Abstract
Bidirectional, multilevel communication between the heart and the brain is pivotal for the beat-to-beat regulation of cardiac function and the close titration of cardiac output to meet metabolic demand. Given this bidirectional communication, it is perhaps not surprising that cardiac pathologies lead to changes in the central and peripheral autonomic nervous system, which in turn lead to further progression of cardiovascular disease. Within the CNS, structural and functional changes have been reported in the setting of hypertension and heart failure in multiple autonomic regions and nuclei, including the spinal cord, brainstem, hypothalamus and higher centres, such as the amygdala and thalamus. These alterations enhance the excitability of sympathetic neuronal populations and diminish the excitability of neurons within the parasympathetic nuclei, resulting in sympathovagal imbalance. The primary drivers of these structural and functional changes appear to be a combination of increased angiotensin signalling (both central and peripheral), neuroinflammation, oxidative stress and glial activation. Targeting the CNS in the setting of cardiovascular disease presents an exciting avenue for the field of neuromodulation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Cannon, W. B. Bodily Changes in Pain, Hunger, Fear and Rage (D. Appleton and Company, 1929).
Ishise, H. et al. Time course of sympathovagal imbalance and left ventricular dysfunction in conscious dogs with heart failure. J. Appl. Physiol. 84, 1234–1241 (1998).
Schwartz, P. J., La Rovere, M. T. & Vanoli, E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 85, I77–I91 (1992).
Armour, J. A. & Ardell, J. L. Basic and Clinical Neurocardiology (Oxford Univ. Press, 2004).
van Weperen, V. Y. H., Ripplinger, C. M. & Vaseghi, M. Autonomic control of ventricular function in health and disease: current state of the art. Clin. Auton. Res. 33, 1–27 (2023). This review provides a comprehensive overview of neural–cardiac interactions within the peripheral autonomic nervous system, involved in regulation of cardiac ventricular function.
Herring, N. et al. The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J. Mol. Cell. Cardiol. 52, 667–676 (2012).
Jani, N. et al. Sympathovagal crosstalk: Y2-receptor blockade enhances vagal effects which in turn reduces NPY levels via muscarinic receptor activation. Cardiovasc. Res. 121, 2189–2203 (2025).
Jansen, A. S., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644–646 (1995).
Strack, A. M., Sawyer, W. B., Platt, K. B. & Loewy, A. D. CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res. 491, 274–296 (1989).
Snider, S. R., Miller, C., Prasad, A. L., Jackson, V. & Fahn, S. Is dopamine a neurohormone of the adrenal medulla? Studies with morphine stimulation. Naunyn Schmiedebergs Arch. Pharmacol. 297, 17–22 (1977).
Mannelli, M. et al. A study on human adrenal secretion. Measurement of epinephrine, norepinephrine, dopamine and cortisol in peripheral and adrenal venous blood under surgical stress. J. Endocrinol. Invest. 5, 91–95 (1982).
van Weperen, V. Y. H. & Vaseghi, M. Cardiac vagal afferent neurotransmission in health and disease: review and knowledge gaps. Front. Neurosci. 17, 1192188 (2023).
Dampney, R. A. & Horiuchi, J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression. Prog. Neurobiol. 71, 359–384 (2003).
Ross, C. A., Ruggiero, D. A. & Reis, D. J. Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J. Comp. Neurol. 242, 511–534 (1985).
Chan, R. K. & Sawchenko, P. E. Organization and transmitter specificity of medullary neurons activated by sustained hypertension: implications for understanding baroreceptor reflex circuitry. J. Neurosci. 18, 371–387 (1998).
Schreihofer, A. M. & Guyenet, P. G. The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 29, 514–521 (2002).
Horiuchi, J. & Dampney, R. A. Evidence for tonic disinhibition of RVLM sympathoexcitatory neurons from the caudal pressor area. Auton. Neurosci. 99, 102–110 (2002).
Salavatian, S. et al. Myocardial infarction reduces cardiac nociceptive neurotransmission through the vagal ganglia. JCI Insight 7, e155747 (2022).
Longhurst, J. C., Kaufman, M. P., Ordway, G. A. & Musch, T. I. Effects of bradykinin and capsaicin on endings of afferent fibers from abdominal visceral organs. Am. J. Physiol. 247, R552–R559 (1984).
Malliani, A., Schwartz, P. J. & Zanchetti, A. A sympathetic reflex elicited by experimental coronary occlusion. Am. J. Physiol. 217, 703–709 (1969).
Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).
Zagon, A. & Smith, A. D. Monosynaptic projections from the rostral ventrolateral medulla oblongata to identified sympathetic preganglionic neurons. Neuroscience 54, 729–743 (1993).
Len, W. B. & Chan, J. Y. Glutamatergic projection to RVLM mediates suppression of reflex bradycardia by parabrachial nucleus. Am. J. Physiol. 276, H1482–H1492 (1999).
Granata, A. R. & Kitai, S. T. Intracellular study of nucleus parabrachialis and nucleus tractus solitarii interconnections. Brain Res. 492, 281–292 (1989).
Florea, V. G. & Cohn, J. N. The autonomic nervous system and heart failure. Circ. Res. 114, 1815–1826 (2014).
Herring, N., Kalla, M. & Paterson, D. J. The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat. Rev. Cardiol. 16, 707–726 (2019).
Habecker, B. A. et al. Molecular and cellular neurocardiology in heart disease. J. Physiol. 603, 1689–1728 (2025).
Herring, N. et al. Neurocardiology: translational advancements and potential. J. Physiol. 603, 1729–1779 (2025).
McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Rev. Esp. Cardiol. 75, 523 (2022).
Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e895–e1032 (2022).
Vaseghi, M. & Shivkumar, K. The role of the autonomic nervous system in sudden cardiac death. Prog. Cardiovasc. Dis. 50, 404–419 (2008).
Dorn, G. W.II. Adrenergic pathways and left ventricular remodeling. J. Card. Fail. 8, S370–S373 (2002).
Zucker, I. H., Patel, K. P. & Schultz, H. D. Neurohumoral stimulation. Heart Fail. Clin. 8, 87–99 (2012).
Kitzman, D. W. et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288, 2144–2150 (2002).
Wever-Pinzon, O. & Fang, J. C. Characterization of sympathetic innervation in heart failure with preserved ejection fraction. J. Card. Fail. 25, 314–315 (2019).
Martin, N., Manoharan, K., Davies, C. & Lumbers, R. T. Beta-blockers and inhibitors of the renin–angiotensin–aldosterone system for chronic heart failure with preserved ejection fraction. Cochrane Database Syst. Rev. 5, CD012721 (2021).
Cleland, J. G. F. et al. Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials. Eur. Heart J. 39, 26–35 (2018).
Arnold, S. V. et al. Beta-blocker use and heart failure outcomes in mildly reduced and preserved ejection fraction. JACC Heart Fail. 11, 893–900 (2023).
Vergaro, G. et al. Sympathetic and renin–angiotensin–aldosterone system activation in heart failure with preserved, mid-range and reduced ejection fraction. Int. J. Cardiol. 296, 91–97 (2019).
Westermann, D. et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 4, 44–52 (2011).
Hahn, V. S. et al. Endomyocardial biopsy characterization of heart failure with preserved ejection fraction and prevalence of cardiac amyloidosis. JACC Heart Fail. 8, 712–724 (2020).
Chirinos, J. A. et al. Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 75, 1281–1295 (2020).
Solomon, S. D. et al. Sacubitril/valsartan across the spectrum of ejection fraction in heart failure. Circulation 141, 352–361 (2020).
Grassi, G. et al. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int. J. Cardiol. 177, 1020–1025 (2014).
Gottlieb, L. A., Mahfoud, F., Stavrakis, S., Jespersen, T. & Linz, D. Autonomic nervous system: a therapeutic target for cardiac end-organ damage in hypertension. Hypertension 81, 2027–2037 (2024).
La Rovere, M. T., Pinna, G. D. & Raczak, G. Baroreflex sensitivity: measurement and clinical implications. Ann. Noninvasive Electrocardiol. 13, 191–207 (2008).
De Ferrari, G. M. et al. Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. J. Am. Coll. Cardiol. 50, 2285–2290 (2007).
