  258. Roussos, P. et al. A role for noncoding variation in schizophrenia. Cell Rep. 9, 1417–1429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Bartonicek, N. et al. Intergenic disease-associated regions are abundant in novel transcripts. Genome Biol. 18, 241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Hardwick, S. A. et al. Targeted, high-resolution RNA sequencing of non-coding genomic regions associated with neuropsychiatric functions. Front. Genet. 10, 309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. St. Laurent, G., Vyatkin, Y. & Kapranov, P. Dark matter RNA illuminates the puzzle of genome-wide association studies. BMC Med. 12, 97 (2014).

    Article  Google Scholar 

  262. Morselli Gysi, D. & Barabási, A.-L. Noncoding RNAs improve the predictive power of network medicine. Proc. Natl Acad. Sci. USA 120, e2301342120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  263. GTEx Consortium The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  Google Scholar 

  264. de Goede, O. M. et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184, 2633–2648 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  265. López Soriano, V. et al. Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci. Nat. Commun. 15, 1600 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Deng, Y. et al. Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer’s disease. Acta Neuropathol. 144, 637–650 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Durand-de Cuttoli, R. et al. Change-of-mind neuroeconomic decision-making is modulated by LINC00473 in medial prefrontal cortex in a sex-dependent manner. Sci. Adv. 11, eadr3228 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Bernard, D. et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 29, 3082–3093 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  270. Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med. 14, 723–730 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Perry, R. B.-T., Tsoory, M., Tolmasov, M. & Ulitsky, I. Silc1 long noncoding RNA is an immediate-early gene promoting efficient memory formation. Cell Rep. 42, 113168 (2023).

    Article  Google Scholar 

  272. Tan, M. C. et al. The activity-induced long non-coding RNA Meg3 modulates AMPA receptor surface expression in primary cortical neurons. Front. Cell. Neurosci. 11, 124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Balusu, S. et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science 381, 1176–1182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Klymenko, A. et al. Downregulation of lncRNAs Gomafu, NONMMUT033604.2, and NONMMUT064397.2 in the hippocampus of mice with model of post-traumatic stress disorder. World J. Biol. Psych. 25, 283–290 (2024).

    Article  Google Scholar 

  275. Luo, J. et al. LncRNAs: architectural scaffolds or more potential roles in phase separation. Front. Genet. 12, 369 (2021).

    Article  Google Scholar 

  276. Dunker, A. K., Bondos, S. E., Huang, F. & Oldfield, C. J. Intrinsically disordered proteins and multicellular organisms. Semin. Cell Dev. Biol. 37, 44–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  277. Yruela, I., Oldfield, C. J., Niklas, K. J. & Dunker, A. K. Evidence for a strong correlation between transcription factor protein disorder and organismic complexity. Genome Biol. Evol. 9, 1248–1265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Niklas, K. J., Dunker, A. K. & Yruela, I. The evolutionary origins of cell type diversification and the role of intrinsically disordered proteins. J. Exp. Bot. 69, 1437–1446 (2018).

    Article  CAS  PubMed  Google Scholar 

  279. Jonas, F., Navon, Y. & Barkai, N. Intrinsically disordered regions as facilitators of the transcription factor target search. Nat. Rev. Genet. 26, 424–435 (2025).

    Article  CAS  PubMed  Google Scholar 

  280. Bondos, S. E., Dunker, A. K. & Uversky, V. N. On the roles of intrinsically disordered proteins and regions in cell communication and signaling. Cell Commun. Signal. 19, 88 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Afanasyeva, A., Bockwoldt, M., Cooney, C. R., Heiland, I. & Gossmann, T. I. Human long intrinsically disordered protein regions are frequent targets of positive selection. Genome Res. 28, 975–982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018). This article reveals that RNA-binding domains are widespread in eukaryotic proteins, including in metabolic proteins.