La Rovere, M. T., Bigger, J. T. Jr, Marcus, F. I., Mortara, A. & Schwartz, P. J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) investigators. Lancet 351, 478–484 (1998).
Hesse, C., Charkoudian, N., Liu, Z., Joyner, M. J. & Eisenach, J. H. Baroreflex sensitivity inversely correlates with ambulatory blood pressure in healthy normotensive humans. Hypertension 50, 41–46 (2007).
Wang, W., Schultz, H. D. & Ma, R. Cardiac sympathetic afferent sensitivity is enhanced in heart failure. Am. J. Physiol. 277, H812–H817 (1999). This study demonstrates that baseline activity of cardiac spinal (sympathetic) afferents becomes increased in the setting of heart failure, contributing to increased cardiac sympathetic tone.
Zahner, M. R., Oculam, C. C. & Beaumont, E. Activation of nociception-sensitive ionotropic glutamate receptor-expressing rostroventrolateral medulla neurons by stimulation of cardiac afferents in rats. FASEB Bioadv. 00, 1–13 (2024).
Shanks, J., de Morais, S. D. B., Gao, L., Zucker, I. H. & Wang, H. J. TRPV1 (transient receptor potential vanilloid 1) cardiac spinal afferents contribute to hypertension in spontaneous hypertensive rat. Hypertension 74, 910–920 (2019).
Zhu, G. Q. et al. Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Exp. Physiol. 94, 785–794 (2009).
Wang, H. J., Wang, W., Cornish, K. G., Rozanski, G. J. & Zucker, I. H. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension 64, 745–755 (2014).
Broadwell, R. D. & Brightman, M. W. Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J. Comp. Neurol. 166, 257–283 (1976).
Shaver, S. W., Wall, K. M., Wainman, D. S. & Gross, P. M. Regional quantitative permeability of blood–brain barrier lesions in rats with chronic renal hypertension. Brain Res. 579, 99–106 (1992).
Daneman, R. The blood–brain barrier in health and disease. Ann. Neurol. 72, 648–672 (2012).
Cai, Y., Hay, M. & Bishop, V. S. Stimulation of area postrema by vasopressin and angiotensin II modulates neuronal activity in the nucleus tractus solitarius. Brain Res. 647, 242–248 (1994).
Hay, M. & Bishop, V. S. Effects of area postrema stimulation on neurons of the nucleus of the solitary tract. Am. J. Physiol. 260, H1359–H1364 (1991).
Mayhan, W. G., Faraci, F. M., Siems, J. L. & Heistad, D. D. Role of molecular charge in disruption of the blood–brain barrier during acute hypertension. Circ. Res. 64, 658–664 (1989).
Ueno, M. et al. Blood–brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats. Histochem. Cell Biol. 122, 131–137 (2004).
Vital, S. A., Terao, S., Nagai, M. & Granger, D. N. Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension. Microcirculation 17, 641–649 (2010).
Pelisch, N., Hosomi, N., Mori, H., Masaki, T. & Nishiyama, A. RAS inhibition attenuates cognitive impairment by reducing blood–brain barrier permeability in hypertensive subjects. Curr. Hypertens. Rev. 9, 93–98 (2013).
Yu, Y., Weiss, R. M. & Wei, S. G. Interleukin 17A contributes to blood–brain barrier disruption of hypothalamic paraventricular nucleus in rats with myocardial infarction. J. Am. Heart Assoc. 13, e032533 (2024).
Althammer, F. et al. Angiotensin-II drives changes in microglia–vascular interactions in rats with heart failure. Commun. Biol. 7, 1537 (2024).
Traub, J. et al. S100B serum levels in chronic heart failure patients: a multifaceted biomarker linking cardiac and cognitive dysfunction. Int. J. Mol. Sci. 25, 9094 (2024).
Adamski, M. G. et al. Vascular cognitive impairment linked to brain endothelium inflammation in early stages of heart failure in mice. J. Am. Heart Assoc. 7, e007694 (2018).
Biancardi, V. C., Son, S. J., Ahmadi, S., Filosa, J. A. & Stern, J. E. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood–brain barrier. Hypertension 63, 572–579 (2014). This study shows that increased circulating angiotensin II leads to increased blood–brain barrier permeability, which in turn facilitates the effects of angiotensin II on various brain regions that are known to be involved in the regulation of blood pressure.
Leversha, S., Allen, A. M., May, C. N. & Ramchandra, R. Intrathecal administration of losartan reduces directly recorded cardiac sympathetic nerve activity in ovine heart failure. Hypertension 74, 896–902 (2019).
Matsuura, T. et al. Rostral ventrolateral medulla neurons of neonatal Wistar–Kyoto and spontaneously hypertensive rats. Hypertension 40, 560–565 (2002).
Allen, A. M. Blockade of angiotensin AT1-receptors in the rostral ventrolateral medulla of spontaneously hypertensive rats reduces blood pressure and sympathetic nerve discharge. J. Renin Angiotensin Aldosterone Syst. 2, S120–S124 (2001).
Zheng, H., Li, Y. F., Wang, W. & Patel, K. P. Enhanced angiotensin-mediated excitation of renal sympathetic nerve activity within the paraventricular nucleus of anesthetized rats with heart failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1364–R1374 (2009).
Sharma, N. M., Nandi, S. S., Zheng, H., Mishra, P. K. & Patel, K. P. A novel role for miR-133a in centrally mediated activation of the renin–angiotensin system in congestive heart failure. Am. J. Physiol. Heart Circ. Physiol. 312, H968–H979 (2017).
Nandi, S. S., Katsurada, K., Moulton, M. J., Zheng, H. & Patel, K. P. Enhanced central sympathetic tone induces heart failure with preserved ejection fraction (HFpEF) in rats. Front. Physiol. 14, 1277065 (2023). This study demonstrates that inducing sustained central sympathetic overactivity through intracerebral angiotensin II infusion is sufficient to induce HFpEF in healthy rats.
Forrester, S. J. et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol. Rev. 98, 1627–1738 (2018).
Grobe, J. L., Xu, D. & Sigmund, C. D. An intracellular renin–angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology 23, 187–193 (2008).
Xu, P., Sriramula, S. & Lazartigues, E. ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R804–R817 (2011).
Phillips, M. I. & Sumners, C. Angiotensin II in central nervous system physiology. Regul. Pept. 78, 1–11 (1998).
Morimoto, S., Cassell, M. D. & Sigmund, C. D. Glia- and neuron-specific expression of the renin–angiotensin system in brain alters blood pressure, water intake, and salt preference. J. Biol. Chem. 277, 33235–33241 (2002).
Stornetta, R. L., Hawelu-Johnson, C. L., Guyenet, P. G. & Lynch, K. R. Astrocytes synthesize angiotensinogen in brain. Science 242, 1444–1446 (1988).
Deschepper, C. F., Bouhnik, J. & Ganong, W. F. Colocalization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain. Brain Res. 374, 195–198 (1986).
Labandeira-Garcia, J. L. et al. Brain renin–angiotensin system and microglial polarization: implications for aging and neurodegeneration. Front. Aging Neurosci. 9, 129 (2017).
Li, Z. et al. Role of AT2 receptor in the brain in regulation of blood pressure and water intake. Am. J. Physiol. Heart Circ. Physiol. 284, H116–H121 (2003).
Gao, J., Zhang, H., Le, K. D., Chao, J. & Gao, L. Activation of central angiotensin type 2 receptors suppresses norepinephrine excretion and blood pressure in conscious rats. Am. J. Hypertens. 24, 724–730 (2011).
Nathaniel, S. et al. A new lead: sacubitril–valsartan’s unique benefit in HFrEF could lie with sympathoinhibition. Auton. Neurosci. 238, 102949 (2022).
Giallauria, F. et al. Sacubitril/valsartan improves autonomic function and cardiopulmonary parameters in patients with heart failure with reduced ejection fraction. J. Clin. Med. 9, 1897 (2020).
Jones, D. W. et al. AHA/ACC/AANP/AAPA/ABC/ACCP/ACPM/AGS/AMA/ASPC/NMA/PCNA/SGIM guideline for the prevention, detection, evaluation and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Hypertension 82, e212–e316 (2025).