    Article  CAS  PubMed  Google Scholar 

  283. Bah, A. & Forman-Kay, J. D. Modulation of intrinsically disordered protein function by post-translational modifications. J. Biol. Chem. 291, 6696–6705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Darling, A. L. & Uversky, V. N. Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front. Genet. 9, 158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Wesseling, H. et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183, 1699–1713 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Lepack, A. E. et al. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science 368, 197–201 (2020). This paper shows that neurotransmitters also have a role in epigenetic processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Uversky, V. N. Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders. Front. Aging Neurosci. 7, 18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Zbinden, A., Pérez-Berlanga, M., De Rossi, P. & Polymenidou, M. Phase separation and neurodegenerative diseases: a disturbance in the force. Dev. Cell 55, 45–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  289. Malik, I., Kelley, C. P., Wang, E. T. & Todd, P. K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Tsang, B., Pritišanac, I., Scherer, S. W., Moses, A. M. & Forman-Kay, J. D. Phase separation as a missing mechanism for interpretation of disease mutations. Cell 183, 1742–1756 (2020).

    Article  CAS  PubMed  Google Scholar 

  291. Ahmed, R. & Forman-Kay, J. D. Aberrant phase separation: linking IDR mutations to disease. Cell Res. 33, 583–584 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  293. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Basu, S. et al. Unblending of transcriptional condensates in human repeat expansion disease. Cell 181, 1062–1079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Das, T. et al. Tunable metastability of condensates reconciles their dual roles in amyloid fibril formation. Mol. Cell 85, 2230–2245.e7 (2025).

    Article  CAS  PubMed  Google Scholar 

  296. Fernandopulle, M. S., Lippincott-Schwartz, J. & Ward, M. E. RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat. Neurosci. 24, 622–632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Bauer, K. E., de Queiroz, B. R., Kiebler, M. A. & Besse, F. RNA granules in neuronal plasticity and disease. Trends Neurosci. 46, 525–538 (2023).

    Article  CAS  PubMed  Google Scholar 

  298. Kiebler, M. A. & Bauer, K. E. RNA granules in flux: dynamics to balance physiology and pathology. Nat. Rev. Neurosci. 25, 711–725 (2024).

    Article  CAS  PubMed  Google Scholar 

  299. Pechstein, A. et al. Vesicle clustering in a living synapse depends on a synapsin region that mediates phase separation. Cell Rep. 30, 2594–2602 (2020).

    Article  CAS  PubMed  Google Scholar 

  300. Chen, X., Wu, X., Wu, H. & Zhang, M. Phase separation at the synapse. Nat. Neurosci. 23, 301–310 (2020). This is one of many papers showing that synaptic vesicles are phase-separated domains, which is consistent with a role for lncRNAs in their formation and function.

    Article  CAS  PubMed  Google Scholar 

  301. Sansevrino, R., Hoffmann, C. & Milovanovic, D. Condensate biology of synaptic vesicle clusters. Trends Neurosci. 46, 293–306 (2023).

    Article  CAS  PubMed  Google Scholar 

  302. Jin, G. et al. The liprin-α/RIM complex regulates the dynamic assembly of presynaptic active zones via liquid–liquid phase separation. PLoS Biol. 23, e3002817 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Lützkendorf, J. & Sigrist, S. J. Condensate dynamics at the synapse: phase separation tunes presynaptic function. PLoS Biol. 23, e3003201 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Bakthavachalu, B. et al. RNP-granule assembly via ataxin-2 disordered domains is required for long-term memory and neurodegeneration. Neuron 98, 754–766 (2018).

    Article  CAS  PubMed  Google Scholar 

  305. Novoa, E. M., Mason, C. E. & Mattick, J. S. Charting the unknown epitranscriptome. Nat. Rev. Mol. Cell Biol. 18, 339–340 (2017).

    Article  CAS  PubMed  Google Scholar 

  306. Jonkhout, N. et al. The RNA modification landscape in human disease. RNA 23, 1754–1769 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  307. Flores, J. V. et al. Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. Stem Cell Rep. 8, 112–124 (2017).

    Article  CAS  Google Scholar 

  308. Ma, C. et al. RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol. 19, 68 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Merkurjev, D. et al. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat. Neurosci. 21, 1004–1014 (2018).