McEvoy, J. W. et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 45, 3912–4018 (2024).
McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).
Solomon, S. D. et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N. Engl. J. Med. 381, 1609–1620 (2019).
Mentz, R. J. et al. Angiotensin-neprilysin inhibition in patients with mildly reduced or preserved ejection fraction and worsening heart failure. J. Am. Coll. Cardiol. 82, 1–12 (2023).
Biancardi, V. C., Stranahan, A. M., Krause, E. G., de Kloet, A. D. & Stern, J. E. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am. J. Physiol. Heart Circ. Physiol. 310, H404–H415 (2016).
Santisteban, M. M. et al. Endothelium–macrophage crosstalk mediates blood–brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).
Wang, M. et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases. J. Inflamm. Res. 15, 3083–3094 (2022).
Mowry, F. E., Peaden, S. C., Stern, J. E. & Biancardi, V. C. TLR4 and AT1R mediate blood–brain barrier disruption, neuroinflammation, and autonomic dysfunction in spontaneously hypertensive rats. Pharmacol. Res. 174, 105877 (2021).
Wang, K. et al. Effect of TLR4/MyD88/NF-κB axis in paraventricular nucleus on ventricular arrhythmias induced by sympathetic hyperexcitation in post-myocardial infarction rats. J. Cell. Mol. Med. 26, 2959–2971 (2022).
Chen, S. et al. Targeting oxidative stress and inflammatory response for blood–brain barrier protection in intracerebral hemorrhage. Antioxid. Redox Signal. 37, 115–134 (2022).
Chung, T. D. et al. Effects of acute and chronic oxidative stress on the blood–brain barrier in 2D and 3D in vitro models. Fluids Barriers CNS 19, 33 (2022).
Lehner, C. et al. Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid. Redox Signal. 15, 1305–1323 (2011).
Kannan, H. et al. Activation of sympathetic outflow by recombinant human interleukin-1 beta in conscious rats. Am. J. Physiol. 270, R479–R485 (1996).
Hermann, G. E. & Rogers, R. C. TNF activates astrocytes and catecholaminergic neurons in the solitary nucleus: implications for autonomic control. Brain Res. 1273, 72–82 (2009).
Cabrera-Pastor, A. Extracellular vesicles as mediators of neuroinflammation in intercellular and inter-organ crosstalk. Int. J. Mol. Sci. 25, 7041 (2024).
Berumen Sanchez, G., Bunn, K. E., Pua, H. H. & Rafat, M. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease. Cell Commun. Signal. 19, 104 (2021).
Li, Q. et al. Cardiac injury regulates neuroinflammation through extracellular vesicle-mediated heart–brain crosstalk. JACC Basic Transl. Sci. 10, 101307 (2025).
Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).
Marina, N. et al. Purinergic signalling in the rostral ventro-lateral medulla controls sympathetic drive and contributes to the progression of heart failure following myocardial infarction in rats. Basic Res. Cardiol. 108, 317 (2013). This study used optogenetic strategies to show that activated astrocytes in the RVLM release ATP, which activates sympathoexcitatory neurons of the RVLM and ultimately results in sympathoexcitation, progression of left ventricular remodelling and development heart failure secondary to myocardial infarction.
Bezzi, P. et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710 (2001). This study demonstrates that altered glial communication has direct neuropathological consequences and that inhibition of the CXCR4-dependent astrocyte–microglia signalling pathway can prevent neuronal apoptosis.
Pascual, O., Ben Achour, S., Rostaing, P., Triller, A. & Bessis, A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl Acad. Sci. USA 109, E197–E205 (2012).
Stern, J. E. et al. Astrocytes contribute to angiotensin II stimulation of hypothalamic neuronal activity and sympathetic outflow. Hypertension 68, 1483–1493 (2016).
Ardell, J. L. & Armour, J. A. Neurocardiology: structure-based function. Compr. Physiol. 6, 1635–1653 (2016).
Schramm, L. P. & Barton, G. N. Diminished sympathetic silent period in spontaneously hypertensive rats. Am. J. Physiol. 236, R147–R152 (1979).
Schramm, L. P. & Chornoboy, E. S. Sympathetic activity in spontaneously hypertensive rats after spinal transection. Am. J. Physiol. 243, R506–R511 (1982).
Schramm, L. P., Gunther, H. J., McKenna, K. E. & Barton, G. B. Sympathetic hyperactivity and hypertension in adult spontaneously hypertensive rats despite early dorsolateral funicular lesions. Brain Res. 167, 402–407 (1979).
Briant, L. J., Stalbovskiy, A. O., Nolan, M. F., Champneys, A. R. & Pickering, A. E. Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats. J. Neurophysiol. 112, 2756–2778 (2014).
Wang, H. J. et al. Glutamatergic receptor dysfunction in spinal cord contributes to the exaggerated exercise pressor reflex in heart failure. Am. J. Physiol. Heart Circ. Physiol. 308, H447–H455 (2015).
Milanez, M. I. O. et al. Control of renal sympathetic nerve activity by neurotransmitters in the spinal cord in Goldblatt hypertension. Brain Res. 1698, 43–53 (2018).
Howard-Quijano, K. et al. Spinal cord stimulation reduces ventricular arrhythmias by attenuating reactive gliosis and activation of spinal interneurons. JACC Clin. Electrophysiol. 7, 1211–1225 (2021).
Wu, C. et al. Spinal cord astrocytes regulate myocardial ischemia–reperfusion injury. Basic Res. Cardiol. 117, 56 (2022).
van Weperen, V. et al. Sympathetic nociceptive afferent signaling drives the chronic structural and functional autonomic remodeling after myocardial infarction. Preprint at bioRxiv https://doi.org/10.1101/2025.03.28.645120 (2025).
Hoang, J. D. et al. Antiarrhythmic mechanisms of epidural blockade after myocardial infarction. Circ. Res. 135, e57–e75 (2024).
Salavatian, S. et al. Thoracic spinal cord and cervical vagosympathetic neuromodulation obtund nodose sensory transduction of myocardial ischemia. Auton. Neurosci. 208, 57–65 (2017).
Ardell, J. L., Cardinal, R., Vermeulen, M. & Armour, J. A. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R470–R477 (2009).
Wang, S. et al. Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model. Heart Rhythm 12, 1628–1635 (2015).
Howard-Quijano, K. et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. Am. J. Physiol. Heart Circ. Physiol. 313, H421–H431 (2017).
Odenstedt, J. et al. Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia–reperfusion model. Heart Rhythm 8, 892–898 (2011).
Issa, Z. F. et al. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation 111, 3217–3220 (2005).
Tse, H. F. et al. Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study): first-in-man experience. Heart Rhythm 12, 588–595 (2015).
Zipes, D. P. et al. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure: the Defeat-HF study. JACC Heart Fail. 4, 129–136 (2016).
Noble, B. T. et al. Thoracic VGluT2+ spinal interneurons regulate structural and functional plasticity of sympathetic networks after high-level spinal cord injury. J. Neurosci. 42, 3659–3675 (2022).
Doyle, M. W. & Andresen, M. C. Reliability of monosynaptic sensory transmission in brain stem neurons in vitro. J. Neurophysiol. 85, 2213–2223 (2001).
Appleyard, S. M. et al. Visceral afferents directly activate catecholamine neurons in the solitary tract nucleus. J. Neurosci. 27, 13292–13302 (2007).
Menetrey, D. & Basbaum, A. I. Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J. Comp. Neurol. 255, 439–450 (1987).
Menetrey, D. & De Pommery, J. Origins of spinal ascending pathways that reach central areas involved in visceroception and visceronociception in the rat. Eur. J. Neurosci. 3, 249–259 (1991).
Onimaru, H., Yazawa, I., Takeda, K., Fukushi, I. & Okada, Y. Calcium imaging analysis of cellular responses to hypercapnia and hypoxia in the NTS of newborn rat brainstem preparation. Front. Physiol. 12, 645904 (2021).
Prabhakar, N. R. & Peng, Y. J. Peripheral chemoreceptors in health and disease. J. Appl. Physiol. 96, 359–366 (2004).
Nattie, E. & Li, A. Central chemoreceptors: locations and functions. Compr. Physiol. 2, 221–254 (2012).
Berthoud, H. R., Albaugh, V. L. & Neuhuber, W. L. Gut–brain communication and obesity: understanding functions of the vagus nerve. J. Clin. Invest. 131, e143770 (2021).
Hyde, T. M. & Miselis, R. R. Subnuclear organization of the human caudal nucleus of the solitary tract. Brain Res. Bull. 29, 95–109 (1992).
Gasparini, S., Almeida-Pereira, G., Munuzuri, A. S. P., Resch, J. M. & Geerling, J. C. Molecular ontology of the nucleus of solitary tract. J. Comp. Neurol. 532, e70004 (2024).
Jordan, D. & Spyer, K. M. Studies on the termination of sinus nerve afferents. Pflügers Arch. 369, 65–73 (1977).
Chernicky, C. L., Barnes, K. L., Ferrario, C. M. & Conomy, J. P. Projections of the carotid sinus nerve to the medulla in the dog. Brain Res. Bull. 18, 437–445 (1987).
Andresen, M. C. & Mendelowitz, D. Sensory afferent neurotransmission in caudal nucleus tractus solitarius — common denominators. Chem. Senses 21, 387–395 (1996).
Jun, S. et al. Circuit-specific control of blood pressure by PNMT-expressing nucleus tractus solitarii neurons. Neurosci. Bull. 39, 1193–1209 (2023).
Aicher, S. A., Kurucz, O. S., Reis, D. J. & Milner, T. A. Nucleus tractus solitarius efferent terminals synapse on neurons in the caudal ventrolateral medulla that project to the rostral ventrolateral medulla. Brain Res. 693, 51–63 (1995).
Neff, R. A., Mihalevich, M. & Mendelowitz, D. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res. 792, 277–282 (1998).
Wang, J. et al. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann. N. Y. Acad. Sci. 940, 237–246 (2001).
Pilowsky, P. M. & Goodchild, A. K. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J. Hypertens. 20, 1675–1688 (2002).
McKitrick, D. J. & Calaresu, F. R. Nucleus ambiguus inhibits activity of cardiovascular units in RVLM. Brain Res. 742, 203–210 (1996).
Dibner-Dunlap, M. E. & Thames, M. D. Baroreflex control of renal sympathetic nerve activity is preserved in heart failure despite reduced arterial baroreceptor sensitivity. Circ. Res. 65, 1526–1535 (1989).
Becker, B. K., Tian, C., Zucker, I. H. & Wang, H. J. Influence of brain-derived neurotrophic factor-tyrosine receptor kinase B signalling in the nucleus tractus solitarius on baroreflex sensitivity in rats with chronic heart failure. J. Physiol. 594, 5711–5725 (2016).
Pereyra, K. et al. Carotid bodies mediate glial cell activation and neuroinflammation in the NTS following long-term intermittent hypoxia: role in cardiorespiratory dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 328, L357–L371 (2025).
Mastitskaya, S. et al. Astrocytes modulate baroreflex sensitivity at the level of the nucleus of the solitary tract. J. Neurosci. 40, 3052–3062 (2020). This study shows that astrocytes within the NTS dynamically regulate baroreflex sensitivity through the release of ATP, revealing an essential role for glia in central autonomic reflex control.
Wang, W. Z., Gao, L., Wang, H. J., Zucker, I. H. & Wang, W. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure. Am. J. Physiol. Heart Circ. Physiol. 295, H1216–H1226 (2008).
Paton, J. F., Boscan, P., Murphy, D. & Kasparov, S. Unravelling mechanisms of action of angiotensin II on cardiorespiratory function using in vivo gene transfer. Acta Physiol. Scand. 173, 127–137 (2001).
Guyenet, P. G., Stornetta, R. L., Holloway, B. B., Souza, G. & Abbott, S. B. G. Rostral ventrolateral medulla and hypertension. Hypertension 72, 559–566 (2018).
Moraes, D. J. et al. Electrophysiological properties of rostral ventrolateral medulla presympathetic neurons modulated by the respiratory network in rats. J. Neurosci. 33, 19223–19237 (2013).
Schwarz, K. G., Pereyra, K. V., Diaz-Jara, E., Vicencio, S. C. & Del Rio, R. Brainstem C1 neurons mediate heart failure decompensation and mortality during acute salt loading. Cardiovasc. Res. 121, 241–253 (2025). This study demonstrates that C1 neurons in the RVLM have a central role in the development of cardiorespiratory distress, decompensation and mortality in the setting of HFpEF.
Andrade, D. C. et al. Ablation of brainstem C1 neurons improves cardiac function in volume overload heart failure. Clin. Sci. 133, 393–405 (2019).
Oshima, N. et al. SGLT2 and SGLT1 inhibitors suppress the activities of the RVLM neurons in newborn Wistar rats. Hypertens. Res. 47, 46–54 (2024).
Sumners, C., Zhu, M., Gelband, C. H. & Posner, P. Angiotensin II type 1 receptor modulation of neuronal K+ and Ca2+ currents: intracellular mechanisms. Am. J. Physiol. 271, C154–C163 (1996).
Gao, L. et al. Downregulated Kv4.3 expression in the RVLM as a potential mechanism for sympathoexcitation in rats with chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 298, H945–H955 (2010).
Kumagai, H. et al. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens. Res. 35, 132–141 (2012).
Colombari, E. et al. Role of the medulla oblongata in hypertension. Hypertension 38, 549–554 (2001).
Gutkind, J. S., Kurihara, M., Castren, E. & Saavedra, J. M. Increased concentration of angiotensin II binding sites in selected brain areas of spontaneously hypertensive rats. J. Hypertens. 6, 79–84 (1988).
Bourassa, E. A., Sved, A. F. & Speth, R. C. Angiotensin modulation of rostral ventrolateral medulla (RVLM) in cardiovascular regulation. Mol. Cell. Endocrinol. 302, 167–175 (2009).
Li, Y. W. & Guyenet, P. G. Neuronal excitation by angiotensin II in the rostral ventrolateral medulla of the rat in vitro. Am. J. Physiol. 268, R272–R277 (1995).
Phillips, M. I. Functions of angiotensin in the central nervous system. Annu. Rev. Physiol. 49, 413–435 (1987).
Tsuchihashi, T., Kagiyama, S., Matsumura, K., Abe, I. & Fujishima, M. Effects of chronic oral treatment with imidapril and TCV-116 on the responsiveness to angiotensin II in ventrolateral medulla of SHR. J. Hypertens. 17, 917–922 (1999).
DiBona, G. F. & Jones, S. Y. Sodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla. Hypertension 37, 1114–1123 (2001).
Ito, S., Komatsu, K., Tsukamoto, K., Kanmatsuse, K. & Sved, A. F. Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension 40, 552–559 (2002).
Gyurko, R., Wielbo, D. & Phillips, M. I. Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul. Pept. 49, 167–174 (1993).
Phillips, M. I. et al. Lowering of hypertension by central saralasin in the absence of plasma renin. Nature 270, 445–447 (1977).
Zhou, X. et al. Central blockade of the AT1 receptor attenuates pressor effects via reduction of glutamate release and downregulation of NMDA/AMPA receptors in the rostral ventrolateral medulla of rats with stress-induced hypertension. Hypertens. Res. 42, 1142–1151 (2019).
Kang, J., Posner, P. & Sumners, C. Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am. J. Physiol. 267, C1389–C1397 (1994).
Gao, L. et al. Superoxide mediates sympathoexcitation in heart failure: roles of angiotensin II and NAD(P)H oxidase. Circ. Res. 95, 937–944 (2004).
Liu, D., Gao, L., Roy, S. K., Cornish, K. G. & Zucker, I. H. Role of oxidant stress on AT1 receptor expression in neurons of rabbits with heart failure and in cultured neurons. Circ. Res. 103, 186–193 (2008). This study shows that AT II induces oxidative stress in the CNS, which results in the upregulation of AT I receptors.
Gowrisankar, Y. V. & Clark, M. A. Regulation of angiotensinogen expression by angiotensin II in spontaneously hypertensive rat primary astrocyte cultures. Brain Res. 1643, 51–58 (2016).
Gowrisankar, Y. V. & Clark, M. A. Angiotensin II regulation of angiotensin-converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. J. Neurochem. 138, 74–85 (2016).
Wang, L. et al. Microglia-derived TNF-alpha contributes to RVLM neuronal mitochondrial dysfunction via blocking the AMPK-Sirt3 pathway in stress-induced hypertension. J. Neuroinflamm. 20, 137 (2023).
Tan, X. et al. The interleukin-enhanced binding factor 3-mediated inhibition of nitric oxide production via phosphoinositide 3-kinase/protein kinase B pathway contributes to central cardiovascular regulation in the rostral ventrolateral medulla in hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 323, R861–R874 (2022).
Tan, X. et al. The phosphoinositide-3 kinase signaling is involved in neuroinflammation in hypertensive rats. CNS Neurosci. Ther. 23, 350–359 (2017).
Wang, Y., Patel, K. P., Cornish, K. G., Channon, K. M. & Zucker, I. H. nNOS gene transfer to RVLM improves baroreflex function in rats with chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 285, H1660–H1667 (2003).
Ma, A. et al. Upregulating Nrf2 in the RVLM ameliorates sympatho-excitation in mice with chronic heart failure. Free Radic. Biol. Med. 141, 84–92 (2019).
Wafi, A. M., Yu, L., Gao, L. & Zucker, I. H. Exercise training upregulates Nrf2 protein in the rostral ventrolateral medulla of mice with heart failure. J. Appl. Physiol. 127, 1349–1359 (2019).
Gao, L., Zimmerman, M. C., Biswal, S. & Zucker, I. H. Selective Nrf2 gene deletion in the rostral ventrolateral medulla evokes hypertension and sympathoexcitation in mice. Hypertension 69, 1198–1206 (2017).
Ho, C. Y. et al. CX3CR1-microglia mediates neuroinflammation and blood pressure regulation in the nucleus tractus solitarii of fructose-induced hypertensive rats. J. Neuroinflamm. 17, 185 (2020).
Dworak, M. et al. Attenuation of microglial and neuronal activation in the brain by ICV minocycline following myocardial infarction. Auton. Neurosci. 185, 43–50 (2014).
Subramanian, M. et al. Non-invasive vagus nerve stimulation attenuates proinflammatory cytokines and augments antioxidant levels in the brainstem and forebrain regions of Dahl salt sensitive rats. Sci. Rep. 10, 17576 (2020).
Wei, S. G., Yu, Y., Zhang, Z. H., Weiss, R. M. & Felder, R. B. Mitogen-activated protein kinases mediate upregulation of hypothalamic angiotensin II type 1 receptors in heart failure rats. Hypertension 52, 679–686 (2008).
Bains, J. S. & Ferguson, A. V. Nitric oxide regulates NMDA-driven GABAergic inputs to type I neurones of the rat paraventricular nucleus. J. Physiol. 499, 733–746 (1997).
Zimmerman, M. C., Sharma, R. V. & Davisson, R. L. Superoxide mediates angiotensin II-induced influx of extracellular calcium in neural cells. Hypertension 45, 717–723 (2005).
Yu, Y., Wei, S. G., Weiss, R. M. & Felder, R. B. TNF-alpha receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats. Am. J. Physiol. Heart Circ. Physiol. 313, H744–H756 (2017).
Zhang, S. et al. Central SGLT2 mediate sympathoexcitation in hypertensive heart failure via attenuating subfornical organ endothelial cGAS ubiquitination to amplify neuroinflammation: molecular mechanism behind sympatholytic effect of Empagliflozin. Int. Immunopharmacol. 145, 113711 (2025).
Lin, B. et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol. 13, 148 (2014).
Bi, C., Fu, Y. & Li, B. Brain-derived neurotrophic factor alleviates diabetes mellitus-accelerated atherosclerosis by promoting M2 polarization of macrophages through repressing the STAT3 pathway. Cell Signal. 70, 109569 (2020).
Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).
Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).
Korim, W. S. et al. In renovascular hypertension, TNF-alpha type-1 receptors in the area postrema mediate increases in cardiac and renal sympathetic nerve activity and blood pressure. Cardiovasc. Res. 115, 1092–1101 (2019).
Mangiapane, M. L., Skoog, K. M., Rittenhouse, P., Blair, M. L. & Sladek, C. D. Lesion of the area postrema region attenuates hypertension in spontaneously hypertensive rats. Circ. Res. 64, 129–135 (1989).
Cauley, E. et al. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 309, H1281–H1287 (2015).
Mastitskaya, S. et al. Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc. Res. 95, 487–494 (2012).
Perrotta, S. et al. A heart–brain–spleen axis controls cardiac remodeling to hypertensive stress. Immunity 58, 648–665.e7 (2025). This study explores the coordinated neural and immune signalling pathways between the heart, brain and spleen that shape the cardiac response to hypertension.
Pereyra, K. et al. Chemogenetic inhibition of NTS astrocytes normalizes cardiac autonomic control and ameliorate hypertension during chronic intermittent hypoxia. Biol. Res. 56, 57 (2023).
Stornetta, R. L. et al. Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J. Neurosci. 26, 10305–10314 (2006).
Melo, M. R. et al. Chemogenetic inhibition of Phox2-expressing neurons in the commissural NTS decreases blood pressure in anesthetized spontaneously hypertensive rats. Neurosci. Lett. 787, 136817 (2022).
Machhada, A. et al. Optogenetic stimulation of vagal efferent activity preserves left ventricular function in experimental heart failure. JACC Basic Transl. Sci. 5, 799–810 (2020). This study shows that selective optogenetic activation of cardiac preganglionic vagal efferents in the DMV preserved left ventricular function in the setting of myocardial-infarction-induced heart failure, highlighting the potential for targeted vagal neuromodulation at the brainstem.
Moreira, T. S., Antunes, V. R., Falquetto, B. & Marina, N. Long-term stimulation of cardiac vagal preganglionic neurons reduces blood pressure in the spontaneously hypertensive rat. J. Hypertens. 36, 2444–2452 (2018).
Booth, L. C. et al. Selective optogenetic stimulation of efferent fibers in the vagus nerve of a large mammal. Brain Stimul. 14, 88–96 (2021).
Fekete, E. M. et al. Definitive evidence for the identification and function of renin-expressing cholinergic neurons in the nucleus ambiguus. Hypertension 82, 282–292 (2025).
Diaz, H. S. et al. Inhibition of brainstem endoplasmic reticulum stress rescues cardiorespiratory dysfunction in high output heart failure. Hypertension 77, 718–728 (2021).
Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).
Li, Y. F. & Patel, K. P. Paraventricular nucleus of the hypothalamus and elevated sympathetic activity in heart failure: the altered inhibitory mechanisms. Acta Physiol. Scand. 177, 17–26 (2003).
Badoer, E. Hypothalamic paraventricular nucleus and cardiovascular regulation. Clin. Exp. Pharmacol. Physiol. 28, 95–99 (2001).
Pyner, S. The paraventricular nucleus and heart failure. Exp. Physiol. 99, 332–339 (2014).
Kannan, H., Hayashida, Y. & Yamashita, H. Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats. Am. J. Physiol. 256, R1325–R1330 (1989).
Kang, Y. M. et al. Hypothalamic paraventricular nucleus activation contributes to neurohumoral excitation in rats with heart failure. Regen. Med. Res. 2, 2 (2014).
Savic, B., Murphy, D. & Japundzic-Zigon, N. The paraventricular nucleus of the hypothalamus in control of blood pressure and blood pressure variability. Front. Physiol. 13, 858941 (2022).
Li, D. P. & Pan, H. L. Plasticity of GABAergic control of hypothalamic presympathetic neurons in hypertension. Am. J. Physiol. Heart Circ. Physiol. 290, H1110–H1119 (2006).
Ferreira-Neto, H. C., Biancardi, V. C. & Stern, J. E. A reduction in SK channels contributes to increased activity of hypothalamic magnocellular neurons during heart failure. J. Physiol. 595, 6429–6442 (2017).
Li, D. P. & Pan, H. L. Angiotensin II attenuates synaptic GABA release and excites paraventricular-rostral ventrolateral medulla output neurons. J. Pharmacol. Exp. Ther. 313, 1035–1045 (2005).
Cato, M. J. & Toney, G. M. Angiotensin II excites paraventricular nucleus neurons that innervate the rostral ventrolateral medulla: an in vitro patch-clamp study in brain slices. J. Neurophysiol. 93, 403–413 (2005).
Wang, R. et al. Sympathoexcitation in rats with chronic heart failure depends on homeobox D10 and microRNA-7b inhibiting GABBR1 translation in paraventricular nucleus. Circ. Heart Fail. 9, e002261 (2016).
Oliveira-Sales, E. B. et al. Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in renovascular hypertension. Am. J. Hypertens. 22, 484–492 (2009).
Roy, R. K., Ferreira-Neto, H. C., Felder, R. B. & Stern, J. E. Angiotensin II inhibits the a-type K(+) current of hypothalamic paraventricular nucleus neurons in rats with heart failure: role of MAPK-ERK1/2 signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 322, R526–R534 (2022).
Sharma, N. M., Zheng, H., Mehta, P. P., Li, Y. F. & Patel, K. P. Decreased nNOS in the PVN leads to increased sympathoexcitation in chronic heart failure: role for CAPON and Ang II. Cardiovasc. Res. 92, 348–357 (2011).
Sharma, N. M., Llewellyn, T. L., Zheng, H. & Patel, K. P. Angiotensin II-mediated posttranslational modification of nNOS in the PVN of rats with CHF: role for PIN. Am. J. Physiol. Heart Circ. Physiol. 305, H843–H855 (2013).
Koba, S., Hanai, E., Kumada, N. & Watanabe, T. Sympathoexcitatory input from hypothalamic paraventricular nucleus neurons projecting to rostral ventrolateral medulla is enhanced after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 319, H1197–H1207 (2020).
Sotozawa, M. et al. Enhancement of angiotensin II type 1 receptor-associated protein in the paraventricular nucleus suppresses angiotensin II-dependent hypertension. Hypertens. Res. 47, 67–77 (2024).
Kang, Y. M. et al. Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc. Res. 82, 503–512 (2009).
Rana, I. et al. Microglia activation in the hypothalamic PVN following myocardial infarction. Brain Res. 1326, 96–104 (2010).
Thackeray, J. T. et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J. Am. Coll. Cardiol. 71, 263–275 (2018). This study demonstrated the effects of myocardial infarction on brain inflammation using non-invasive PET in mice and human subjects.
Rodriguez-Perez, A. I., Borrajo, A., Diaz-Ruiz, C., Garrido-Gil, P. & Labandeira-Garcia, J. L. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging. Oncotarget 7, 30049–30067 (2016).
Shi, P. et al. Brain microglial cytokines in neurogenic hypertension. Hypertension 56, 297–303 (2010).
Han, C. et al. Inhibition of cGAS in paraventricular nucleus attenuates hypertensive heart injury via regulating microglial autophagy. Mol. Neurobiol. 59, 7006–7024 (2022).
Du, D. et al. Microglial P2X(7) receptor in the hypothalamic paraventricular nuclei contributes to sympathoexcitatory responses in acute myocardial infarction rat. Neurosci. Lett. 587, 22–28 (2015).
Yu, Y. et al. Reducing brain TACE activity improves neuroinflammation and cardiac function in heart failure rats. Front. Physiol. 13, 1052304 (2022).
Guggilam, A. et al. Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res. Cardiol. 106, 273–286 (2011).
Yu, Y., Chen, E., Weiss, R. M., Felder, R. B. & Wei, S. G. Transforming growth factor-alpha acts in hypothalamic paraventricular nucleus to upregulate ERK1/2 signaling and expression of sympathoexcitatory mediators in heart failure rats. Neuroscience 483, 13–23 (2022).
Pandit, S. et al. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure. J. Neurophysiol. 114, 914–926 (2015).
Lindley, T. E., Doobay, M. F., Sharma, R. V. & Davisson, R. L. Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ. Res. 94, 402–409 (2004).
Li, Y. F., Cornish, K. G. & Patel, K. P. Alteration of NMDA NR1 receptors within the paraventricular nucleus of hypothalamus in rats with heart failure. Circ. Res. 93, 990–997 (2003).
Sharma, N. M., Cunningham, C. J., Zheng, H., Liu, X. & Patel, K. P. Hypoxia-inducible factor-1alpha mediates increased sympathoexcitation via glutamatergic N-methyl-D-aspartate receptors in the paraventricular nucleus of rats with chronic heart failure. Circ. Heart Fail. 9, e003423 (2016).
Li, D. P. & Pan, H. L. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension 49, 916–925 (2007).
Zhang, H. et al. Hypothalamic corticotropin-releasing hormone contributes to hypertension in spontaneously hypertensive rats. J. Neurosci. 43, 4513–4524 (2023).
Dyavanapalli, J. et al. Activation of oxytocin neurons improves cardiac function in a pressure-overload model of heart failure. JACC Basic Transl. Sci. 5, 484–497 (2020).
Petersson, M., Lundeberg, T. & Uvnas-Moberg, K. Oxytocin decreases blood pressure in male but not in female spontaneously hypertensive rats. J. Auton. Nerv. Syst. 66, 15–18 (1997).
Rodriguez, J. et al. Hypothalamic oxytocin neuron activation attenuates intermittent hypoxia-induced hypertension and cardiac dysfunction in an animal model of sleep apnea. Hypertension 80, 882–894 (2023). Using AAV vectors, this study showed that chronic activation of hypothalamic oxytocin neurons has cardioprotective effects and can blunt the progression of hypertension.
Norman, G. J. et al. Oxytocin increases autonomic cardiac control: moderation by loneliness. Biol. Psychol. 86, 174–180 (2011).
Garrott, K. et al. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure. Cardiovasc. Res. 113, 1318–1328 (2017).
Zasadny, F. M., Dyavanapalli, J., Dowling, N. M., Mendelowitz, D. & Kay, M. W. Cholinergic stimulation improves electrophysiological rate adaptation during pressure overload-induced heart failure in rats. Am. J. Physiol. Heart Circ. Physiol. 319, H1358–H1368 (2020).
Schunke, K. J. et al. Outcomes of hypothalamic oxytocin neuron-driven cardioprotection after acute myocardial infarction. Basic Res. Cardiol. 118, 43 (2023).
Althammer, F. et al. Three-dimensional morphometric analysis reveals time-dependent structural changes in microglia and astrocytes in the central amygdala and hypothalamic paraventricular nucleus of heart failure rats. J. Neuroinflamm. 17, 221 (2020).
Quadt, L., Critchley, H. & Nagai, Y. Cognition, emotion, and the central autonomic network. Auton. Neurosci. 238, 102948 (2022).
Khalsa, S. S. et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501–513 (2018).
Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).
Carrive, P. The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav. Brain Res. 58, 27–47 (1993).
Dampney, R. A. Central neural control of the cardiovascular system: current perspectives. Adv. Physiol. Educ. 40, 283–296 (2016).
Inui, K. & Nosaka, S. Target site of inhibition mediated by midbrain periaqueductal gray matter of baroreflex vagal bradycardia. J. Neurophysiol. 70, 2205–2214 (1993).
Chaitoff, K. A., Toner, F., Tedesco, A., Maher, T. J. & Ally, A. Effects of inducible nitric oxide synthase blockade within the periaqueductal gray on cardiovascular responses during mechanical, heat, and cold nociception. Neurol. Sci. 33, 69–78 (2012).
Nagai, M., Hoshide, S. & Kario, K. The insular cortex and cardiovascular system: a new insight into the brain–heart axis. J. Am. Soc. Hypertens. 4, 174–182 (2010).
Oppenheimer, S. & Cechetto, D. The insular cortex and the regulation of cardiac function. Compr. Physiol. 6, 1081–1133 (2016).
Tomeo, R. A., Gomes-de-Souza, L., Benini, R., Reis-Silva, L. L. & Crestani, C. C. Site-specific regulation of stress responses along the rostrocaudal axis of the insular cortex in rats. Front. Neurosci. 16, 878927 (2022).
Ressler, K. J. Amygdala activity, fear, and anxiety: modulation by stress. Biol. Psychiatry 67, 1117–1119 (2010).
van der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen, C. R. & Bloom, F. E. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol. 224, 1–24 (1984).
Saha, S. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei. Clin. Exp. Pharmacol. Physiol. 32, 450–456 (2005).
Seamans, J. K. & Floresco, S. B. Event-based control of autonomic and emotional states by the anterior cingulate cortex. Neurosci. Biobehav. Rev. 133, 104503 (2022).
Sasaoka, T., Hirose, K., Maekawa, T., Inui, T. & Yamawaki, S. The anterior cingulate cortex is involved in intero-exteroceptive integration for spatial image transformation of the self-body. NeuroImage 293, 120634 (2024).
Woo, M. A. et al. Functional abnormalities in brain areas that mediate autonomic nervous system control in advanced heart failure. J. Card. Fail. 11, 437–446 (2005).
Wei, H. L. et al. Disrupted resting-state functional connectivity of the thalamus in patients with coronary heart disease. Heliyon 9, e13423 (2023).
Bai, Y. et al. Neurometabolism and ventricular dyssynchrony in patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 80, 1884–1896 (2022).
Zheng, C. et al. Myocardial fibrosis is associated with brain microstructural alterations in patients with heart failure: a diffusion MRI study. Eur. J. Radiol. 182, 111813 (2025).
Mueller, K. et al. Brain damage with heart failure: cardiac biomarker alterations and gray matter decline. Circ. Res. 126, 750–764 (2020).
Ter Horst, G. J. Central autonomic control of the heart, angina, and pathogenic mechanisms of post-myocardial infarction depression. Eur. J. Morphol. 37, 257–266 (1999).
Bermudez, C. et al. Volumetric brain MRI signatures of heart failure with preserved ejection fraction in the setting of dementia. Magn. Reson. Imaging 109, 49–55 (2024).
Li, Q. Y. et al. Neuroinflammation in the anterior cingulate cortex: the potential supraspinal mechanism underlying the mirror-image pain following motor fiber injury. J. Neuroinflamm. 19, 162 (2022).
Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834–845 (2017).
Wann, B. P. et al. Apoptosis detected in the amygdala following myocardial infarction in the rat. Biol. Psychiatry 59, 430–433 (2006).
Bae, E. et al. Gliosis in the amygdala following myocardial infarction in the rat. J. Vet. Med. Sci. 72, 1041–1045 (2010).
Althammer, F., Ferreira-Neto, H. C. & Stern, J. E. Abstract: neuroinflammation and microglial activation in the central amygdala in rats with heart failure. FASEB Bioadv 34, 1-1 (2020).
Danielsen, E. H., Magnuson, D. J. & Gray, T. S. The central amygdaloid nucleus innervation of the dorsal vagal complex in rat: a phaseolus vulgaris leucoagglutinin lectin anterograde tracing study. Brain Res. Bull. 22, 705–715 (1989).
Saha, S., Batten, T. F. & Henderson, Z. A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract: a combined anterograde tracing and electron microscopic immunohistochemical study. Neuroscience 99, 613–626 (2000).
Wang, H. et al. A central amygdala input to the dorsal vagal complex controls gastric motility in mice under restraint stress. Front. Physiol. 14, 1074979 (2023).
Sanchez-Larsen, A., Principe, A., Ley, M., Navarro-Cuartero, J. & Rocamora, R. Characterization of the insular role in cardiac function through intracranial electrical stimulation of the human insula. Ann. Neurol. 89, 1172–1180 (2021).
Oppenheimer, S. M., Gelb, A., Girvin, J. P. & Hachinski, V. C. Cardiovascular effects of human insular cortex stimulation. Neurology 42, 1727–1732 (1992).
Song, X., Roy, B., Fonarow, G. C., Woo, M. A. & Kumar, R. Brain structural changes associated with aberrant functional responses to the valsalva maneuver in heart failure. J. Neurosci. Res. 96, 1610–1622 (2018).
Marins, F. R., Iddings, J. A., Fontes, M. A. & Filosa, J. A. Evidence that remodeling of insular cortex neurovascular unit contributes to hypertension-related sympathoexcitation. Physiol. Rep. 5, e13156 (2017).
Jung, J. M. et al. Takotsubo-like myocardial dysfunction in ischemic stroke: a hospital-based registry and systematic literature review. Stroke 47, 2729–2736 (2016).
Abboud, H. et al. Insular involvement in brain infarction increases risk for cardiac arrhythmia and death. Ann. Neurol. 59, 691–699 (2006).
Laowattana, S. et al. Left insular stroke is associated with adverse cardiac outcome. Neurology 66, 477–483 (2006).
Christensen, H., Boysen, G., Christensen, A. F. & Johannesen, H. H. Insular lesions, ECG abnormalities, and outcome in acute stroke. J. Neurol. Neurosurg. Psychiatry 76, 269–271 (2005).
Iltumur, K., Yavavli, A., Apak, I., Ariturk, Z. & Toprak, N. Elevated plasma N-terminal pro-brain natriuretic peptide levels in acute ischemic stroke. Am. Heart J. 151, 1115–1122 (2006).
Ay, H. et al. Neuroanatomic correlates of stroke-related myocardial injury. Neurology 66, 1325–1329 (2006).
Hsueh, B. et al. Cardiogenic control of affective behavioural state. Nature 615, 292–299 (2023). This study revealed that cardiac activity can directly influence emotional state and dissect the neural pathways through which heart-to-brain signalling can regulate affective state and behaviour.
Mazzola, L., Mauguiere, F. & Chouchou, F. Central control of cardiac activity as assessed by intra-cerebral recordings and stimulations. Neurophysiol. Clin. 53, 102849 (2023).
Alaerts, K. et al. At the head and heart of oxytocin’s stress-regulatory neural and cardiac effects: a chronic administration RCT in children with autism. Psychother. Psychosom. 92, 315–328 (2023).
Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).
Chuapoco, M. R. et al. Adeno-associated viral vectors for functional intravenous gene transfer throughout the non-human primate brain. Nat. Nanotechnol. 18, 1241–1251 (2023).
Liguore, W. A. et al. AAV-PHP.B administration results in a differential pattern of CNS biodistribution in non-human primates compared with mice. Mol. Ther. 27, 2018–2037 (2019).
Watakabe, A. et al. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci. Res. 93, 144–157 (2015).
Zhang, S. et al. miR-193b-3p and miR-346 exert antihypertensive effects in the rostral ventrolateral medulla. J. Am. Heart Assoc. 13, e034965 (2024).
Lai, N. et al. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J. Neuroinflamm. 17, 74 (2020).
Kumar, H. U. et al. Autonomic regulation therapy in chronic heart failure with preserved/mildly reduced ejection fraction: ANTHEM-HFpEF study results. Int. J. Cardiol. 381, 37–44 (2023).
Premchand, R. K. et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J. Card. Fail. 20, 808–816 (2014).
Gold, M. R. et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J. Am. Coll. Cardiol. 68, 149–158 (2016).
Zannad, F. et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the Neural Cardiac Therapy for Heart Failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 36, 425–433 (2015).
Clancy, J. A. et al. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 7, 871–877 (2014).
Antonino, D. et al. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 10, 875–881 (2017).
Sclocco, R. et al. The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: a multimodal ultrahigh-field (7 T) fMRI study. Brain Stimul. 12, 911–921 (2019).
Gentile, F. et al. Acute right-sided transcutaneous vagus nerve stimulation improves cardio-vagal baroreflex gain in patients with chronic heart failure. Clin. Auton. Res. 35, 75–85 (2025).
Zile, M. R. et al. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction. J. Am. Coll. Cardiol. 76, 1–13 (2020).
Bisognano, J. D. et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J. Am. Coll. Cardiol. 58, 765–773 (2011).
Groenland, E. H., van Kleef, M., Hendrikse, J., Spiering, W. & Siero, J. C. W. The effect of endovascular baroreflex amplification on central sympathetic nerve circuits and cerebral blood flow in patients with resistant hypertension: a functional MRI study. Front. Neuroimaging 1, 924724 (2022).
Bhatt, D. L. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370, 1393–1401 (2014).
Mahfoud, F. et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. Lancet 399, 1401–1410 (2022).
Azizi, M. et al. Endovascular ultrasound renal denervation to treat hypertension: the radiance II randomized clinical trial. JAMA 329, 651–661 (2023).
Azizi, M. et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet 397, 2476–2486 (2021).
Bonaz, B., Sinniger, V. & Pellissier, S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J. Physiol. 594, 5781–5790 (2016).
Pahuja, M. et al. Neuromodulation therapies in heart failure: a state-of-the-art review. J. Soc. Cardiovasc. Angiogr. Interv. 2, 101199 (2023).
Zannad, F. Autonomic nervous system modulation in heart failure: do we need another trial? Circ. Heart Fail. 12, e006491 (2019).
Ardell, J. L., Rajendran, P. S., Nier, H. A., KenKnight, B. H. & Armour, J. A. Central–peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. Am. J. Physiol. Heart Circ. Physiol. 309, H1740–H1752 (2015).
Yamakawa, K. et al. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects. Am. J. Physiol. Heart Circ. Physiol. 309, H1579–H1590 (2015).
Calvillo, L. et al. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol. 58, 500–507 (2011).
Caravaca, A. S. et al. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the alpha7nAChR subunit. Proc. Natl Acad. Sci. USA 119, e2023285119 (2022).
Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).
Venkatesan, T. et al. Vagal stimulation rescues HFpEF by altering cardiac resident macrophage function. Circ. Res. 137, 664–681 (2025).
Huo, J. Y. et al. Transcutaneous auricular vagus nerve stimulation ameliorates heart failure with preserved ejection fraction through regulating macrophage polarization mediated by Alpha7nAChR. Cardiovasc. Drugs Ther. https://doi.org/10.1007/s10557-025-07695-0 (2025).
Elkholey, K. et al. Transcutaneous vagus nerve stimulation ameliorates the phenotype of heart failure with preserved ejection fraction through its anti-inflammatory effects. Circ. Heart Fail. 15, e009288 (2022).
Gronda, E. et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study. Eur. J. Heart Fail. 16, 977–983 (2014).
Lohmeier, T. E. & Iliescu, R. Lowering of blood pressure by chronic suppression of central sympathetic outflow: insight from prolonged baroreflex activation. J. Appl. Physiol. 113, 1652–1658 (2012).
Lohmeier, T. E. et al. Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am. J. Physiol. Heart Circ. Physiol. 299, H402–H409 (2010).
Zheng, H. & Patel, K. P. Integration of renal sensory afferents at the level of the paraventricular nucleus dictating sympathetic outflow. Auton. Neurosci. 204, 57–64 (2017).
Zheng, H., Katsurada, K., Liu, X., Knuepfer, M. M. & Patel, K. P. Specific afferent renal denervation prevents reduction in neuronal nitric oxide synthase within the paraventricular nucleus in rats with chronic heart failure. Hypertension 72, 667–675 (2018).
Patel, K. P., Xu, B., Liu, X., Sharma, N. M. & Zheng, H. Renal denervation improves exaggerated sympathoexcitation in rats with heart failure: a role for neuronal nitric oxide synthase in the paraventricular nucleus. Hypertension 68, 175–184 (2016).
Katsuki, M., Shinohara, K., Kinugawa, S. & Hirooka, Y. The effects of renal denervation on blood pressure, cardiac hypertrophy, and sympathetic activity during the established phase of hypertension in spontaneously hypertensive rats. Hypertens. Res. 47, 1073–1077 (2024).
Cucinotta, F. et al. Short term cardiovascular symptoms improvement after deep brain stimulation in patients with Parkinson’s disease: a systematic review. J. Neurol. 271, 3764–3776 (2024).
Mofatteh, M. et al. Deep brain stimulation of the hypothalamic region: a systematic review. Acta Neurochir. 167, 33 (2025).
Green, A. L. et al. Intra-operative deep brain stimulation of the periaqueductal grey matter modulates blood pressure and heart rate variability in humans. Neuromodulation 13, 174–181 (2010).
Pereira, E. A. et al. Sustained reduction of hypertension by deep brain stimulation. J. Clin. Neurosci. 17, 124–127 (2010).
Lee, H., Lee, J. H., Hwang, M. H. & Kang, N. Repetitive transcranial magnetic stimulation improves cardiovascular autonomic nervous system control: a meta-analysis. J. Affect. Disord. 339, 443–453 (2023).
Xiang, C. et al. Low-intensity focused ultrasound modulation of the paraventricular nucleus to prevent myocardial infarction-induced ventricular arrhythmia. Heart Rhythm 21, 340–348 (2024).
Wang, S. et al. Noninvasive light emitting diode therapy: a novel approach for postinfarction ventricular arrhythmias and neuroimmune modulation. J. Cardiovasc. Electrophysiol. 30, 1138–1147 (2019).
Isegawa, K., Hirooka, Y., Katsuki, M., Kishi, T. & Sunagawa, K. Angiotensin II type 1 receptor expression in astrocytes is upregulated leading to increased mortality in mice with myocardial infarction-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 307, H1448–H1455 (2014).
Acarin, L., Gonzalez, B. & Castellano, B. Triflusal posttreatment inhibits glial nuclear factor-kappaB, downregulates the glial response, and is neuroprotective in an excitotoxic injury model in postnatal brain. Stroke 32, 2394–2402 (2001).
Gao, Y. et al. Curcumin mitigates neuro-inflammation by modulating microglia polarization through inhibiting TLR4 axis signaling pathway following experimental subarachnoid hemorrhage. Front. Neurosci. 13, 1223 (2019).
Hook, M. A. et al. An IL-1 receptor antagonist blocks a morphine-induced attenuation of locomotor recovery after spinal cord injury. Brain Behav. Immun. 25, 349–359 (2011).
Webster, C. I. et al. Enhanced delivery of IL-1 receptor antagonist to the central nervous system as a novel anti-transferrin receptor-IL-1RA fusion reverses neuropathic mechanical hypersensitivity. Pain 158, 660–668 (2017).
Thom, G. et al. A peptide derived from melanotransferrin delivers a protein-based interleukin 1 receptor antagonist across the BBB and ameliorates neuropathic pain in a preclinical model. J. Cereb. Blood Flow Metab. 39, 2074–2088 (2019).
Lee, J. H. et al. Intranasal administration of interleukin-1 receptor antagonist in a transient focal cerebral ischemia rat model. Biomol. Ther. 25, 149–157 (2017).
Wahl, D. et al. Nanoligomers targeting NF-kappaB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. J. Neuroinflamm. 21, 182 (2024).
Kang, Y. M. et al. Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc. Res. 83, 737–746 (2009).
Acknowledgements
M.V. is supported by NIH grants R01HL148190 and R01 HL1706262. V.Y.H.v.W. is supported by the Rubicon grant from the NWO.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to the manuscript.
Corresponding author
Ethics declarations
Competing interests
M.V. has patents related to neuromodulation at University of California, Los Angeles, and has performed educational consulting for Biosense-Webster, Medtronic, Zoll Inc. and has shares in Nference and NeuCures Inc. V.Y.H.v.W. declares no competing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks Hanjun Wang, Stefanos Zafeiropoulos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Bathmotropy
-
The degree of cardiac myocyte excitability, referring to the ease with which cardiomyocytes can be depolarized.
- Chronotropy
-
The rate at which the heart muscle is excited, expressed as heart rate.
- Dromotropy
-
The speed or velocity of cardiac electrical impulse conduction.
- HFmrEF
-
Heart failure with mildly reduced left ventricular ejection fraction of 41–49%.
- HFpEF
-
Heart failure with preserved left ventricular ejection fraction of ≥50%.
- HFrEF
-
Heart failure with reduced left ventricular ejection fraction of ≤40%.
- Inotropy
-
The force of cardiac contraction, expressed as mmHg s−1.
- Lusitropy
-
The rate of myocardial relaxation, expressed as mmHg s−1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
van Weperen, V.Y.H., Vaseghi, M. The brain–heart axis: effects of cardiovascular disease on the CNS and opportunities for central neuromodulation. Nat. Rev. Neurosci. (2025). https://doi.org/10.1038/s41583-025-01000-6
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41583-025-01000-6