    Article  CAS  PubMed  Google Scholar 

  310. Engel, M. et al. The role of m6A/m-RNA methylation in stress response regulation. Neuron 99, 389–403 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Widagdo, J. et al. Experience-dependent accumulation of N-methyladenosine in the prefrontal cortex is associated with memory processes in mice. J. Neurosci. 36, 6771–6777 (2016). This paper supports a role for RNA modifications in cognitive function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Mladenova, D. et al. Adar3 is involved in learning and memory in mice. Front. Neurosci. 12, 243 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Begik, O., Mattick, J. S. & Novoa, E. M. Exploring the epitranscriptome by native RNA sequencing. RNA 28, 1430–1439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Freude, K. et al. Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Am. J. Hum. Genet. 75, 305–309 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Khan, M. A. et al. Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am. J. Hum. Genet. 90, 856–863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Davarniya, B. et al. The role of a novel TRMT1 gene mutation and rare GRM1 gene defect in intellectual disability in two Azeri families. PLoS ONE10, e0129631 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Zhang, K. et al. An intellectual disability-associated missense variant in TRMT1 impairs tRNA modification and reconstitution of enzymatic activity. Hum. Mutat. 41, 600–607 (2020).

    Article  CAS  PubMed  Google Scholar 

  318. Vauti, F. et al. The mouse Trm1-like gene is expressed in neural tissues and plays a role in motor coordination and exploratory behaviour. Gene 389, 174–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  319. Jonkhout, N. et al. Subcellular relocalization and nuclear redistribution of the RNA methyltransferases TRMT1 and TRMT1L upon neuronal activation. RNA Biol. 18, 1905–1919 (2021). This paper shows specific subcellular localizations of RNA modification enzymes in neurons and their relocalization upon neuronal stimulation, indicative of the exquisite transactions that must be taking place.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Yang, L. et al. Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Ther. 31, 816–830 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by UNSW Sydney (grant RG193211) and the Australian Research Council (grants DP210103233 and DP210101957). The authors thank K. Clemens (UNSW Sydney) for the helpful comments on the manuscript. Figures were created with BioRender (https://www.biorender.com).

Author information

Authors and Affiliations

Authors

Contributions

S.A. and M.J.C. assembled and curated the lists of lncRNAs and their reported functions, study models, expression patterns and phenotypic effects of knockdown or ectopic expression. S.A. also drafted the figures. J.S.M. wrote the first draft of the article and managed the revisions. L.M.I. contributed to the section ‘LncRNAs in neurological disorders’. All authors edited the article and the revised versions and approved their submission.

Corresponding author

Correspondence to John S. Mattick.

Ethics declarations

Competing interests

L.M.I. is the Founder and Chief Medical Officer of Celosia Therapeutics Pty Ltd.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Yue Feng, Gerhard Schratt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Antisense lncRNAs

RNAs that are transcribed from the strand opposite a protein-coding gene and overlap the body of the gene (in part of full) or its promoter.

Enhancers

Genetic loci that activate the spatiotemporal patterns of the expression of genes in their vicinity, independent of position, orientation or (to a limited extent) distance.

Genome editing

A technique that allows precise removal, replacement or addition of specific sequences in the genome, most commonly using engineered CRISPR–Cas systems.

Genome-wide association study (GWAS) haplotype blocks

Genomic segments subject to limited internal recombination, allelic variants of which can be tagged by sentinel single-nucleotide polymorphisms and linked to various human complex traits and disorders in large-scale genome wide association studies.

MicroRNAs

Small 21–25-nt non-coding RNAs that regulate mRNA translation and half-life by recruiting the RNA-induced silencing complex.

Non-coding RNAs

RNAs that are not translated into protein but have functions in gene regulation.

Proximity labelling

A biochemical technique that uses engineered enzymes to covalently tag proteins or RNAs near a protein of interest, enabling identification of interaction partners with spatial precision.

Pseudogenes

Genomic DNA sequences derived from protein-coding genes, derived by retrotransposition of processed mRNAs or segmental duplication, which lack protein-coding capacity owing to insertions, deletions or premature stop codons.

RNA transport granules

Motile phase-separated condensates of RNAs and proteins that mediate long-distance RNA trafficking along axons and dendrites.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaf, S., Cummins, M.J., Ittner, L.M. et al. The emerging roles of long non-coding RNAs in the nervous system. Nat. Rev. Neurosci. 26, 661–676 (2025). https://doi.org/10.1038/s41583-025-00960-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00960-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing